20 research outputs found

    An Improvement over the GVW Algorithm for Inhomogeneous Polynomial Systems

    Full text link
    The GVW algorithm is a signature-based algorithm for computing Gr\"obner bases. If the input system is not homogeneous, some J-pairs with higher signatures but lower degrees are rejected by GVW's Syzygy Criterion, instead, GVW have to compute some J-pairs with lower signatures but higher degrees. Consequently, degrees of polynomials appearing during the computations may unnecessarily grow up higher and the computation become more expensive. In this paper, a variant of the GVW algorithm, called M-GVW, is proposed and mutant pairs are introduced to overcome inconveniences brought by inhomogeneous input polynomials. Some techniques from linear algebra are used to improve the efficiency. Both GVW and M-GVW have been implemented in C++ and tested by many examples from boolean polynomial rings. The timings show M-GVW usually performs much better than the original GVW algorithm when mutant pairs are found. Besides, M-GVW is also compared with intrinsic Gr\"obner bases functions on Maple, Singular and Magma. Due to the efficient routines from the M4RI library, the experimental results show that M-GVW is very efficient

    A Monomial-Oriented GVW for Computing Gr\"obner Bases

    Full text link
    The GVW algorithm, presented by Gao et al., is a signature-based algorithm for computing Gr\"obner bases. In this paper, a variant of GVW is presented. This new algorithm is called a monomial-oriented GVW algorithm or mo-GVW algorithm for short. The mo-GVW algorithm presents a new frame of GVW and regards {\em labeled monomials} instead of {\em labeled polynomials} as basic elements of the algorithm. Being different from the original GVW algorithm, for each labeled monomial, the mo-GVW makes efforts to find the smallest signature that can generate this monomial. The mo-GVW algorithm also avoids generating J-pairs, and uses efficient methods of searching reducers and checking criteria. Thus, the mo-GVW algorithm has a better performance during practical implementations

    Coding theory:a Gröbner basis approach

    Get PDF

    Preimage Attacks on the Round-reduced Keccak with Cross-linear Structures

    Get PDF
    In this paper, based on the work pioneered by Aumasson and Meier, Dinur et al., and Guo et al., we construct some new delicate structures from the roundreduced versions of Keccakhash function family. The new constructed structures are called cross-linear structures, because linear polynomials appear across in different equations of these structures. And we apply cross-linear structures to do preimage attacks on some instances of the round-reduced Keccak. There are three main contributions in this paper. First, we construct a kind of cross-linear structures by setting the statuses carefully. With these cross-linear structures, guessing the value of one linear polynomial could lead to three linear equations (including the guessed one). Second, for some special cases, e.g. the 3-round Keccakchallenge instance Keccak[r=240, c=160, nr=3], a more special kind of cross-linear structures is constructed, and these structures can be used to obtain seven linear equations (including the guessed) if the values of two linear polynomials are guessed. Third, as applications of the cross-linear structures, we practically found a preimage for the 3-round KeccakChallenge instance Keccak[r=240, c=160, nr=3]. Besides, by constructing similar cross-linear structures, the complexity of the preimage attack on 3-round Keccak-256/SHA3-256/SHAKE256 can be lowered to 2150/2151/2153 operations, while the previous best known result on Keccak-256 is 2192

    Nonequilibrium Green Functions Simulations on the Next Level: Theoretical Advances and Applications to Finite Lattice Systems

    Get PDF
    This thesis is devoted to the description of correlated finite lattice systems under nonequilibrium conditions. In this context, the lack of small parameters in the corresponding standard many-body equations makes it difficult to construct suitable approximations for theoretical tools, which renders the computation of relevant observables numerically costly and impractical. At the same time, rigorous predictions for the ultrafast dynamics in correlated lattices are highly valuable for the understanding of many state-of-the-art experiments. The nonequilibrium Green functions (NEGF) technique is particularly well-suited to meet the challenging demands that come with the description of the nontrivial interplay between quantum correlations and nonequilibrium effects in excited lattice systems. However, in order to apply the approach on a practically relevant scale, several methodological improvements come to be indispensable. The present thesis contains these theoretical advances of the NEGF method, alongside with—thus accessible—applications to ultracold atoms in optical lattices and excited finite graphene nanostructures

    Number Theory, Analysis and Geometry: In Memory of Serge Lang

    Get PDF
    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas, namely number theory, analysis and geometry, representing Lang’s own breadth of interests. A special introduction by John Tate includes a brief and engaging account of Serge Lang’s life
    corecore