
 Eindhoven University of Technology

MASTER

Coding theory
a Gröbner basis approach

Kuijsters, D.W.C.

Award date:
2017

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0a0cfab9-fd5e-4cb4-b77c-1a5a088cc8e3

Eindhoven University of Technology
Department of Mathematics and Computer Science

Coding Theory: A Gröbner Basis
Approach

Master’s Thesis by

D.W.C. Kuijsters

Supervised by

Dr. G.R. Pellikaan

January 30, 2017

Abstract

One of the central topics in algorithmic coding theory is the design of efficient decoding
algorithms. For a large subclass of cyclic codes, the so-called BCH codes, such efficient
algorithms are known. The number of errors which a code is capable of correcting is entirely
specified by its minimum distance. If we write d for the minimum distance, then a code
should be able to correct up to bd−1

2 c errors. The problem with the algorithms used for

decoding BCH codes is that they only correct up to bdBCH−1
2 c errors where dBCH is the BCH

bound. Often the real minimum distance is much larger than this lower bound. It would be
satisfactory to come up with algorithms for correcting up to the true minimum distance.
It is possible to translate the problem of decoding into a parametrized system of equations.
Solving this system is then equivalent to solving the decoding problem. Related to this is the
problem of computing the (often unknown) minimum distance. It turns out that the same
system of equations can be used to solve this problem.
The polynomials constituting a system of equations determine an ideal. Every ideal has a finite
set of “small” generators called a Gröbner basis. From this basis the solution set to the original
system can easily be read off. In his 1965 dissertation Buchberger presented the first algorithm
for computing such a basis. Unfortunately, it turns out that this is a computationally hard
problem. Over the years, many variations improving on Buchberger’s algorithm have been
presented, including Faugère’s F5 algorithm and, more recently, Gao, Volny, and Wang’s
GVW algorithm. In general, useless reductions, i.e., reductions to zero, are the primary
bottleneck in Gröbner basis computations. Therefore, both algorithms incorporate a number
of criteria based on the notion of a signature to detect these useless reductions in advance. If
the polynomials constituting a system form a semi-regular sequence, then no useless reductions
are performed at all. Unfortunately, not all systems are given by a semi-regular sequence,
hence much attention has been devoted to exploiting the algebraic structure of the system
under consideration in order to speed up the algorithms.

1

Preface

This thesis is the result of my graduation project in completion of the Master of Science
degree. The graduation project was conducted under the supervision and guidance of Ruud
Pellikaan within the Coding Theory and Cryptology group at Eindhoven University of Tech-
nology.

The thesis consists of two parts. The first part deals with Gröbner basis techniques. In
particular, we will discuss the abstract framework and two particular algorithms in great
detail. The second part deals with coding theory. In particular, we will discuss how the
problem of decoding and finding the minimum distance can be translated into a system of
polynomial equations. In turn, the techniques discussed in the first part of this thesis can be
used to solve these problems.

• Chapter 1 gives a very brief overview of what we expect the reader to know.

• Chapter 2 introduces the notion of a Gröbner basis. Moreover, we give a brief intro-
duction to the language of algebraic geometry. With it, we formalize what it means to
solve a system and give a number of invariants of the system, such as its dimension and
degree. Finally, we present a number of algebraic tools that are useful for analyzing
these invariants.

• Chapter 3 extends the notion of a Gröbner basis by incorporating signatures. These are
pieces of data associated with a polynomial which encode how that polynomial depends
on a given basis.

• Chapter 4 introduces the first example of a signature-based Gröbner basis algorithm,
the Matrix-F5 algorithm. Using the F5-criterion, it is able to prevent useless reductions
to zero. Moreover, it shows how one can use fast linear algebra algorithms to speed
up the reduction process. In addition to describing the original Matrix-F5 algoritm, we
discuss a number of extensions that appear in the literature.

• Chapter 5 presents a relatively new signature-based Gröbner basis algorithm, the GVW
algorithm. The novel idea in this algorithm is to look at a larger module than just the
ideal itself. Instead of discarding a zero reduction, it stores the signature corresponding
to the reduction which is used to predict future zero reductions.

• Chapter 6 discusses a small number of experiments related to the algorithms that we
have implemented.

• Chapter 7 gives an introduces to linear codes, the second part of this thesis. Moreover,
it discusses the problem of decoding.

2

• Chapter 8 gives an overview of cyclic codes, which are linear codes with more structure,
and presents a number of ways of translating the decoding problem for cyclic codes to
a system of polynomial equations.

• Chapter 9 extends the ideas of the previous chapter to a method of translating the
decoding problem for general linear codes into a system of quadratic equations. Finally,
we will look at two possible applications.

• Chapter 10 describes the link between linear codes and a particular type of ideal which
appears quite often in applied mathematics, a toric ideal. At the end of the chapter, we
present a heuristic for the decoding problem. Unfortunately, this heuristic is not very
practical.

• Chapter 11 discusses a number of experiments related to the various ways of translating
the decoding problem into a system of equations.

• The appendix contains the implementation in Magma of several algorithms appearing
throughout this thesis.

I would like to express my gratitude to Wieb Bosma, Cees Jansen, and Hans Sterk for taking
part in my assessment committee. A special word of thanks goes to my graduation supervi-
sor Ruud Pellikaan for the many useful comments that I have received over the span of this
project.

Riethoven, the Netherlands. Daniël Kuijsters
January 30, 2017

3

Contents

1 Preliminaries 6

I Gröbner basis theory 8

2 Classical Gröbner basis theory 9
2.1 Order theory . 9
2.2 Multivariate division . 10
2.3 The notion of a Gröbner basis . 13
2.4 Buchberger’s algorithm . 14
2.5 The algebra of solving equations . 16

2.5.1 The finite field case . 21
2.6 Some projective geometry . 23
2.7 Some algebraic tools . 25

2.7.1 Projective Hilbert series . 25
2.7.2 Affine Hilbert Series . 28
2.7.3 Regular sequences . 29

3 Signature-based Gröbner basis theory 32
3.1 The module perspective . 32

3.1.1 Relations between the generators: syzygies 32
3.1.2 Monomial orders and Gröbner bases for modules 33

3.2 Buchberger’s algorithm using signatures . 34

4 Linearization and the Matrix-F5 algorithm 38
4.1 The homogeneous case . 38
4.2 Using known linear dependencies . 43
4.3 Predicting zero reductions . 46
4.4 A modification: the syzygy criterion . 49
4.5 Regular sequences in the context of Matrix-F5 53
4.6 Semi-regular sequences: a generalization of regular sequences 54
4.7 The inhomogeneous case . 55

4.7.1 Homogenization . 55
4.7.2 Sugar degree . 55
4.7.3 Degree fall . 56

4.8 Complexity . 57
4.9 Choosing D . 58

4

4.10 An improvement for sequences over F2 . 58
4.11 An improvement for sequences of bilinear forms 60

4.11.1 A further decomposition . 65

5 State of the art: the GVW algorithm 66
5.1 Theoretical foundations . 66
5.2 The algorithm . 71
5.3 Complexity . 75

6 Experimental results 76

II Algebraic coding theory 78

7 Basic concepts of linear codes 79
7.1 Introduction . 79
7.2 The Golay codes . 82
7.3 Syndrome decoding . 83

8 Cyclic codes 85
8.1 Introduction . 85
8.2 BCH codes . 86
8.3 Decoding beyond the BCH error-correcting capability 86

8.3.1 Cooper’s method . 88
8.3.2 On- and offline decoding . 90
8.3.3 Newton identities based method . 93

9 Decoding general linear codes 98
9.1 The method of unknown syndromes . 98
9.2 Applications . 105

9.2.1 The McEliece cryptosystem . 105
9.2.2 Finding the minimum distance . 106

10 Linear codes as binomial ideals 107
10.1 Toric ideals . 107
10.2 The code ideal . 108
10.3 A heuristic for decoding general linear codes 111

11 Experimental results 114

Bibliography 121

A Implementations in Magma 122
A.1 The Matrix-F5 algorithm . 122
A.2 The GVW algorithms . 130
A.3 The quadratic systems method . 139
A.4 A decoding heuristic . 141
A.5 Auxiliary functions . 141

5

Chapter 1

Preliminaries

This chapter will serve to fix the conventions and notation we will be using. Let N denote
the set of non-negative integers.

We are assuming that the reader has taken undergraduate courses in linear and abstract al-
gebra. In particular, the reader is assumed to be familiar with basic algebraic structures such
as groups, rings, fields, vector spaces, and their properties. We will briefly recall a number of
notions that we feel are important for this thesis.

A notion which is generally not taught at the undergraduate level is that of a module M over
a ring A. Its definition is identical to that of a vector space over a field. In other words, the
notion of a module over a ring generalizes that of a vector space over a field. We will say that
M is an A-module. In particular, an A-module homomorphism is the same as an A-linear
map. An A-module is finitely generated if A is equal to the set of all A-linear combinations of
a set {m1, . . . ,mk} of finite cardinality. A free A-module is one that is isomorphic to ⊕i∈IMi

where each Mi ' A. It follows that a finitely generated free A-module is isomorphic to Ak.

A general field will be denoted by k. An important class of examples is the class of finite
fields, i.e., fields with a finite number of elements. We will write Fq for the finite field of order
q. Here q = pl for a prime number p ∈ N and l > 0. We will write Fp for its prime field.

The characteristic of a field k is the smallest n ∈ N such that n ·1 = 0 in k. The characteristic
of k is either 0 or a prime p. So the characteristic of Fq is p if q = pl. Recall that all finite
field extensions of Fq are of the form Fqm for some m ∈ N.

A field k is called algebraically closed if every non-constant polynomial in k[x] has a root
contained in k. Every field k is contained in a field k that is algebraically closed. We call k
the algebraic closure of k.

To us, the most important example of a ring is the polynomial ring over k in the indetermi-
nates x1, . . . , xn, denoted k[x1, . . . , xn]. From now on, we will write An for k[x1, . . . , xn]. This
ring is commutative, i.e., fg = gf for all f, g ∈ An. Moreover, it is an integral domain, i.e.,
if f, g ∈ An are both non-zero, then their product is non-zero.

6

The elements of An are called polynomials. To define them, we start by first defining mono-
mials. A monomial in x1, . . . , xn is a product of the form

xa11 · · · · · x
an
n

where we require that each ai is a non-negative integer.

Given a monomial xa11 · · · · · xann , we call α = (a1, . . . , an) its exponent vector. Hence, for
simplicity of notation, we often write xα for xa11 · · · · · xann . The (total) degree of a monomial
xα = xa11 · · · · · xann is equal to the sum of the exponents |α| := a1 + · · ·+ an. Throughout this
text, we will let Tn denote the monoid of all monomials in x1, . . . , xn, i.e., Tn = {xα : α ∈ Nn}.

A polynomial f in x1, . . . , xn is a finite k-linear combination of monomials, i.e., it is of the
form

f =
∑
α

cαx
α, cα ∈ k

where the sum is over a finite number of n-tuples α of non-negative integers. Next, we need
the notion of the formal derivative of a polynomial. Let R be a ring. If a(x) =

∑n
i=0 aix

i is
a polynomial in R[x], then the formal derivative of a(x) is defined as a′(x) =

∑n
i=1 iaix

i−1.

Given polynomials f1, . . . , fm in An they define a set of equations. Obviously, taking sums
and multiplying the equations by arbitrary non-zero polynomials does not change the set of
solutions. This inspires the following definition. Let S ⊆ An. Let 〈S〉 denote the collection

〈S〉 = {p1f1 + · · ·+ pmfm : m ∈ N, fi ∈ S, pi ∈ k[x1, . . . , xn], for i = 1, . . . ,m}

If S = {f1, . . . , fm} we will also write 〈f1, . . . , fm〉 for 〈S〉. Recall that the collection thus
defined is an example of an ideal in An, i.e., a subgroup of An that is invariant under multi-
plication by polynomials. An ideal I in A is called prime if A/I is an integral domain. An
ideal I in A is called maximal if A/I is a field.

A syzygy on (f1, . . . , fm) is an element (a1, . . . , am) ∈ Amn such that
∑m

i=1 aifi = 0. In other
words, it is a relation between the fi.

Hilbert’s basis theorem says that An is Noetherian. A ring A is called is Noetherian if every
ideal in A is finitely generated. Equivalently, every ascending chain of ideals in A

I1 ⊆ I2 ⊆ · · ·

eventually stabilizes, i.e., there exists an n ∈ N such that In = In+1 = · · · .

7

Part I

Gröbner basis theory

8

Chapter 2

Classical Gröbner basis theory

The ideal membership problem can be formulated as follows: given f, f1, . . . , fm ∈ An, is
f ∈ 〈f1, . . . , fm〉? Gröbner bases were introduced to solve exactly this problem. In some sense,
a Gröbner basis is a set of “small” generators for the ideal. Unfortunately, the membership
problem is EXPSPACE-Hard [Sud], hence we cannot hope to find a polynomial-time algorithm
for computing a Gröbner basis.

2.1 Order theory

We would like to get a unique representation of the elements of An. To this end, we equip
An with a so-called monomial order.

Definition 2.1.1 (Monomial order). A monomial order on An is a relation, denoted >,
on the set Nn, or equivalently on the set of monomials xα, α ∈ Nn (via the map α 7→ xα),
satisfying

• > is a total order.

• > is compatible with multiplication, i.e., if α > β and γ ∈ Nn, then α+ γ > β + γ.

• > is a well-order, i.e., every non-empty subset of Nn has a smallest element relative to
>.

We use the convention that xα > 0 for all α ∈ Nn. The following orders are the classic
examples of monomial orders:

Definition 2.1.2 (Lexicographic order). α >lex β if and only if the left-most non-zero entry
of α− β is positive. We will write xα >lex x

β if α >lex β.

Definition 2.1.3 (Degree reverse lexicographic order). α >degrevlex β if either

• |α| > |β| or

• |α| = |β| and the right-most non-zero entry of α − β is negative. We will write
xα >degrevlex x

β if α >degrevlex β.

9

The graded reverse lexicographic order is an example of what we call a degree compatible
ordering, i.e., an ordering such that

|α| > |β| ⇒ α > β.

Next, we describe a monomial order that will come up when we talk about elimination.

Definition 2.1.4 (Elimination order). Suppose the variables in An are divided into two blocks,
say y = (y1, . . . , yh) and z = (z1, . . . , zk), and let >1 and >2 be monomial orders on the first
and second block respectively. We say that > is an elimination order with respect to (y, z) if
either

• yα >1 y
γ or

• yα = yγ and zβ >2 z
δ

Thus, in an elimination order we compare variables in the first block and only look at the
variables in the second block in the case of ties. An example of an elimination order is the
lexicographic order.
Now that we have defined a monomial order, we can agree on some terminology that will
come up over and over again.

Definition 2.1.5. Let f =
∑

α cαx
α be a non-zero polynomial in An and let > be a monomial

order.

• We call cα the coefficient of the monomial xα.

• If cα 6= 0, we call cαx
α a term of f .

• We call deg(f) = max{α1 + · · ·+ αn : cα 6= 0} the (total) degree of f .

• We call multideg(f) = max>{α ∈ Zn≥0 : cα 6= 0} the multidegree of f .

• The leading coefficient of f is lc>(f) = lc(f) = cmultideg(f).

• The leading monomial of f is lm>(f) = lm(f) = xmultideg(f).

• The leading term of f is lt>(f) = lt(f) = lc(f) lm(t).

• A polynomial with leading coefficient equal to 1 is called monic.

We will define deg(0) = −1 as we will need it later on.

2.2 Multivariate division

Let us go back to the ideal membership problem described at the beginning of this chap-
ter. Suppose f, f1, . . . , fm ∈ k[x] were univariate polynomials. Then it is easy to solve
the problem. Since k[x] is a principal ideal domain the ideal 〈f1, . . . , fm〉 is generated by
g = gcd(f1, . . . , fm). It follows that we only need to check whether f is a multiple of g which
can be done by division with remainder. It is the concept of division that we want to gen-
eralize to An. First we will recall how univariate division works: suppose we wish to divide
f = a0 + a1x+ · · ·+ anx

n by g = b0 + b1x+ · · ·+ bmx
m. Notice that the terms are ordered by

10

degree. We divide the leading term (with respect to this ordering) of f by the leading term
of g, i.e., we calculate qi := anxn

bmxm
and recursively apply this principle to fi := f − qig and g.

When the leading term of g no longer divides fi we end the recursion and store
∑

i qi in q,
which we call the quotient, and fi in r, which we call the remainder. We will try to mimick
this procedure in An:

Definition 2.2.1 (Top-reduction). Let f and g be polynomials in An. We say that f is
top-reducible by g if lm(g) divides lm(f). The corresponding top-reduction is given by

f − lt(f)

lt(g)
g

The effect of a top-reduction is that the leading term of f is cancelled.

Let F = {f1, . . . , fm} be a set of polynomials in An. We say that f is top-reducible by F if
there exists an 1 ≤ i ≤ m such that f is top-reducible by fi. When no fi top-reduces f we
say that f is top-irreducible.
When f is top-irreducible, we may proceed to reduce f − lt(f). If there is a term of f that
is divisible by a leading monomial of some fi we say that f is reducible by F . When f is no
longer reducible, we end up with a remainder r. However, this remainder is, in general, not
unique, as it depends on the order of reductions.

Proposition 2.2.2. Let F = {f1, . . . , fm} be a sequence of polynomials in An and fix a
monomial order >. Every polynomial f ∈ An can be written as a sum

f =

m∑
i=1

qifi + r

where qi, r ∈ An and either qifi = 0 or lt(f) > lt(qifi) for 1 ≤ i ≤ m. Moreover, we either
have r = 0 or r is a linear combination of monomials that are not divisible by any lt(fi) for
1 ≤ i ≤ m. We will call r a remainder of f on division by F .

An algorithm computing the quotients and the remainder is given below.

11

input : F = {f1, . . . , fm} a sequence of polynomials in An, a polynomial f ∈ An, and
a monomial order >

output: Polynomials r, q1, . . . , qm ∈ An such that f =
∑m

i=1 qifi + r
begin

r := 0 ;
h := f ;
for i = 1 to m do

qi := 0 ;
end
while h 6= 0 do

j := 1 ;
divided := false ;
while j ≤ m ∧ ¬divided do

if lt(fj) divides lt(h) then

h := h− lt(h)
lt(fj)

lt(fj) ;

qj := qj + lt(h)
lt(fj)

;

divided := true
else

j := j + 1 ;
end

end
if ¬divided then

h := h− lt(h) ;
r := r + lt(h) ;

end

end
return r, q1, . . . , qm

end
Algorithm 1: Multivariate division

12

2.3 The notion of a Gröbner basis

Finally, we introduce the notion of a Gröbner basis for an ideal. This is a nice set of generators
such that reduction by this set always leads to a unique remainder. First, we need a definition.

Definition 2.3.1. Let {0} 6= I be an ideal in An. The set of leading terms is defined as

lm(I) = {lm(f) | 0 6= f ∈ I}

The leading term ideal is the ideal 〈lm(I)〉 generated by the set lm(I).

Definition 2.3.2 (Gröbner basis). A finite subset G = {g1, . . . , gs} ⊆ I is said to be a
Gröbner basis for I (with respect to >) if it satisfies

〈lm(g1), . . . , lm(gm)〉 = 〈lm(I)〉

Thus every non-zero polynomial in I is top-reducible by G.

Theorem 2.3.3. Fix a monomial order >. Every ideal I has a Gröbner basis with respect
to >. Moreover, if G is a Gröbner basis for the ideal I, then I = 〈G〉.

Proof. See [CLO15] chapter 2, §5, corollary 6.

A problem with the multivariate division algorithm is that, in general, the outcome depends
on choices made during the algorithm. If the set of input polynomials forms a Gröbner basis
for the ideal spannend by it then the outcome is, in fact, unique. This is the content of the
following proposition.

Proposition 2.3.4. Let G = {g1, . . . , gs} be a Gröbner basis for I and let 0 6= f ∈ I. Then
there exists a unique r ∈ An satisfying

• No term of r is divisble by any of lt(g1), . . . , lt(gs), and

• There is a g ∈ I such that f = g + r.

This r is often called the normal form of f with respect to G and we denote it by f remG.

Proof. See [CLO15] chapter 2, §6, proposition 1.

In general, we will write f remF for the unique remainder on division by the ordered m−tuple
F = (f1, . . . , fm). In the case that F is a Gröbner basis we have just seen that the order
is irrelevant. We now have all the tools necessary to solve the membership problem. Let
f, f1, . . . , fm ∈ An and recall that we want to know if f ∈ 〈f1, . . . , fm〉. Compute a Gröbner
basis G for 〈f1, . . . , fm〉 and divide f by G. The remainder, which is unique, will answer the
question.

Corollary 2.3.5. Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I ⊂ An and 0 6= f ∈
An, then f ∈ I if and only if f remG = 0.

Proof. Suppose that f ∈ I. By proposition 2.3.4 f remG = f − g for some g ∈ I. It follows
that f remG ∈ I. However, no term of f remG is divisble by any of lt(g1), . . . , lt(gs). The
fact that G is a Gröbner basis then implies that f remG = 0. To prove the converse, we
assume that f remG = 0. Again, by proposition 2.3.4, we deduce that there exists a g ∈ I
such that f = g + (f remG). Our assumption then implies that f = g ∈ I.

13

Besides testing for membership, a Gröbner basis can also be used to do computations on the
residue classes in An/I. It turns out that each residue class is a k-linear combination of the
image in An/I of so-called standard monomials.

Definition 2.3.6 (Standard monomial). The monomials in the set {xα : xα /∈ 〈lm(I)〉} are
called standard.

Theorem 2.3.7 (Macaulay’s basis theorem). The residue classes of the standard monomials
form a k-vector space basis for the quotient ring An/I.

Proof. Let f + I ∈ An/I and let G = {g1, . . . , gs} be a Gröbner basis for I. Take the element
(f remG) + I as a representative for f + I. By proposition 2.3.4 no term of f remG is in
〈lt(g1), . . . , lt(gs)〉. Equivalently, f remG is a k-linear combination of standard monomials.

A Gröbner basis is, in general, not unique. We would like a unique representation of the ideal,
relative to a fixed order. To this end, we give the following definition.

Definition 2.3.8 (Reduced Gröbner basis). A reduced Gröbner basis for an ideal I is a
Gröbner basis G for I such that

• lc(g) = 1 for all g ∈ G.

• g rem(G \ {g}) = g for all g ∈ G.

It turns out that a reduced Gröbner basis is this unique representation.

Theorem 2.3.9. Every ideal I ⊂ An has a unique reduced Gröbner basis G.

Proof. See [CLO15] chapter 2, §7, theorem 5.

2.4 Buchberger’s algorithm

Given the usefulness of Gröbner bases, we ask ourselves the question how to find such a
basis. Buchberger, in his 1965 text, gave the first algorithm to compute a Gröbner basis. His
algorithm relies heavily on the concept of the S-polynomial of two polynomials.

Definition 2.4.1 (S-polynomial). Let f 6= 0, g 6= 0 ∈ An. The S-polynomial of f and g is
defined as

S(f, g) =
xγ

lt(f)
· f − xγ

lt(g)
· g

where xγ = lcm(lm(f), lm(g))

The S-polynomial of two polynomials is constructed in such a way that their leading terms
cancel. The following theorem gives us an algorithmic test to check whether a set of polyno-
mials constitutes a Gröbner basis.

Theorem 2.4.2 (Buchberger’s criterion). Let I be an ideal in An. A finite subset G =
{g1, . . . , gt} ⊂ I is a Gröbner basis if and only if for all pairs i 6= j we have that S(gi, gj)
reduces to 0 with respect to G.

Proof. See [CLO15] chapter 6, §6, theorem 6.

14

input : F = {f1, . . . , fm} a sequence of polynomials and a monomial order ≤
output: A Gröbner basis for 〈F 〉 with respect to ≤
begin

G := F ;
P := Sort({(p, q) : p, q ∈ G, p 6= q}) ;
while P 6= ∅ do

(p, q) := the first element of P ;
P := P \ {(p, q)} ;
r := S(p, q) remG ;
if r 6= 0 then

P := Sort(P ∪ {S(g, r) : g ∈ G}) ;
G := G ∪ {r} ;

end

end
return G

end
Algorithm 2: Buchberger’s algorithm

Theorem 2.4.3. Buchberger’s algorithm 2 terminates in a finite number of steps and outputs
a Gröbner basis for 〈f1, . . . , fm〉.

Proof. Write I = 〈F 〉. We first prove correctness. We want to use theorem 2.4.2 to prove
this. To this end, we need to show two things: that G is a subset of I during the entire
execution of the algorithm and that at the end S(g, h) remG = 0 for all g, h ∈ G with g 6= h.
Now, at the start of the algorithm G = F ⊆ I. During each iteration of the while loop G
is augmented with r. Since p, q ∈ I it follows that S(p, q) ∈ I and since G ⊆ I we deduce
that r ∈ I. Therefore, G∪ {r} ⊆ I. Whenever we process a new pair, if the remainder of the
S-polynomial by G didn’t already equal zero, then we add the remainder. This ensures that
subsequent computation of the remainder will yield zero. Hence if the algorithm terminates
we have that S(g, h) remG = 0 for all g, h ∈ G with g 6= h.

Next, we prove that the algorithm indeed terminates. Every time a non-zero remainder
is added to G the ideal 〈lt(G)〉 strictly increases. This leads to an ascending chain of ideals in
An. By Noetherianity of An this chain eventually stabilizes. This means that eventually the
if-branch is never executed. Therefore the set P eventually becomes empty and the algorithm
terminates.

15

Unfortunately, the algorithm given above is not very efficient. Every time an S-polynomial is
reduced to zero we don’t gain any new information. As the reduction step is the most time
consuming step it is natural to consider strategies avoiding these useless reductions. Since it is
impossible to avoid reducing S-polynomials altogether, much effort has also gone in speeding
up the reduction step. Finally, the order in which critical pairs are processed also has an
effect on performance. This becomes especially important when the input polynomials are
comprised of terms having different degree.
Buchberger gave two criteria to avoid useless reductions to zero.

Proposition 2.4.4 (Product criterion). Let f, g ∈ An and assume that

gcd(lm(f), lm(g)) = 1.

Then S(f, g) reduces to 0 with respect to {f, g}.

Proof. See [BWK93], lemma 5.66.

Definition 2.4.5 (t-representation). Let G = {g1, . . . , gs} ∈ An be a set of polynomials, let
t be a monomial, and let f ∈ An be given. We say that f has a t-representation with respect
to G if f can be written as

f = p1g1 + . . .+ psgs

where we require that pigi < t whenever pigi 6= 0. We will write that f = OG(t).

Proposition 2.4.6 (Chain criterion). Let F be a finite subset of An and g1, g2, p ∈ An such
that the following hold:

• lm(p) divides lcm(lm(g1), lm(g2)) and

• S(gi, p) has a ti-representation with respect to F with ti < lcm(lm(gi), lm(p)) for i = 1, 2.

Then S(g1, g2) reduces to 0 with respect to F .

Proof. See [BWK93], proposition 5.70.

2.5 The algebra of solving equations

In the area of error-correcting codes, the subject of the second part of this text, we will
often need to solve a system of polynomial equations. In this section, we therefore discuss
the relation between solving systems of polynomial equations and Gröbner bases. First we
formalize what it means to solve a system of equations.

Definition 2.5.1 (Affine space). Given a field k and a positive integer n we define the n-
dimensional affine space over k to be the set

An(k) = kn = {(a1, . . . , an) : a1, . . . , an ∈ k}

It is convenient to think of the elements of An as functions on An(k). Indeed, every polynomial
f ∈ An defines a homomorphism An(k) → k given by (a1, . . . , an) 7→ f(a1, . . . , an), the
evaluation homomorphism. An element a of An(k) is called a (k-rational) point and the ai
its coordinates. A point (a1, . . . , an) is called a zero of f ∈ An if f(a1, . . . , an) = 0. We

16

will also refer to a zero of f as a solution to the equation f = 0. In other words, solving
the equation f = 0 means finding a point (a1, . . . , an) ∈ An(k) such that f(a1, . . . , an) = 0.
Consider F = {f1, . . . , fm}, a set of polynomials in the polynomial ring An. Associated with
F is a system of equations:

f1(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

We are interested in the simultaneous solutions to these equations, i.e., the points (a1, . . . , an) ∈
An(k) solving each equation. These solutions form a geometric object, e.g., a single point in
the case of a single solution. We call the geometric object an algebraic set.

Definition 2.5.2 (Algebraic set). Let F be a set of polynomials in An. We associate with F
its locus of zeros,

Vk(F) = {(a1, . . . , an) ∈ An(k) : f(a1, . . . , an) = 0 for all f ∈ F}

We will also write Vk(f1, . . . , fm) instead of Vk({f1, . . . , fm}). We may omit the subscript k
when the context allows us to. A subset X ⊆ An(k) is called an algebraic set if X = V (F)
for some F .

If we write I = 〈F 〉 for the ideal generated by the set of polynomials F , then it is not difficult
to see that V (I) = V (F). Hence, from now on we will only consider the ideal generated by
a set of polynomials. By Hilbert’s basis theorem every X ⊆ An(k) is the solution set of a
finite number of equations. Moreover, going from ideals to the associated algebraic set and
vice versa reverses inclusions: I ⊆ J if and only if V (J) ⊆ V (J).

Proposition 2.5.3. Let f1, . . . , fm and g1, . . . , gs be sequences of polynomials in An such that
〈f1, . . . , fm〉 = 〈g1, . . . , gs〉. Then the common zeros of the polynomials in f1, . . . , fm are the
same as the common zeros of the polynomials in g1, . . . , gs, i.e.,

Vk(f1, . . . , fm) = Vk(g1, . . . , gs)

In particular we are interested in the case that {g1, . . . , gs} is a Gröbner basis for 〈f1, . . . , fm〉.

Proof. Let g ∈ 〈g1, . . . , gs〉, then g ∈ 〈f1, . . . , fm〉, hence g = u1f1 + · · · + umfm for certain
u1, . . . , um ∈ An. Now, let a ∈ Vk(f1, . . . , fm), then g(a) = u1(a)f1(a)+ · · ·+um(a)fm(a) = 0,
so a ∈ Vk(g1, . . . , gs). The other direction goes analogous.

Definition 2.5.4 (Vanishing ideal). Let V ⊆ An(k) be an algebraic set. Then I(V) = {f ∈
An : f(a) = 0 for all a ∈ V } is called the vanishing ideal of V .

Observe that if X = V (f1, . . . , fm), then 〈f1, . . . , fm〉 ⊂ I(X).

Definition 2.5.5 (Coordinate ring). Let V ⊆ An(k) be an algebraic set. The coordinate ring
of V is the quotient ring k[V] := An/I(V).

The coordinate ring can be identified with an algebra of functions V → k.

17

Theorem 2.5.6 (Weak Nullstellensatz). Let k be an algebraically closed field. Let I be a
proper ideal in An. Then V (I) 6= ∅.

Proof. See [Ful] chapter 1, §7.

The intuition behind the weak Nullstellensatz is this: a system of equations f1 = f2 = · · · =
fm = 0 is inconsistent if one is able to derive a contradictory statement such as 1 = 0. This
is equivelent with the existence of polynomials q1, . . . , qm such that q1f1 + · · · + qmfm = 1.
So the only obstructions to solvability are the obvious ones.

Corollary 2.5.7. Let k be an algebraically closed field. Let I be an ideal of the polynomial
ring An. V (I) = ∅ if and only if 1 ∈ I.

Proof. Let 1 ∈ I, then V (I) = ∅, because 1 never evaluates to zero. Conversely, assume that
V (I) = ∅. Then I = An, by the weak Nullstellensatz. It follows that 1 ∈ I.

This gives us an algorithmic tool to test whether a system of equations has a solution. We
simply compute a reduced Gröbner basis for I and check whether it equals {1}.

Definition 2.5.8 (Radical of an ideal). The radical of an ideal I in An, denoted
√
I, is

defined by √
I = {f ∈ An : fk ∈ I for some integer k > 0}

An ideal I such that I =
√
I is called radical.

Theorem 2.5.9 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. Let I be
an ideal in An. Then I(V (I)) =

√
I.

Proof. See [Ful] chapter 1, §7.

This is saying that if f vanishes on V (f1, . . . , fm) there exist polynomials q1, . . . , qm such that
q1f1 + · · ·+ qmfm = fk for some k > 0. Now, suppose that we are trying to solve a system of
equations f1 = f2 = · · · = fm = 0 under the condition that f 6= 0. Then by the above this sys-
tem has a solution, unless there exist polynomials q1, . . . , qm such that q1f1 + · · ·+qmfm = fk

for some k > 0.

Clearly Hilbert’s Nullstellensatz implies the weak Nullstellensatz. Indeed, let V (I) = ∅, then√
I = I(V (I)) = I(∅) = An. From this we deduce that 1 ∈

√
I, and so 1 ∈ I.

A consequence of Hilbert’s Nullstellensatz is that over algebraically closed k there is a one-
to-one correspondence between algebraic sets and radical ideals in An.

Definition 2.5.10 ((Affine) dimension of an ideal). Let I be an ideal in An. We define the
affine dimension of I to be equal to the Krull dimension of An/I, i.e., the length of the longest
chain of prime ideals in An/I. We denote this quantity as dim I.

Remark 1. This is the definition as given in [Eis95]. The motivation behind this is that if
An/I is the coordinate ring of an algebraic set X, then the dimension of I corresponds to the
geometric dimension of X. So we can define dimX = dim I(X), although we won’t explicitly
use this in this thesis.

The systems of equations we consider will often have a finite number of solutions.

18

Theorem 2.5.11 (Finiteness Theorem). Let I be an ideal in An. Consider the following
statements:

1. I is zero-dimensional.

2. I ∩ k[xi] 6= 〈0〉 for 1 ≤ i ≤ n.

3. For each 1 ≤ i ≤ n there exists an ei ≥ 0 such that xeii ∈ 〈lt(I)〉.

4. Let G be a Gröbner basis for I. For each 1 ≤ i ≤ n there exists an ei ≥ 0 such that
xeii = lm(g) for some g ∈ G.

5. The k-vector space dimension dimk An/I is finite.

6. The set {xα : xα /∈ 〈lt(I)〉} is finite.

7. Vk(I) consists of finitely many points.

The statements 1 to 6 are equivalent and they all imply 7. If k is algebraically closed, then
they are all equivalent.

Proof. See [CLO15] chapter 5, §3, theorem 6.

Suppose now that we wish to check whether the system of equations defined by I has a finite
number of solutions over the algebraic closure. By computing a Gröbner basis for I we can
readily check statement 6, i.e., that the number of standard monomials is finite.

Definition 2.5.12 (Multiplicity of I). Let I be a zero-dimensional ideal in An. The Finite-
ness Theorem 2.5.11 implies that dimk An/I is finite. We will call this quantity the multiplicity
of I and denote it mult(I).

We will later see that multiplicity is actually defined in a more general setting, and that it is
related to the cardinality of V (I).

Definition 2.5.13 (Perfect field). A field k is called perfect if either the characteristic of k
equals 0 or the characteristic of k equals p > 0 and k = kp.

Example 2.5.14. If k = Fq is any finite field, then k is perfect. Algebraically closed fields
form another class of examples.

Proposition 2.5.15. Let I be a zero-dimensional ideal in An. Then |Vk(I)| ≤ mult(I).
Moreover, if k is perfect and I is radical, then equality holds.

Proof. See [KR08] theorem 3.7.19.

Theorem 2.5.16 (Elimination theorem). Let G be a Gröbner basis for the ideal I in An
with respect to the lexicographic order, where x1 > x2 > · · · > xn. For j = 0, . . . , n − 1 let
Gj = G∩k[xj+1, . . . , xn]. This ideal is called the jth elimination ideal. Then Gj is a Gröbner
basis for the jth elimination ideal.

Proof. See [CLO15] chapter 3, §1, theorem 2.

Remark 2. Recall that the lexicographic order is an elimination order. The theorem holds for
general elimination orders as well, but we will only use the lexicographic order in this thesis
for the purpose of elimination.

19

Proposition 2.5.17 (Triangular form). Let k be algebraically closed and let F be a system
of polynomials in An and let G be the reduced Gröbner basis for I = 〈F 〉 with respect to the
lexicographic order with x1 > x2 > · · · > xn. If I is zero-dimensional, then G is in triangular
form, i.e.,

xenn − gn(xn),

x
en−1

n−1 − gn−1(xn−1, xn),

...

xe11 − g1(x1, . . . , xn−1, xn)

where ei ≥ 1.

Proof. This follows immediately from theorem 2.5.11, the fact that G is a reduced Gröbner
basis, and properties of the lexicographic order.

Proposition 2.5.18. Let k be an algebraically closed field and let I be an ideal in An. Then
Vk(I) = Vk(

√
I).

Proof. By Hilbert’s Nullstellensatz we have that I(V (I)) =
√
I, hence V (I) = V (I(V (I))) =

V (
√
I).

Definition 2.5.19 (Squarefree polynomial). A non-constant polynomial f in k[x] is called
squarefree if there does not exist a non-constant g ∈ k[x] such that g2 divides f .

Fortunately there exists an easy algorithm for checking whether a polynomial is squarefree,
based on the following proposition.

Proposition 2.5.20. A non-constant polynomial f ∈ k[x] is squarefree if and only if gcd(f, f ′) =
1.

Theorem 2.5.21 (Seidenberg). Let k be a field and let I be a zero-dimensional ideal in An.
Suppose that, for every i ∈ {1, . . . , n} there exists a squarefree polynomial in I ∩ k[xi]. Then
I =
√
I.

Proof. See [KR08] proposition 3.7.15.

Corollary 2.5.22. Let I be a zero-dimensional ideal and let fi be such that 〈fi〉 = I ∩ k[xi]
for 1 ≤ i ≤ n. Write gi for the squarefree part of fi. Then

√
I = I + 〈g1, . . . , gn〉.

Proof. See [KR08] corollary 3.7.16.

Definition 2.5.23 (Normal position). Suppose that I is a zero-dimensional ideal in An. Let
i ∈ {1, . . . , n}. We say that I is in normal xi-position, if any two zeros a, b ∈ An(k) of I
satisfy ai 6= bi.

Theorem 2.5.24. Let I be a zero-dimensional radical ideal in An and assume that k is
perfect. Finally, let gn be the monic generator of I ∩ k[xn]. The following are equivalent:

• The ideal I is in normal xn-position.

• The degree of gn is equal to mult(I).

20

Proof. See [KR08] theorem 3.7.23.

Proposition 2.5.25 (Shape lemma). Let k be a perfect field and let F be a system of
polynomials in An. Assume that I = 〈F 〉 is zero-dimensional, radical, and in normal xn-
position. Let G be the reduced Gröbner basis for I with respect to the lexicographic order with
x1 > x2 > · · · > xn. Let |V (I)| = l, then G has the form

{x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), xln − gn(xn)}

where every gi is a univariate polynomial of degree at most l − 1. In particular, Vk(I) =
{(g1(ai), . . . , gn−1(ai), ai) : 1 ≤ i ≤ l} where a1, . . . , al are the roots of xln − gn(xn).

Proof. See [KR08] theorem 3.7.25.

It is apparant that we need a method of finding the roots of a univariate polynomial. Substi-
tuting these roots into the gi will yield V (I).
If (u1, . . . , un) is the unique solution to a system of equations, then the reduced Gröbner basis
equals {x1−u1, . . . , xn−un}. If the system has no solutions at all, then the reduced Gröbner
basis equals {1}

2.5.1 The finite field case

Let I ⊆ Fq[x1, . . . , xn] be an ideal of polynomials over Fq. Recall that every element a ∈ Fq
satisfies aq = a. Now, write Iq = I + 〈xq1− x1, . . . , x

q
n− xn〉. Suppose we were only interested

in the zeros of I that lie in Fq. Then

Proposition 2.5.26.
VFq(Iq) = VFq(I)

Proof. Let a ∈ VFq(Iq), then f(a) = 0 for all f ∈ Iq. In particular, if f ∈ I ⊆ Iq, then

f(a) = 0. Moreover, we have that aqi = ai for i = 1, . . . , n. It follows that ai ∈ Fq. Hence
a ∈ VFq(I). The reverse inclusion is trivially true.

Since Iq contains the polynomials xqi − xi for all 1 ≤ i ≤ n, theorem 2.5.11 implies that Iq
is zero-dimensional. Moreover, xqi − xi is squarefree, hence theorem 2.5.21 says that Iq is
radical. Since Fq is perfect, we only need to make sure that Iq is in normal xn-position before
the shape lemma 2.5.25 is applicable.

Proposition 2.5.27.

xq − x =
∏
a∈Fq

(x− a)

Proof. Let a ∈ Fq. The generalized Fermat theorem says that aq = a. Hence, a is a root of
xq − x and so x − a divides xq − x. It follows that

∏
a∈Fq(x − a) divides xq − x. Since the

degree of the divisor equals q it follows that they are, in fact, equal.

An immediate consequence of this proposition is an application to root finding. Suppose that
we are interested in the roots of a univariate polynomial f ∈ Fq[x]. Calculating gcd(xq−x, f)
will give us the product of all the linear factors of f . The problem of finding the roots of f
reduces to that of finding these factors. An application of the equal-degree factorization 3 by
Cantor and Zassenhaus will yield these. We will describe only the method for odd values of
q.

21

input : A squarefree monic polyomial f ∈ Fq[x] of degree n > 0, where q is assumed
to be odd, and a divisor d < n of n, so that all irreducible factors of f have
degree d

output: A proper monic factor g ∈ Fq[x] of f, or “failure”
begin

Choose a ∈ Fq[x] with deg a < n at random ;
if a ∈ Fq then

return “failure”
end
g1 := gcd(a, f) if g1 6= 1 then

return g1

end

Compute b = a
qd−1

2 rem f ;
g2 := gcd(b− 1, f) ;
if g2 6= 1 ∧ g2 6= f then

return g2

else
return “failure”

end

end
Algorithm 3: Equal-degree factorization

input : A nonconstant polyomial f ∈ Fq[x].
output: The distinct roots of f in Fq.
begin

Compute h := xq rem f by repeating squaring. ;
g := gcd(h− x, f) ;
r := deg(g) ;
if r = 0 then

return []
end
Compute the linear factors x− u1, . . . , x− ur of g by calling equal-degree
factorization. ;

return [u1, . . . , ur]
end

Algorithm 4: Root finding

22

Alternatively, we can find the zeros of a polynomial over a finite field by simply trying out
all of them. The Chien search 5 accomplishes just this.

input : A polynomial σ(z) = 1 +
∑t

i=1 σiz
i ∈ Fq[x]

output: The zeros of σ(z)
begin

Let α ∈ F∗q be a primitive nth root of unity. ;

Z := ∅ ;
Qj := σj , for j = 1, . . . , t ;
for i := 0 to q − 1 do

Qj := Qjα
i ;

if 1 +Q1 + · · ·+Qt = 0 then
Z := Z ∪ {αi} ;

end

end
return Z

end
Algorithm 5: Chien search

As we have seen the Gröbner basis for a zero-dimensional ideal with respect to the lexi-
cographic order has a very convenient shape regarding the solving of systems of equations.
Often it is far more efficient to compute a Gröbner basis with respect to a degree-reverse
lexicographic order. In [FMLG89] the FGLM algorithm is presented and it was developed
exactly for this purpose.

Proposition 2.5.28. Let I be a zero-dimensional ideal in An. Let >1 and >2 be two mono-
mial orders. Finally, let G be a Gröbner basis for I with respect to >1. The FGLM al-
gorithm computes a Gröbner basis G′ of I with respect to >2 from G and its complexity is
O(n(mult(I))3).

Proof. See [FMLG89].

2.6 Some projective geometry

It turns out that it is natural to augment affine space with so-called points at infinity. These
are exactly the points that are “missing” in affine space. For example, in affine space two
distinct lines might not intersect at all (they are parallel) whereas in projective space they
do.

Definition 2.6.1 (Projective space).

Pn(k) = (An+1(k) \ {(0, . . . , 0)})/ ∼ where (a1, . . . , an+1) ∼ (λa1, . . . , λan+1) for λ ∈ k∗

This definition suggest to think of n-dimensional projective space as the set of lines through
the origin in (n+ 1)-dimensional affine space.

The equivalence class corresponding to (a1, . . . , an+1) is called a projective point and is de-
noted by (a1 : · · · : an+1) to emphasize that we only case about the ratio. Another point of
view is that

Pn(k) = An(k) ∪ Pn−1(k)

23

where P0(k) is a single point. This second definition immediately makes it clear that the n-
dimensional affine space is naturally embedded into n-dimensional projective space by sending
the point (a1, . . . , an) to the projective point (a1 : · · · : an : 1).

Definition 2.6.2 (Homogeneous polynomial). A polynomial f ∈ An+1 is said to be homoge-
neous of degree d if all terms of f have degree equal to d, i.e., it has the following shape,

f =
∑
α∈Nn
|α|=d

cαx
α.

Note that the function defined by f does not have a fixed value on a projective point. However,
it does make sense to ask whether f(a) is equal to 0 or not. Thus f gives a function from
Pn(k)→ {0, 1} defined by f(a) = 0 if f(a1, . . . , an) = 0 and f(a) = 1 if f(a1, . . . , an) 6= 0.

Definition 2.6.3 (Homogeneous ideal). An ideal I in An+1 is called homogeneous if it admits
a set of generators consisting of homogeneous polynomials.

Now, many of the concepts we have defined in the previous section have their counterpart in
projective space.

Definition 2.6.4 (Projective algebraic set). Let F be a set of homogeneous polynomials in
An+1. We associate with F its locus of zeros,

Vp,k(F) = {a ∈ Pn(k) : f(a) = 0 for all f ∈ F}

We will also write Vp,k(f1, . . . , fm) instead of Vp,k({f1, . . . , fm}). We will omit the subscript
k when the context allows us to. A subset X ⊆ Pn(k) is called a projective algebraic set if
X = Vp(F) for some F consisting of a finite number of homogeneous polynomials.

Definition 2.6.5 (Homogeneous vanishing ideal). Let X ⊆ Pn(k). Then the ideal I(X) =
{f ∈ An+1 : f(a) = 0 for all a ∈ Pn(k)} is called the homogeneous vanishing ideal of X.

Remark 3. As the name suggest, if k is an infinite field, then the ideal I(X) is homogeneous,
for all X ⊆ Pn(k).

Theorem 2.6.6 (Projective Nullstellensatz). Let I be a homogeneous ideal in An+1 and
assume that k is algebraicallt closed. Then

1. Vp(I) = ∅ if and only if there is an integer d such that I contains all homogeneous
polynomials of degree ≥ d.

2. If Vp(I) 6= ∅, then Ip(Vp(I)) =
√
I.

Proof. See [Ful] page 46.

If V is an algebraic set in Pn(k) we define the affine cone over V by

CV = {(a1, . . . , an+1) ∈ An+1(k) : (a1 : · · · : an+1) ∈ V } ∪ {(0, . . . , 0)} ⊆ An+1(k)

Definition 2.6.7 ((Projective) dimension of a homogeneous ideal). We define the projective
dimension of a homogeneous ideal I in An+1 to be the affine dimension plus one, and we
denote it by dimp I.

24

Remark 4. If I is homogeneous and has affine dimension equal to zero, then we always have
that Vk(I) = {0}. Equivalently, the algebraic set Vp,k(I) is empty! We mention this because
several authors (see e.g. [BFSY05]) have tried to set up a theory based on the assumption
that the ideal they are considering is both homogeneous and has affine dimension equal to
zero. In practice, we are rarely interested in solving systems of homogeneous equations which
only have zero as a solution.

There is a natural way of making any inhomogeneous polynomial homogeneous by adjoining
a new variable to the underlying polynomial ring. We call this operation homogenization.

Definition 2.6.8 (Homogenization). Let f ∈ An be an inhomogeneous polynomial of degree
d. Such a polynomial can be homogenized by introducing an extra variable y. The resulting
polynomial, denoted h(f), then is

h(f(x1, . . . , xn)) = ydf

(
x1

y
, . . . ,

xn
y

)
∈ An[y]

In applications we need a way of reversing the operation of homogenization. We can accom-
plish this by simply setting the new variable equal to 1. We call this operation dehomoge-
nization.

Definition 2.6.9 (Dehomogenization). Let f ∈ An[y] be a homogeneous polynomial. Then
a(f) = f(x1, . . . , xn, 1) ∈ An is called the dehomogenization of f with respect to y.

The operations of homogenization and dehomogenization are not exactly inverse to each
other. We do have that a(h(f)) = f for all f ∈ A. However, if we let f ∈ An[y] be a
homogeneous polynomial such that ym is the largest power of y dividing f , then we have that
h(a(f)) = y−mf . Fortunately, we are only interested in the former order of operations so this
poses no problem for us.

Definition 2.6.10 (Homogenized ideal). Let I be an ideal in An. The homogenization of I
is the ideal Ĩ = {h(f) : f ∈ I}.

Remark 5. Let I = 〈f1, . . . , fm〉 ⊆ An. We always have that 〈h(f1), . . . , h(fm)〉 ⊆ Ĩ, but in
general Ĩ is strictly larger.

Definition 2.6.11 (Projective closure). Given an affine algebraic set V ⊆ An(k) we define

its projective closure as V = Vp(Ĩ(V)) ⊆ Pn(k).

2.7 Some algebraic tools

In the next few subsections we will present some analytical tools from commutative algebra
for two reasons. First, they are interesting in their own right. Second, they will help us in
the analysis of the Matrix-F5 algorithm, which we will discuss in a later chapter.

2.7.1 Projective Hilbert series

Every polynomial in An can be written as a sum of its homogeneous parts in a unique way.
Writing An,d = k[x1, . . . , xn]d = {f ∈ An : f is homogeneous, deg(f) = d} ∪ {0} for the
k-vector space of homogeneous polynomials of degree d, we thus deduce that

An =
⊕
d∈N

An,d.

25

Moreover, it is not hard to see that An,dAn,e ⊆ An,d+e, making An into a graded ring. If I is
homogeneous, then it is a graded ideal, since

I =
⊕
d∈N

Id.

It follows that the algebra An/I is also graded. It is natural to study An/I by studying its
components. For this reason the Hilbert function was introduced.

Definition 2.7.1 (Hilbert function). Let I be a homogeneous ideal in An. We define the
function

hAn/I : N→ N, d 7→ dimk An,d/Id

and call it the Hilbert function of An/I.

Since the space An,d is spanned by all monomials of degree d it is not difficult to see that

dimk An,d =
(
n+d−1
n−1

)
, the number of columns of Md,m. Moreover, dimk Id is equal to rkMd,m.

In order to study the Hilbert function we turn to its generating function.

Definition 2.7.2 (Hilbert series). The generating function

HAn/I(t) =

∞∑
d=0

hAn/I(d)td =

∞∑
d=0

(dimk An,d/Id)t
d ∈ Z[[t]]

is called the Hilbert series of I

Theorem 2.7.3 (Hilbert-Serre). Let I be a homogeneous ideal in An. There exists a polyno-
mial Q ∈ Z[t] and δ ∈ N such that

HAn/I(t) =
Q(t)

(1− t)δ

with Q(1) 6= 0 (In other words, 1− t is not a factor of Q).

Proof. See [AM69] theorem 11.1 and cancel the common factors.

Corollary 2.7.4 (Hilbert polynomial, index of regularity). There exists a polynomial PAn/I ∈
Q[d] such that

hAn/I(d) = PAn/I(d)

for d large enough. This polynomial is called the Hilbert polynomial of An/I and

ireg(I) = inf{d0 : hAn/I(d) = PAn/I(d) for d ≥ d0}

is called the index of regularity of I.

Proof. Write

Q(t) =

∞∑
k=0

akt
k

with ak ∈ Z and only finitely many non-zero ak. Now,

1

(1− t)δ
=

∞∑
j=0

(
j + δ − 1

δ − 1

)
tj

26

It follows that

HAn/I(t) =
∞∑
j=0

∞∑
k=0

ak

(
j + δ − 1

δ − 1

)
tj+k

Since HAn/I(t) =
∑∞

d=0 hAn/I(d)td we have

hAn/I(d) =
∑
k≤d

ak

(
d− k + δ − 1

δ − 1

)

Now, when d ≥ max{k : ak 6= 0} = deg(Q) we have that hAn/I(d) is a univariate polynomial
in d, i.e.,

PAn/I(d) =

∞∑
k=0

ak

(
d− k + δ − 1

δ − 1

)

Proposition 2.7.5 (Some invariants). Write HAn/I(t) = Q(t)
(1−t)δ with Q(1) 6= 0 and 0 ≤ δ ≤ n.

Then

1. deg(PAn/I) = δ − 1.

2. dim I = δ.

3. ireg(I) = deg(Q)− δ + 1

4. mult I = (δ − 1)! · lc(PAn/I) if δ > 0 and dimk An/I if d = 0 (This will actually be our
definition).

Proof.

1. Oserve that the degree of the polynomial
(
x
k

)
= x(x−1)(x−2)···(x−k+1)

k! is equal to k. Since
we have k = δ − 1 the result immediately follows.

2. Corollary 13.7 in [Eis95] says that dim I = dimAn/I = 1+deg(PA/I). From 1, it follows
that dim I = δ.

Remark 6. Let I be a homogeneous ideal. If An/I is the coordinate ring of some X ⊆ (P)n(k)
and if this set has geometric dimension d, then the multiplicity of I corresponds with the
degree of X, i.e., the maximal possible number of intersection points with a linear space L
of dimension n − d. As an example, if X has projective dimension 0, then degX = |X|.
Similarly, if I is inhomogeneous and An/I is the coordinate ring of X ⊆ An(k), then the
multiplicity of I corresponds with the degree of the projective closure X ⊆ Pn(k).

Theorem 2.7.6 (Macaulay’s bound).

ireg(I) ≤ 1 +

m∑
k=1

(deg(fk)− 1)

Proof. See [BFS15].

27

2.7.2 Affine Hilbert Series

Besides being graded, An/I (where I is no longer assumed to be homogeneous) is naturally
filtered. Let An,≤d = {f ∈ An : deg(f) ≤ d}, and let I≤d = I ∩An,≤d = {f ∈ I : deg(f) ≤ d}.
We will study An/I by studying An,≤d/I≤d).

Definition 2.7.7 (Hilbert function). Let I be an ideal in An. We define the function

haAn/I : N→ N, d 7→ dimk An,≤d/I≤d

and call it the affine Hilbert function of An/I.

Since the space An,d is spanned by all monomials of degree at most d it is not difficult to see

that dimk An,≤d =
(
n+d
d

)
, the number of columns of Md,m. The affine Hilbert function counts

the number of monomials not in I of degree at most d. In order to study the Hilbert function
we turn to its generating function.

Definition 2.7.8 (Hilbert series). The generating function

Ha
An/I

(t) =
∞∑
d=0

haAn/I(d)td =
∞∑
d=0

(dimk An,≤d/I≤d)t
d ∈ Z[[t]]

is called the affine Hilbert series of I

Theorem 2.7.9 (Hilbert-Serre). Let I be an ideal in An. There exists a polynomial Q ∈ Z[t]
and δ ∈ N such that

Ha
An/I

(t) =
Q(t)

(1− t)δ

with Q(1) 6= 0 (In other words, 1− t is not a factor of Q).

Proof. This follows from [KR05] proposition 5.6.12 and theorem 2.7.3.

Corollary 2.7.10 (affine Hilbert polynomial, affine index of regularity). There exists a poly-
nomial P aAn/I ∈ Q[d] such that

haAn/I(d) = P aAn/I(d)

for d large enough. This polynomial is called the Hilbert polynomial of An/I and

iareg(I) = inf{d0 : haAn/I(d) = P aAn/I(d) for d ≥ d0}

is called the index of regularity of I.

Proof. This follows from [KR05] proposition 5.6.12 and corollary 2.7.4.

Proposition 2.7.11 (Invariants). Write Ha
An/I

(t) = Q(t)
(1−t)δ+1 with Q(1) 6= 0 and 0 ≤ δ ≤ n.

Then

1. deg(P aAn/I) = δ.

2. dim I = δ.

3. iareg(I) = deg(Q)− δ.

28

4. mult(I) = Q(1).

Proof. The first two statements follow from [KR05] theorem 5.6.36.

The affine and projective Hilbert function and series are related in the following way:

Proposition 2.7.12. Let I be a proper homogeneous ideal in An+1, then

1. haAn+1/I
(d) =

∑d
i=0 hAn+1/I(i).

2. Ha
An+1/I

(t) =
HAn+1/I

(t)

1−t .

Proof. See [KR05] proposition 5.6.8.

The following proposition enables us to translate properties derived from one series into the
properties of the same name associated with the other series:

Proposition 2.7.13. Let I be a proper homogeneous ideal of An+1, then

1. dim I = deg(P aAn+1/I
).

2. ireg(I) = iareg(I) + 1.

3. PAn+1/I(d) = P aAn+1/I
(d)− P aAn+1/I

(d− 1).

4. deg I = (dim I)! · lc(P aAn+1/I
).

Proof. See [KR05] proposition 5.6.11.

2.7.3 Regular sequences

Regular sequences turn out to be useful in the context of the Matrix-F5 algorithm, which we
will discuss in a later chapter.

Definition 2.7.14 (Regular sequence). A sequence of polynomials f1, . . . , fm in An is called
a regular sequence if it satisfies the following conditions:

• 〈f1, . . . , fm〉 6= An.

• If gfi = 0 in An/〈f1, . . . , fi−1〉, then g = 0 in An/〈f1, . . . , fi−1〉 for all g ∈ An and
1 ≤ i ≤ m.

The condition in the definition can be restated as follows: suppose that gfi ∈ 〈f1, . . . , fi−1〉,
then g ∈ 〈f1, . . . , fi−1〉.

Example 2.7.15. The sequence (x1, . . . , xn) is regular in An.

The polynomials constituting a regular sequence are “independent” from each other in a
specific sense: the only relations they satisfy are the trivial ones, i.e., fifj = fjfi, and the
relations generated by them. This is captured in the following important theorem.

Theorem 2.7.16. Let F = {f1, . . . , fm} be a sequence of homogeneous polynomials in An
and let I = 〈f1, . . . , fm〉. The following assertions are equivalent:

29

• F is a regular sequence.

• The syzygy module of I is generated by the principal syzygies, i.e., syzygies of the form
−fjei + fiej.

Proof. Suppose that the principal syzygies generate the syzygy module of I. Let g ∈ An and
suppose that gfi = 0. If g = 0, then the result follows immediately. So we may suppose that
g 6= 0. There exist h1, . . . , hi−1 ∈ An such that

gfi +

i−1∑
j=1

hjfj = 0.

In other words, we have a syzygy (h1, . . . , hi−1, g, 0, . . . , 0) on f1, . . . , fm. By assumption the
syzygy module is generated by principal syzygies, hence there exist hj,k ∈ An such that

(h1, . . . , hi−1, g, 0, . . . , 0) =
∑

1≤j<k≤m
hj,k(−fkej + fjek)

It follows that there exists j and k with j < k < i such that g = hj,kfj ∈ 〈f1, . . . , fi−1〉, as
required.

Next, suppose that F is a regular sequence. We will provement the statement by induc-
tion on m. If m = 1, then F = {f1} and since F is regular, f1 6= 0. Since An is an integral
domain, it follows that the only syzygy is 0, which is principal. For the inductive step, suppose
that s is a syzygy, then

m∑
i=1

sifi = 0

It follows that smfm ∈ 〈f1, . . . , fm−1〉 : 〈fm〉. Since F is regular we have that

〈f1, . . . , fm−1〉 : 〈fm〉 = 〈f1, . . . , fm−1〉.

From this we deduce that there exist h1, . . . , hm−1 such that sm =
∑m−1

i=1 hifi Now,

s =

m∑
i=1

siei

=
m−1∑
i=1

siei +

(
m−1∑
i=1

hifi

)
em

=
m−1∑
i=1

(si + hifm)ei +
m−1∑
i=1

hi(−fmei + fiem)

The term on the left is a syzygy on f1, . . . , fm−1, so by the induction hypothesis we have that∑m−1
i=1 (si + hifm)ei is in the module of principal syzygies, and the term on the right is in the

module of principal syzygies as well. It follows that every syzygy can be written in terms of
principal syzygies.

30

Theorem 2.7.17. We are assuming that k is algebraically closed. Let F = (f1, . . . , fm) be a
sequence of homogeneous polynomials in An, and let I = 〈F 〉. Then the following statements
are equivalent:

1. (f1, . . . , fm) is a regular sequence.

2. dim I = n−m.

3. The Hilbert series of A/I is equal to

HA/I(t) =

∏m
i=1(1− tdeg(fi))

(1− t)n

4. The index of regularity meets the Macaulay bound, i.e., ireg(I) = 1+
∑m

k=1(deg(fk)−1).

Proof. See [Bar04] proposition 1.7.4. In the proof of statement 4 the paper by Lazard [Laz83]
is referenced, but we were unable to find the exact statement in there. Moreover, we also
found a reference to [Giu84], but couldn’t find the exact statement in there either. We suspect
it is stated there in a mathematical language we are unfamiliar with.

From the theorem it immediately follows that an overdetermined homogeneous system can
never be regular. In the inhomogeneous case, a permutation of a regular sequence is not
necessarily a regular sequence.

Example 2.7.18. For a counterexample, consider the ring k[x, y, z] and the sequence x, y(1−
x), z(1− x). This sequence is regular. However, the sequence y(1− x), z(1− x), x is not.

If the polynomials are homogeneous, things are much nicer.

Corollary 2.7.19. If f1, . . . , fm is a homogeneous regular sequence, then any permutation of
this sequence is again a homogeneous regular sequence.

Proof. This follows immediately from theorem 2.7.17 statement 3 and the commutativity of
An.

31

Chapter 3

Signature-based Gröbner basis
theory

In 2002, Faugère [Fau02] first introduced the famous F5 algorithm. It is currently one of
the fastest known algorithms for computing Gröbner bases and much of its speed can be
attributed to the idea of so-called signatures to avoid redundant computations. All of the
currently fastest algorithms are based on this idea. Therefore much research has been devoted
to these signature-based Gröbner basis algorithms.
In this chapter we will discuss the fundamental ideas behind such algorithms and describe
a basic signature-based algorithm based on Buchberger’s algorithm to show how the ideas
come together. In the following chapters, we will describe two signature-based algorithms
that have been sucessfully used in practice. The first one is a matrix version of F5. It
showcases all of the important ideas underlying the general F5 algorithm. Moreover, the
mathematical theory behind it is particularly nice. The second algorithm is a relatively new
algorithm which matches Buchberger’s algorithm in simplicity while not sacraficing any speed
compared to F5.

3.1 The module perspective

3.1.1 Relations between the generators: syzygies

The setting is as follows. Let I ⊆ An be an ideal generated by a number of polynomials, say
I = 〈f1, . . . , fm〉. We want to find a Gröbner basis for I, but we want to avoid useless zero-
reductions. The main idea is to associate with each polynomial a vector of polynomials. The
intuition behind this vector is that it will keep track of the representation of the polynomial
in terms of the input sequence of polynomials. Hence, we consider the free module Rm over
R where we let e1, . . . , em be the standard basis. Recall that ei denotes the canonical unit
vector, i.e. ei = (0, . . . , 0, 1, 0, . . . , 0).

Definition 3.1.1 (Syzygy module). Let H = {(a1, . . . , am) ∈ Amn : a1f1 + · · ·+ amfm = 0}.
Recall that we call (a1, . . . , am) a syzygy. Therefore, we call H the syzygy module of I.

We have the following exact sequence

0 −→ H
ι−→ Amn

φ−→ I −→ 0

32

where ι is the natural embedding and φ is the mapping given by φ(a1, . . . , am) = a1f1 + · · ·+
amfm. If φ(a) = f we will say that a is a representation of f . If k is a syzygy, then f(k) = 0
and so f(a+ k) = f . It follows that f can have many different representations.

Definition 3.1.2 (Trivial/principal syzygy). The syzygies of the form −fjei + fiej for 1 ≤
i < j ≤ m are called principal or trivial syzygies..

These syzygies are called trivial since they follow immediately from the commutativity of An.
Indeed, φ(−fjei + fiej) = −fjfi + fifj = 0.

Remark 7. By the existence of principal syzygies, the map φ is never injective. It follows that
every f ∈ I can have many representations.

3.1.2 Monomial orders and Gröbner bases for modules

In this subsection we extend the notion of a monomial order on An to one on Amn . We will also
give the definition of a Gröbner basis for submodules of Amn . This is relevant to the chapter
on the GVW algorithm, since it simultaneously computes a Gröbner basis for the ideal and
the syzygy module of the generators of this ideal.
First, we define a monomial in Amn to be an element of the form xαei for some α ∈ Nn and
1 ≤ i ≤ m. Now, a monomial order on Amn is defined analogously to a monomial order on An.

Definition 3.1.3 (Monomial order). A monomial order on Amn is a relation, denoted by >,
on the set of all monomials in Amn satisfying

• > is a total order.

• > is compatible with multiplication, i.e., if a > b and xγ ∈ Tn, then axγ > bxγ.

• > is a well-order, i.e., there are no infinitely decreasing sequences of monomials.

Usually, one takes a monomial order on An and extends it to Amn . Some of the common and
useful monomial order on Amn are

Definition 3.1.4 (Some examples). Let > be any monomial order on An.

• (TOP-extension of >) xαei >TOP x
βej if and only if xα > xβ or xα = xβ and i > j.

• (POT-extension of >) xαei >POT x
βej if and only if i > j or i = j and xα > xβ.

As can be deduced from the definition, TOP stands for term-over-position and POT for
position-over-term.
The monomial order > on An and monomial order > on Amn are said to be compatible if
xα > xβ if and only if xαei > xβei for all α, β ∈ Nn and i = 1, . . . ,m.
Given an order on the monomials in Amn , any non-zero vector of polynomials a ∈ Amn can be
written as a sum of monomial terms

a =

d∑
i=1

cibi

with ci 6= 0 for i = 1, . . . , d and b1 > b2 > · · · > bd.

33

Definition 3.1.5. We define the leading coefficient, monomial, term, and signature-poly pair
as follows:

• The leading coefficient of a is lc>(a) = lc(a) = c1.

• The leading monomial of a is lm>(a) = lm(a) = b1.

• The leading term, henceforth called the signature, of a is σ(a) = c1b1.

• The signature-poly pair of a is (σ(a), φ(a)).

Now, with this terminology the following definitions are exactly like their ideal counterparts.

Definition 3.1.6. The set of leading terms of M is lt(M) = {lt(f) : f ∈M}.

Definition 3.1.7. Let > be a monomial order. A finite subset G = {g1, . . . , gt} of a module
M is said to be a Gröbner basis for M if 〈lt(M)〉 = 〈lt(g1), . . . , lt(gt)〉.

3.2 Buchberger’s algorithm using signatures

In this section, we will describe a variant of Buchberger’s algorithm using signatures to im-
prove upon the classical case. Recall that the idea behind Buchberger’s algorithm is to start
with a basis of your ideal - not necessarily a Gröbner basis - and compute S-polynomials
which are reduced by the polynomials found so far. If an S-polynomial reduces to zero we
have accomplished nothing. If an S-polynomial has a non-zero remainder, then we add this
remainder to the list of polynomials found so far. We keep doing this until we end up with a
Gröbner basis, which is ensured by both Buchberger’s criterion and the Noetherianity of An.
Now, how do signatures fit into this story? Let’s look at an example.

Example 3.2.1. Consider f = x, g = x2 − y, h = x3 − y2 in R := Q[x, y] with > equal to
the degree reverse lexicographic ordering with x > y and extended to the POT-order in R3.
Computing S-polynomials we find that

S(f, g) = y, S(f, h) = y2, S(g, h) = −xy + y2

and taking the remainder with respect to the ordered triple (f, g, h) yields,

S(f, g) rem(f, g, h) = y, S(f, h) rem(f, g, h) = y2, S(g, h) rem(f, g, h) = y2.

We see that both S(f, h) and S(g, h) reduce to y2. An immediate consequence is that S(g, h)
would reduce to zero with respect to (f, g, h, r) where r = S(f, h) rem(f, g, h). In other words,
if we had added r to the set of polynomials in a previous iteration we would get a useless
reduction in the iteration which selects S(g, h) as the S-polynomial to reduce. Observe that
we can zoom out to the level of the module and write

S(f, h) = y2 = (x2, 0,−1) · (f, g, h), S(g, h) = y2 = (0, x,−1) · (f, g, h).

Let’s look at the signature of these module elements.

σ(x2, 0,−1) = σ(0, x,−1) = −e3.

It turns out that the signature is equal, which is the reason why they reduce to the same
thing and why we only need to consider one of these S-polynomials. This is the power of the
signature approach.

34

We will now describe the theory behing a signature-based variant of Buchberger’s algorithm.
We start by defining what it means for a module element to be divisible by another module
element with the restriction that the signature is not allowed to decrease.

Definition 3.2.2. Let a ∈ Amn and let t be a term of φ(a). We say that b σ-reduces a if there
exists a monomial u ∈ Tn and a constant c ∈ k such that

1. cu lm(φ(b)) = t and,

2. σ(a) > σ(ub).

The corresponding σ-reduction is given by a−cub. In case σ(a) = σ(ub) we speak of a singular
σ-reduction. Otherwise, the reduction is called regular.

In a way, we are reducing division to the An-case, but by taking the associated module into
account we are able to make sure to only perform divisions of a certain kind, i.e., the ones
that respect the signature. The reason for doing this will become clear soon enough. First,
we will need some extra terminology.

Definition 3.2.3. Let a, k ∈ Amn and let H be a set of elements of Amn . We say that a is
σ-reduced to k by H if there exists a finite sequence of σ-reductions taking a to k by elements
of H. So k = a− c1m1h1 − · · · − clmlhl.

Definition 3.2.4. Let a ∈ Amn and let H be a set of elements of Amn . We say that a σ-reduces
to zero with respect to H if there exists a syzygy k such that a is σ-reduced to k by H.

Note that we do not require k to be zero. Since k is a syzygy, translating to I by φ will yield
zero. This justisfies saying that it reduces to zero. A Gröbner basis in the classical sense has
its signature counterpart.

Definition 3.2.5 (Signature Gröbner basis in signature T). Let I be an ideal in An and let
G = {g1, . . . , gs} be a subset of vectors of polynomials in Amn . Furthermore, assume that φ(gi)
is monic for i = 1, . . . , s. Then G is said to be a Gröbner basis in signature T for I if every
element a of Amn with σ(a) = T σ-reduces to 0 with respect to G.

Definition 3.2.6 (Signature Gröbner basis up to signature T). G is said to be a signature
Gröbner basis up to signature T for I if it is a Gröbner basis in signature S for all S < T .

Definition 3.2.7 (Signature Gröbner basis). G is said to be a signature Gröbner basis for I
if it is a Gröbner basis in all signatures.

It will come as no surprise that there exists an analogue to the famous Buchberger’s criterion.
Before we introduce it, we need the notion of an S-vector.

Definition 3.2.8. Let 0 6= a, b ∈ Amn correspond to monic φ(a), φ(b) ∈ An. The S-vector of
a and b is given by

S(a, b) =
lcm(lm(φ(a)), lm(φ(b)))

lm(φ(a))
a− lcm(lm(φ(a)), lm(φ(b)))

lm(φ(b))
b

When lt
(

lcm(lm(φ(a)),lm(φ(b)))
lm(φ(a)) a

)
= lt

(
lcm(lm(φ(a)),lm(φ(b)))

lm(φ(b)) b
)

we call the S-vector singular. Oth-

erwise, we call it regular.

35

Remark 8. Observe that φ(S(a, b)) = S(φ(a), φ(b)).

Proposition 3.2.9 (Buchberger’s criterion for signature Gröbner bases). Let I be an ideal
in An and let G = {g1, . . . , gs} be a subset of vectors of polynomials in Amn . Furthermore,
assume that φ(gi) is monic for i = 1, . . . ,m. Then G is a signature Gröbner basis for I if
and only if all S(gi, gj) with 1 ≤ i < j ≤ m and all ei with 1 ≤ i ≤ m σ-reduce to 0 with
respect to G.

Remark 9. The requirement that the ei σ-reduce to zero with respect to G ensures that φ(G)
is a basis for I and not for some ideal strictly contained in I.

Recall that we are interested in a Gröbner basis, but up to now we have defined everything
in terms of signatures. Fortunately, it is easy to translate a signature Gröbner basis into a
classical Gröbner basis.

Proposition 3.2.10. If G = {g1, . . . , gs} ⊆ Amn is a signature Gröbner basis for I, then
φ(G) = {φ(g1), . . . , φ(gs)} is a Gröbner basis for I.

Proof. Let 1 ≤ i < j ≤ s and consider the S-vector S(gi, gj). Since G is a signature Gröbner
basis, S(gi, gj) σ-reduces to k where k is a syzygy. It follows that φ(S(gi, gj)) = S(φ(gi), φ(gj))
reduces to φ(k) = 0 (since k is a syzygy) with respect to φ(G). Hence φ(G) is a Gröbner
basis for I.

Proposition 3.2.11. Let α, β ∈ Amn and let G be a signature Gröbner basis up to signature
σ(a) = σ(b). If a and b are both σ-reduced, then φ(a) = φ(b).

Proof. For the sake of contradiction, suppose that φ(a) 6= φ(b). Since σ(a) = σ(b) we deduce
that σ(a − b) < σ(a). Since G is a signature Gröbner basis up to signature σ(a) we deduce
that a−b reduces to zero. W.l.o.g. we assume that lt(a−b) appears in a. But this contradicts
that a was σ-reduced.

Corollary 3.2.12. When we process S-vectors in order of increasing signature, we need to
process at most one S-vector at a given signature.

When we σ-reduce an S-vector, say a, three things can happen.

1. a is a syzygy,

2. a is singular σ-reducible, or

3. we add a to the current basis.

The strength of the signature-based approach lies in a number of criteria for predicting zero
reductions. First, we need some terminology.

Proposition 3.2.13. Let a ∈ Amn and G be a signature Gröbner basis up to σ(a). If a is
singular σ-reducible, then a σ-reduces to zero with respect to G.

Proof. If a is singular σ-reducible then there exists a monomial u ∈ Tn and a g ∈ Amn such
that σ(ug) = σ(a). Let b be the result of reducing a by g. Then σ(b) < σ(a). Hence b
σ-reduces to 0 with respect to G. Hence a σ-reduces to 0 by G ∪ {g}.

36

Definition 3.2.14. Let a, b ∈ Amn . We say that σ(a) divides σ(h) if there exists a monomial
m ∈ Tn and a constant c ∈ k such that σ(h) = cm(σ(a)). Observe that this implies that both
σ(a) and σ(h) contain the same basis vector ei for some 1 ≤ i ≤ m.

Proposition 3.2.15 (Syzygy criterion). Let G = {g1, . . . , gt} be a set of elements of Amn and
let h = S(gi, gj). If G is a signature Gröbner basis up to signature σ(h) and there exists a
syzygy k such that σ(k) divides σ(h), then S(gi, gj) σ-reduces to zero with respect to G.

Proof. By assumption, there exists an xα ∈ Tn such that h = xαk. Since k is a syzygy, we
also have that xαk is a syzygy and this syzygy has signature equal to σ(h). It follows that
σ(h − xαk) < σ(h). Hence φ(h − xαk) = φ(h) − xαφ(k) = 0. This implies that φ(h) = 0.
Equivalently, h σ-reduces to zero with respect to G.

Definition 3.2.16 (Predictably syzygy). A signature T is said to be predictably syzygy if

• there exists a syzygy p that is generated by principal syzygies and is such that σ(p) = T ,
or

• there exists a syzygy q ∈ Amn such that σ(q) < T and σ(q) divides T .

input : F = {f1, . . . , fm} a sequence of polynomials, and a monomial order ≤ on An
output: A signature-Gröbner basis for 〈F 〉 with respect to ≤
begin

G := ∅ ;
P := {e1, . . . , em} ;
H := {−fjei + fiej : 1 ≤ i < j ≤ m} ;
while P 6= ∅ do

p := an element of P with ≤-minimal signature ;
P := P \ {p} ;
if ¬ Criterion(p,G ∪H) then

p′ := result of regular σ-reducing p by G ;
if φ(p′) = 0 then

H := H ∪ {σ(p′)};
else

p′ := 1
lc(φ(p′))p

′ ;

P := P ∪ {S(g, p′) : g ∈ G and S(g, p′) is regular} ;
G := G ∪ {p′} ;

end

end

end
return φ(G)

end
Algorithm 6: Signature Buchberger’s algorithm

Theorem 3.2.17. Algorithm 6 terminates in a finite number of steps and outputs a Gröbner
basis.

Proof. See [EF15] theorem 5.2 and proposition 3.2.10.

37

Chapter 4

Linearization and the Matrix-F5
algorithm

In this chapter, we will explore the link between the calculation of Gröbner bases and linear
algebra. We present the Matrix-F5 algorithm [Bar04], our first example of a signature-based
Gröbner basis algorithm, which uses the F5-criterion to predict useless reductions to zero and
linear algebraic methods to speed up the reduction process. While interesting in its own right,
Matrix-F5 is also used to study the complexity of the general F5-algorithm (See [BFS15]).

Suppose we are interested in computing a Gröbner basis for the ideal I = 〈f1, . . . , fm〉 ⊆ An.
The key observation is that I is a k-vector space in addition to being an ideal. In what follows,
we will therefore be careful in distinguishing between an ideal basis and a linear basis. We
will emphasize the word linear when needed. Observe that I is linearly generated by the set

{xαfi : 1 ≤ i ≤ m,α ∈ Nn}.

We can encode these generators into an infinite matrix. This matrix will contain a column
for each monomial and a row for each product xαfi. The entry indexed by such a pair is the
coefficient of the monomial in the product. The idea is that a Gröbner basis for I can be
derived from a triangulation of this matrix.

Remark 10. The fact that, in theory, we can triangulate this infinite matrix follows from the
fact that each row consists of only a finite number of non-zero entries, since they correspond
to polynomials. Moreover, each column contains a finite number of non-zero entries because
it corresponds to a monomial of a fixed degree, say d, and this monomial appears only in the
polynomials of the form xαfi with |α|+ deg(fi) = d. These are finite in number.

It is this connection that was first explored by Lazard in [Laz83], who in turn based his ideas
on the work of Macaulay [Mac94].

4.1 The homogeneous case

We will first restrict our attention to the case where each fi is a homogeneous polynomial, as
the theory is much simpler in this case. So we are assuming that I is a homogeneous ideal.
This assumption is not a restriction. As we will later see, any inhomogeneous polynomial can
be made homogeneous by introducing a new variable. Homogeneous polynomials offer several

38

advantages over inhomogeneous polynomials. For example, when the monomials are ordered
by a degree compatible ordering, the matrix as described above consists of blocks which do
not overlap. In particular when we look at the submatrix comprised of the non-zero columns
it is a direct sum of special matrices which we will encounter shortly. Recall that we write
An,d = k[x1, . . . , xn]d = {f ∈ An : f is homogeneous, deg(f) = d} ∪ {0} for the k-vector
space of homogeneous polynomials of degree d, and recall that An can be decomposed as

An =
⊕
d∈N

An,d.

Now, let Id = I ∩ An,d = {f ∈ I : f is homogeneous, deg(f) = d} ∪ {0}. It follows that
finding a linear basis for I (which, in general, is infinite-dimensional) is equivalent to finding
a linear basis for Id for each d ≥ 0. It is not hard to see that Id is linearly generated by the
monomials

Sd := {xαfi : |α|+ deg(fi) = d, 1 ≤ i ≤ m}

so we can explicitly list dimk Id basis vectors. Consider the canonical isomorphism between Id
and k|Tn,d| identifying a polynomial with its vector of coefficients with respect to the basis Tn,d.

Here |Tn,d| =
(
n+d−1

d

)
, the number of monomials in degree d. We can collect the coefficient

vectors associated with the polynomials in Sd into a matrix mentioned at the beginning of
this section and call it a Macaulay matrix.

Definition 4.1.1 (Macaulay matrix). Fix a monomial order >. Given a sequence of homoge-
neous polynomials f1, . . . , fm ∈ An and a degree d ∈ N we can construct the Macaulay matrix
Md,m having its columns indexed by Tn,d in decreasing order. Multiply each fi of degree di
with each monomial xα ∈ Tn,d−di in increasing order. The resulting matrix contains a row
indexed by xαfi. The value at position (xαfi, x

β) is given by the coefficient of xβ in xαfi.

Md,m =

. . . xβj . . .

...
xαifk Coefficient(xβj , xαifk)
...

Example 4.1.2. Let the ring be F3[x, y, z] equipped with the degree reverse lexicographic order,
and consider the polynomials

f1 = x+ y + z and f2 = y + 2z

The Macaulay matrix of f1 and f2 in degree 2 is given by:

M2,2 =

(x y z

f1 1 1 1
f2 0 1 2

)
This shows example shows that we simply write the polynomials in terms of the vector space

39

basis. Now, since z < y < x we obtain the following matrix in degree 3:

M3,2 =

x2 xy xz y2 yz z2

zf1 0 0 1 0 1 1
yf1 0 1 0 1 1 0
xf1 1 1 1 0 0 0
zf2 0 0 0 0 1 2
yf2 0 0 0 1 2 0
xf2 0 1 2 0 0 0

If we now compute an echelon form of Md,m, say M̃d,m (henceforth a tilde denotes an echelon
form), then the polynomials associated with row vectors in this echelon form yield a linear
basis for Id. Computing an echelon form can be done by applying the Gaussian elimination
algorithm to Md,m. The resulting basis has a property reminiscent of those of a Gröbner
basis. This inspires the following definition:

Definition 4.1.3 (Gröbner basis for degree d). Let I be a homogeneous ideal in An and let
d ∈ N. A subset G of I is called a Gröbner basis for I for degree d if for every f ∈ Id there
exists a g ∈ G such that lt(g) divides lt(f).

Indeed,

Proposition 4.1.4. The linear basis for Id given by the rows of M̃d,m is a Gröbner basis for
I for degree d.

Proof. Let f ∈ Id. Write {b1, . . . , bs} for the ordered (bi corresponds to the ith row) basis for
Id. Then f = a1b1 + · · · asbs with ai ∈ k. Let j be the first index such that aj is non-zero. It
follows that lt(f) = lt(a1b1 + · · · asbs) = aj lt(bj) by the properties of the echelon form. Hence
lt(bj) divides lt(f), as required.

Let us generalize this. Write I≤d = {f ∈ I : deg(f) ≤ d} for the ideal of all polynomials in I

having degree at most d. Then I≤d =
⊕d

k=0 Ik as a sum of linear spaces. A linear basis for
this space is given by the union of the bases for the Ik. As we have just seen these are easy
to compute. The linear basis for I≤d forms what is called in the literature a d-Gröbner basis,
see e.g. [FSEDS11] or [BFS15].

Definition 4.1.5 (Gröbner basis up to degree d / d-Gröbner basis / d-truncated Gröbner
basis). Let I be a homogeneous ideal in An and let d ∈ N. A subset G of I is called a Gröbner
basis up to degree d of I, or d-Gröbner basis for short, if for every f ∈ I≤d there exists a
g ∈ G such that lt(g) divides lt(f).

The relation between the two definitions is captured by the following proposition:

Proposition 4.1.6. Let Gd denote a Gröbner basis for I for degree d, then G =
⋃D
d=0Gd is

a Gröbner basis up to degree D.

Proof. Let f ∈ I≤D and let d = deg(f). Then lt(f) ∈ Id. Hence there exists a g ∈ Gd ⊆ G
such that lt(g) divides lt(f). Hence G is a Gröbner basis up to D.

All the ideas described above can easily be incorporated into an algorithm. Algorithm 7
incrementally computes d-Gröbner bases until we end up with a D-Gröbner basis, where D
is an input parameter. For some applications having a D-Gröbner basis is enough, e.g., when

40

input : F = {f1, . . . , fm} a sequence of polynomials, a positive integer D, and a
monomial order ≤ on R

output: A D-Gröbner basis for 〈F 〉 with respect to ≤
begin

G := [] ;
for d := 1 to D do

M := [] ;
for j := 1 to m do

if deg(fj) = d then
Append(M,fj) ;

else if deg(fj) < d then
Md−deg fj := all monomials of degree d− deg(fj) ;

for t ∈Md−deg fj do

Append(M, tfj) ;
end

end

end

M̃ := GaussianElimination(CoefficientMatrix(M)) ;

G := G ∪ {h ∈ M̃ : ∀g ∈ G : lm(g) does not divide lm(h)} ;

end
return G

end
Algorithm 7: Lazard’s algorithm

41

wanting to test whether some f of degree at most D is in I. We are however interested in a
Gröbner basis in the usual sense as our ultimate goal is system solving. Fortunately, for large
enough D these two notions coincide. This is captured by the following theorem:

Theorem 4.1.7. There exists a d∞ ∈ N such that for every d ≥ d∞ we have that if G is a
Gröbner basis up to degree d it is also a Gröbner basis.

Proof. Consider the following ascending chain of ideals in An:

〈lm(I≤0)〉 ⊆ 〈lm(I≤1)〉 ⊆ 〈lm(I≤2)〉 ⊆ · · ·

Since An is a Noetherian ring the chain eventually stabilizes, i.e., there exists a d∞ such
that 〈lm(I≤d∞)〉 = 〈lm(I≤d∞+1)〉 = 〈lm(I≤d∞+2)〉 = · · · . Now, let G be a Gröbner basis
up to degree d for some d ≥ d∞, and let f ∈ I. Then lm(f) ∈ 〈lm(I)〉. Observe that
〈lm(I)〉 = 〈lm(I≤d)〉 = 〈lm(I≤d∞)〉. Hence lm(f) ∈ 〈lm(I≤d)〉. It follows that there exists a
monomial u ∈ I≤d dividing lm(f). Since G is a Gröbner basis up to degree d there exists a
g ∈ G such that lm(g) divides u. By transitivity lm(g) divides lm(f). This implies that G is
a Gröbner basis.

Intermezzo.

We feel that the degree at which stabilization takes place deserves its own name:

Definition 4.1.8 (Degree of regularity). We define the degree of regularity as the smallest
d∞ satisfying the conditions in theorem 4.1.7 and denote it by dreg(I).

Remark 11. In the literature, the degree of regularity is defined in a different way (see e.g.
[BFSY05]). The problem with the definition the authors present in there is that it only
make sense in the context of a homogeneous zero-dimensional (in the affine sense) ideal. As
we remarked in the section on projective geometry, such ideals are not interesting at all in
practice. We also want to point out that dreg(I) depends on the monomial order being used.

We quote a theorem by Giusti [Giu84] which seems helpful, although we do not fully un-
derstand its assumptions. It seems to say that this bound holds for “random” systems of
equations.

Theorem 4.1.9. Let > be the lexicographic ordering. In the finite-dimensional vector space
parametrizing the ideals of k[x1, . . . , xn] generated by k polynomials of degree less than d, there
exists a non-empty Zariski-open subset where dreg(I) is bounded by nd− n+ 1.

Proof. See [Giu84] theorem C.

Another useful theorem by Giusti is the following:

Theorem 4.1.10. Let I = 〈f1, . . . , fm〉 be a (not necessarily homogeneous) ideal in An and
let > be the degree reverse lexicographic ordering. Let d = max{deg(fi) : 1 ≤ i ≤ m}. Let Ih

denote the ideal generated by h(f1), . . . , h(fm) (Recall that h denotes the homogenization map)
and assume that dimAn/I

h = 1. Then the highest degree appearing during the computation
of a Gröbner basis is at most 1 + (n− 1)(d− 1). In other words, dreg ≤ 1 + (n− 1)(d− 1).

Proof. See [Giu84] theorem 3.9 on page 170.

42

Remark 12. In practice one often encounters system of equations having degree at most 2. If
the assumptions in the theorem are satisfied, then it says that dreg ≤ n for such a system. In
other words, dreg would be bounded above by the number of variables.

Clearly dreg says a lot about the complexity of computing a Gröbner basis and we feel that
there is much more that can be said. See e.g. the paper by Ding et al. [DS13] which makes
the observation that there seems to be a lot of confusion about this topic within the crypto-
graphic community.

End of intermezzo.

Theorem 4.1.11. Lazard’s algorithm 7 terminates and computes a D-Gröbner basis for 〈F 〉.

Proof. Termination follows from the fact that the number of iterations of the outer loop is
bounded by D and, similarly, the number of iterations of the inner loop is bounded by m.
That the algorithm computes a D-Gröbner basis is a consequence of propositions 4.1.4 and
4.1.6.

Corollary 4.1.12. Let I be a homogeneous ideal. Then all polynomials in the reduced
Gröbner basis G of I have degree at most dreg(I).

Proof. When Lazard’s algorithm terminates, it outputs a D-Gröbner basis. Elements in this
D-Gröbner basis have degree at most D. When D = dreg(I) theorem 4.1.7 says that G is a
Gröbner basis. In the reduced Gröbner basis of I the degree and number of polynomials can
only drop, thus the bound follows.

4.2 Using known linear dependencies

Even though algorithm 7 is correct and constructs a Gröbner basis for large enough D, it is
not very efficient; it spends a lot of time doing redunant computations. We will now describe
a series of impovements ultimately leading to a matrix variant of the F5 algorithm. We
follow the exposition by Albrecht [Alb10]. The first improvement is best illustrated by a
small example. To this end, let > be the degree reverse lexicographic order and consider the
following polynomials in F3[x, y, z]:

f1 = x+ y + z, f2 = 2x+ z, f3 = 2y + z.

First, construct the Macaulay matrix in degree 2 associated with this system:

M2,3 =

x y z

f1 1 1 1
f2 2 0 1
f3 0 2 1

A row echelon form of M2,3 is:

M̃2,3 =

x y z

f1 1 1 1
f4 0 1 2
f5 0 0 0

43

This gives us a new polynomial f4 = y + 2z in 〈f1, f2, f3〉. Now, in constructing M3,3 we
multiply fi by z, y, and x (in that order) for 1 ≤ i ≤ 3 and construct the corresponding
rows. Observe that if we compute the row echelon form of the constructed matrix the work
we do is redundant. Indeed, f4 = f1 + f2 from which it follows that xf4 = xf1 + xf2. So
instead of reducing the row xf2 by the row xf1 in M3,3 we simply replace xf2 by xf4, which
we know from the previous step. Moreover, f5 = f1 + f2 + f3 = 0, so we say that f3 reduced
to zero. Any multiple of f3 will reduce to zero as well. Hence we may leave out f3 altogether.
In general, let fj 6= 0 be a newly discovered polynomial in the dth iteration of algorithm 7
obtained by reducing a row xαfi, then we form the matrix Md+1,m using the polynomial fj
instead of xαfi. In our example, this will lead to the following matrix:

M3,3 =

x2 xy xz y2 yz z2

zf1 0 0 1 0 1 1
yf1 0 1 0 1 1 0
xf1 1 1 1 0 0 0
zf4 0 0 0 0 1 2
yf4 0 0 0 1 2 0
xf4 0 1 2 0 0 0

This incremental strategy poses a new problem. Let xαfi be a row in Md,m. Then in Md+2,m

we will have both the rows xyxαfi and yxxαfi. By commutativity these two rows are equal.
We want to avoid this from happening. The idea of a signature, which we have seen in chapter
3, turns out to be the right tool to solve this problem. In the language of Faugère [Fau02],
we first define the notion of a labeled polynomial.

Definition 4.2.1 (Labeled polynomial). Let F = {f1, . . . , fm} be a sequence of polynomials in
An and let f ∈ 〈F 〉 =: I be a polynomial. Recall that φ is the obvious homomorphism between
An and I. Then there exists a vector (h1, . . . , hm) ∈ Amn such that f = φ(h1, . . . , hm). We
call σ(f) = σ(h1, . . . , hm) the signature of f and call (σ(f), f) a labeled polynomial. Note that
this corresponds with the notion of signature-poly pair as defined in chapter 3.

The matrix version of F5 that we will introduce shortly uses the POT-extension of > (Here
> is any monomial order given on input) for its signature ordering.

Example 4.2.2. The polynomial xαfi has signature equal to xαei, so the corresponding labeled
polynomial is (xαei, x

αfi).

Example 4.2.3. The polynomial xαfi + xβfj where i < j has signature equal to xβej, so the
corresponding labeled polynomial is (xβej , x

αfi + xβfj).

If we multiply xαfi only by variables larger (with respect to the underlying monomial order)
than the largest variable occurring in xα then we will never be in the situation which we have
just described. By the introduction of signatures a new problem arises. According to the
theory of chapter 3 we only allow regular σ-reductions. However, Gaussian elimination with
pivoting freely swaps rows and performs singular σ-reductions as well. We can modify it such
that it does not allow row swaps and such that rows are only affected by rows preceding it.
The resulting algorithm is algorithm 8.

Remark 13. While algorithm 8 is correct, it is not particularly fast. In practice one wants
to modify existing fast algorithms as computation of an echelon form is what determines the
speed of the overall algorithm.

44

input : An m× n matrix A
output: A row echelon form of A
begin

for j := 1 to n do
for i := 1 to m do

if A[i, j] 6= 0 then
b := false ;
for k := 1 to j − 1 do

if A[i, k] 6= 0 then
b := true ;

end

end
if b then

continue;
end
Multiply the ith row by 1

A[i,j] ;

for i := k + 1 to m do
if A[k, j] 6= 0 then

Eliminate the entry A[k, j] using row i ;
end

end
break;

end

end

end
return A

end
Algorithm 8: Modified Gaussian elimination

45

Remark 14. The labeled polynomials occurring in the algorithm are always of the form
(xαei, x

αfi) for some monomial xα ∈ Tn. In most implementations it is more efficient to
not use the vector representation of the signature, but rather the tuple (xα, i). We will
therefore use the latter and in the text below we will use both representations.

4.3 Predicting zero reductions

Recall that a principal syzygy is any syzygy of the form

−fjei + fiej

As an example, consider any element in the module generated by the principal syzygies. It
can be written as

u(−f2e1 + f1e2) + v(−f3e1 + f1e3) + w(−f3e2 + f2e3)

where u, v, w ∈ An. This can be rewritten as

(vf1 + wf2)e3 + (uf1 − wf3)e2 + (−uf2 − vf3)e1

Now, notice that vf1 + wf2 ∈ 〈f1, f2〉. The converse holds as well: since v and w were
arbitrary, any h ∈ 〈f1, f2〉 gives rise to a number of syzygies in the module generated by the
principle syzygies. Having computed a Gröbner basis G of 〈f1, f2〉 it is easy to check whether
h is in this ideal. In the case that h is a monomial, we only need to check whether h is
divisible by lt(g) for some g ∈ G. This example easily generalizes to f1, . . . , fi and lies at the
heart of the Matrix-F5 algorithm. Let us formalize it:

Theorem 4.3.1 (F5-criterion). If xα is the leading monomial of a row of the matrix M̃d−di,i−1,
then the polynomial xαfi belongs to the vector space

〈M̃d,i−1 ∪ {xβfi : deg(xβfi) = d, xβ < xα}〉k

Proof. Suppose that xα is the leading monomial of a row of the matrix M̃d−di,i−1, then the
corresponding polynomial looks like h = axα+g where a 6= 0 and g is a polynomial consisting
of monomials that are smaller than xα. Moreover, h ∈ 〈f1, . . . , fi−1〉. It follows that hfi is
still in 〈f1, . . . , fi−1〉. This leads to the following composition

xαfi =
1

a
hfi −

1

a
gfi

where hfi
a ∈ 〈M̃d,i−1〉k and 1

agfi ∈ 〈{x
βfi : |β| = d− di, xβ < xα}〉k.

In other words, theorem 4.3.1 is saying that the row corresponding to xαfi will reduce to zero
after Gaussian elimination if the assumptions are satisfied. Clearly we do not want this to
happen, so during the algorithm we test whether the assumptions are satisfied and if this is
the case we reject the row. Combining all these ideas leads to the Matrix-F5 algorithm, given
on the next page.

Theorem 4.3.2. Algorithm 9 terminates in a finite number of steps and outputs a D-Gröbner
basis.

46

Proof. Theorem 4.1.11 says that Lazard’s algorithm 7 is correct. Matrix-F5 is a modification
of this algorithm, which leaves the row space invariant:

• Reusing linear dependencies: evidently this does not change the row space.

• Modified Gaussian elimination: The echelon form obtained by the modification is a
permutation of an echelon form obtained by pivoting. Again, this does not change the
row space.

• The F5-criterion: A row satisfying the conditions of theorem 4.3.1 is a linear combination
of the previous rows. In other words, leaving it out does not change the row space.

47

input : F = {f1, . . . , fm} a sequence of polynomials, a positive integer D, and a
monomial order ≤ on R

output: A D-Gröbner basis for 〈F 〉 with respect to ≤
begin

G := [], H := [], T1 := all monomials of degree 1 ;
for d := 1 to D do

Md := [], Ld := [] ;
for i := 1 to m do

if deg(fi) = d then
Append(Md, fi), Append(Ld, (1, i, |Md|)) ;

else if deg(fi) < d then
for (t,m, r) ∈ Ld−1 where m = i do

for x ∈ T1 do
V := variables in t ;
if x < maxV then

continue;
end
found := false ;
for (t2,m2, r2) ∈ Ld−deg(fi) where m2 < m do

if lm(Md−deg(fi)[r2]) = xt then // F5-criterion

found := true, break;
end

end
if ¬found then

Append(Md,Md−1[r]),Append(Ld, (xt, i, |Md|)) ;
end

end

end

end

end

M̃d := ModifiedGaussianElimination(Md) ;

G := G ∪ {f ∈ M̃d : @g ∈Md s.t. lm(g) = lm(f) and σ(g) = σ(f)} ;

end
return G

end
Algorithm 9: Matrix-F5 algorithm

48

4.4 A modification: the syzygy criterion

When a row reduces to zero during the execution of the Matrix-F5 algorithm, multiples of
this row that are greater in the signature order are not generated as they will reduce to
zero. This follows from the discussion in the section on using known linear dependences.
However, more is true. It turns out that it is possible to translate the syzygy criterion,
described in the last chapter, such that it works with Matrix-F5. We have not seen this in
any work by Faugère’s group, but it has also been incorporated into an algorithm by Gao et al.
[GVIW16], which we will discuss in the next chapter. We propose the following modification
of the original Matrix-F5 algorithm: whenever a row reduces to zero, we detect it and store
the corresponding signature in a list. This gives us useful information for predicting and thus
preventing new zero reductions. The result is captured by the following theorem.

Theorem 4.4.1 (Syzygy criterion). If the row with signature xαei reduces to zero and xα

divides xβ, then the row with signature xβei reduces to zero.

Proof. Since the row with signature xαei reduces to zero there exist g1, . . . , gi ∈ k[x1, . . . , xn]
with lm(gi) ≤ xα such that xαfi =

∑i
k=1 gkfk. Moreover, there exists a monomial xγ such

that xβ = xγxα. It follows that xβfi =
∑i

k=1 x
γgkfk. By properties of monomial orders we

see that xγ lm(gi) ≤ xβ. From this we deduce that the row with signature xβei is a linear
combination of rows preceding it. As a consequence this row reduces to zero.

Theorem 4.4.2. Algorithm 10 terminates in a finite number of steps and outputs a D-
Gröbner basis.

Proof. This follows from theorem 4.3.2 and the fact that a row satisfying the conditions of
theorem 4.4.1 a a linear combination of the previous rows. In other words, leaving it out does
not change the row space.

Example 4.4.3. Here is an example of a sequence for which the syzygy criterion prevents
additional zero reductions compared to the original Matrix-F5. We demonstrate this by means
of an interactive Magma session.

> P<x,y,z> := PolynomialRing(Rationals(), 3, "grevlex");

> f1 := x^2*y + y^3 - y*z^2 - z^3;

> f2 := -y^3 + x*y*z;

> f3 := y^2*z^2 - z^4;

> f4 := x^6;

> MatrixF5([f1,f2,f3,f4], 8);

Row with signature <3, y^2, 23>

reduced to zero.

Row with signature <3, x^2, 25>

reduced to zero.

Row with signature <3, y^2*z, 31>

reduced to zero.

Row with signature <3, x^2*z, 33>

reduced to zero.

Row with signature <3, y^2*z^2, 40>

reduced to zero.

49

input : F = {f1, . . . , fm} a sequence of polynomials, a positive integer D, and a
monomial order ≤ on R

output: A D-Gröbner basis for 〈F 〉 with respect to ≤
begin

G := [], H := [], T1 := all monomials of degree 1 ;
for d := 1 to D do

Md := [], Ld := [] ;
for i := 1 to m do

if deg(fi) = d then
Append(Md, fi), Append(Ld, (1, i, |Md|)) ;

else if deg(fi) < d then
for (t,m, r) ∈ Ld−1 where m = i do

for x ∈ T1 do
V := variables in t ;
if x < maxV then

continue;
end
found := false ;
for (m, j) ∈ H do

if j = i and m divides xt then // Syzygy criterion
found := true, break;

end

end
if ¬found then

for (t2,m2, r2) ∈ Ld−deg(fi) where m2 < m do

if lm(Md−deg(fi)[r2]) = xt then // F5-criterion

found := true, break;
end

end

end
if ¬found then

Append(Md,Md−1[r]),Append(Ld, (xt, i, |Md|)) ;
end

end

end

end

end

M̃d := ModifiedGaussianElimination(Md) ;

For every row that is zero in M̃d, store its signature (m, i) in H ;

G := G ∪ {f ∈ M̃d : @g ∈Md s.t. lm(g) = lm(f) and σ(g) = σ(f)} ;

end
return G

end
Algorithm 10: Modified Matrix-F5 algorithm

50

Row with signature <3, x^2*z^2, 42>

reduced to zero.

Row with signature <4, y^2, 46>

reduced to zero.

[

x^2*y + y^3 - y*z^2 - z^3,

-y^3 + x*y*z,

y^2*z^2 - z^4,

x^6,

y^2*z^3 - x*z^4,

x*z^4 - z^5,

x*y*z^3 - y*z^4,

y^2*z^4 - x*z^5,

y*z^5 - z^6,

y^2*z^5 - x*z^6,

x^3*z^4 + x^2*z^5 - x*z^6 - y*z^6,

y*z^6 - z^7,

x^4*z^3,

y^2*z^6 - x*z^7,

x^3*z^5 + x^2*z^6 - x*z^7 - y*z^7,

y*z^7 - z^8,

z^8

]

The original Matrix-F5 performs seven useless reductions, as the output shows. Let’s see what
happens when we incorporate the syzygy criterion.

> ModifiedMatrixF5([f1,f2,f3,f4], 8);

Row with signature <3, y^2, 23>

reduced to zero.

Row with signature <3, x^2, 25>

reduced to zero.

Row with signature <4, y^2, 44>

reduced to zero.

[

x^2*y + y^3 - y*z^2 - z^3,

-y^3 + x*y*z,

y^2*z^2 - z^4,

x^6,

y^2*z^3 - x*z^4,

x*z^4 - z^5,

x*y*z^3 - y*z^4,

y^2*z^4 - x*z^5,

y*z^5 - z^6,

y^2*z^5 - x*z^6,

x^3*z^4 + x^2*z^5 - x*z^6 - y*z^6,

y*z^6 - z^7,

x^4*z^3,

51

y^2*z^6 - x*z^7,

x^3*z^5 + x^2*z^6 - x*z^7 - y*z^7,

y*z^7 - z^8,

z^8

]

Only three useless reductions have been performed this time!

52

4.5 Regular sequences in the context of Matrix-F5

The content of this section is that regular sequences are nice in the context of Matrix-F5. We
show that if the input sequence is regular, then no zero reductions take place.

Proposition 4.5.1. Suppose that 〈f1, . . . , fm〉 are homogeneous polynomials in An. For large
enough D, the syzygy module of 〈f1, . . . , fm〉 is the union of the module of principal syzygies
and the syzygies which correspond to reductions to zero during the execution of the algorithm
Matrix-F5.

Proof. Let (g1, . . . , gm) be a non-principal syzygy. We will show that it gives rise to a reduction
to zero. First, observe that Matrix-F5 doesn’t detect this syzygy as it is non-trivial. Since it
is a syzygy we have that

∑m
i=1 gifi = 0. Let j be the largest index such that gj is non-zero.

Let d = deg(gjfj) and t = lt(gj). In the matrix Md,m the row corresponding to tfj is reduced
to zero by a suitable combination of the rows above it. To prove the converse, we first remark
that the principal syzygies are trivially in the module of syzygies. Next, suppose that the
row tfj in the matrix Md,m reduces to zero. We will show that it corresponds to a non-trivial

syzygy. Since tfj reduces to zero, there exist gi with i ≤ j such that tfj−
∑j

i=1 gifi = 0. Hence

we have the relation
∑j−1

i=1 gifi+ (gj − t)fj = 0 which shows that (g1, . . . , gj−1, gj − t, 0, . . . , 0)
is a syzygy on f1, . . . , fm.

Corollary 4.5.2. If the sequence of input polynomials is a regular sequence, then no reduction
to zero takes place during execution of the Matrix-F5 algorithm.

Proof. If the input sequence is a regular sequence, then theorem 2.7.16 says that every syzygy
is trivial. Hence proposition 4.5.1 implies that no reductions to zero occur.

Example 4.5.3. The implementation of Matrix-F5 in Magma given in the appendix prints
the signature of every row that is reduced to zero. By means of an interactive Magma session
we will now give an example of Matrix-F5’s output on a regular sequence.

> P<x,y,z,h> := PolynomialRing(Rationals(), 4, "grevlex");

> f1 := x^2 + y^2 - 2*x*z - 2*y*z + z^2 + h^2;

> f2 := x^2+x*y+y*z-z^2-2*h^2;

> f3 := x^2-y^2+2*y*z-2*z^2;

>

> MatrixF5([f1,f2,f3], 4);

[

x^2 + y^2 - 2*x*z - 2*y*z + z^2 + h^2,

x^2 + x*y + y*z - z^2 - 2*h^2,

x^2 - y^2 + 2*y*z - 2*z^2,

x*y - y^2 + 2*x*z + 3*y*z - 2*z^2 - 3*h^2,

y^2 - x*z - 2*y*z + 3/2*z^2 + 1/2*h^2,

y^3 - 5*y^2*z + 6*x*z^2 + 10*y*z^2 - 6*z^3 + 3/2*x*h^2 + 2*y*h^2 - 19/2*z*h^2,

x*z^2 + 3/4*y*z^2 - 1/2*z^3 + 3/4*x*h^2 + 3/4*y*h^2 - 11/4*z*h^2,

y*z^2 - 2*z^3 + 11/3*x*h^2 - 5/3*y*h^2 - z*h^2,

y^3*h - 5*y^2*z*h + 6*x*z^2*h + 10*y*z^2*h - 6*z^3*h + 3/2*x*h^3 + 2*y*h^3

- 19/2*z*h^3,

53

y^3*z - 5*y^2*z^2 + 6*x*z^3 + 10*y*z^3 - 6*z^4 + 3/2*x*z*h^2 + 2*y*z*h^2 -

19/2*z^2*h^2,

y^4 - 9*y^2*z^2 + 18*x*z^3 + 26*y*z^3 - 18*z^4 + 7/2*y^2*h^2 + 9/2*x*z*h^2

- 4*y*z*h^2 - 53/2*z^2*h^2 +

9/2*h^4,

x*z^2*h + 3/4*y*z^2*h - 1/2*z^3*h + 3/4*x*h^3 + 3/4*y*h^3 - 11/4*z*h^3,

y*z^2*h - 2*z^3*h + 11/3*x*h^3 - 5/3*y*h^3 - z*h^3,

x*z^3 + 3/4*y*z^3 - 1/2*z^4 + 3/4*x*z*h^2 + 3/4*y*z*h^2 - 11/4*z^2*h^2,

y*z^3 - 2*z^4 + 11/3*x*z*h^2 - 5/3*y*z*h^2 - z^2*h^2,

z^4 + 4/3*x*z*h^2 + 4*y*z*h^2 - 7/3*z^2*h^2 - 4*h^4

]

Indeed, no reductions to zero have taken place.

4.6 Semi-regular sequences: a generalization of regular se-
quences

As we remarked in the previous section, a system of homogeneous polynomials having more
equations than variables can never be regular. In this section we extend the notion of a
regular sequence to that of a semi-regular sequence. The intuition behind this notion is that
a sequence is semi-regular if it is regular up to a certain degree. This degree is characterized
by the first occurrence of a non-trivial relation between the polynomials constituting this
sequence.

Definition 4.6.1 (Homogeneous semi-regular sequence). A sequence f1, . . . , fm of homoge-
neous polynomials in An is called semi-regular if it satisfies the following conditions:

〈f1, . . . , fm〉 6= An.

If gfi = 0 in An/〈f1, . . . , fi−1〉 and deg(gfi) < dreg(I), then g = 0 in
An/〈f1, . . . , fi−1〉 for all g ∈ An and 2 ≤ i ≤ m.

We can extend this notion to the inhomogeneous case.

Definition 4.6.2 (Affine semi-regular sequence). Writing fhi for the homogeneous part of fi
of largest degree, we call a sequence f1, . . . , fm semi-regular if the corresponding homogeneous
sequence fh1 , . . . , f

h
m is semi-regular. The degree of regularity of 〈f1, . . . , fm〉 is given by the

degree of regularity of 〈fh1 , . . . , fhm〉.

Given a power series
∑∞

n=0 ant
n we define [

∑∞
n=0 ant

n] =
∑∞

n=0 bnt
n where bn = an if ak > 0

for all 0 ≤ k ≤ n, and bn = 0 otherwise.

Theorem 4.6.3. Let f1, . . . , fm be a sequence of polynomials in An. Then

1. For m ≤ n the notions of semi-regularity and regularity coincide.

2. If f1, . . . , fm is a semi-regular sequence, then its Hilbert series is equal to HA/I(t) =[∏m
i=1(1−tdeg(fi))

(1−t)n

]
.

3. The index of regularity of the ideal defined by a semi-regular sequence is equal to the

index of the first non-positive coefficient in
∏m
i=1(1−tdeg(fi))

(1−t)n .

54

4. If f1, . . . , fm is a semi-regular sequence, then there is no reduction to 0 during the
execution of the Matrix-F5 algorithm for degrees at most equal to dreg(I).

Proof. See [BFSY05] proposition 5.

Unlike regular sequences, semi-regular sequences need not remain semi-regular after a per-
mutation of the indices.

4.7 The inhomogeneous case

In practice, many systems of equations are comprised of inhomogeneous polynomials. We
would still like to be able to run the Matrix-F5 algorithm on such input in order to compute
a Gröbner basis.

4.7.1 Homogenization

Suppose now that we want to compute a Gröbner basis for I = 〈f1, . . . , fm〉. Our strategy
will be to homogenize the generators of I and then compute a Gröbner basis for the ideal
generated by the resulting polynomials. It turns out that if we dehomogenize the elements of
this Gröbner basis we end up with a Gröbner basis for I. First, we need some terminology.

Definition 4.7.1 (Good extension of an ordering). Let > be a monomial order on A =
k[x1, . . . , xn] and let >1 be a monomial order on A[y]. We call >1 a good extension of > if
lm>(f) = lm>1(h(f)) for all f ∈ A.

Observe that a monomial order in which the homogenization variable is smaller than all the
other variables is a good extension. We are now ready to state the theorem.

Proposition 4.7.2. Let I = 〈f1, . . . , fm〉 be an ideal in A = k[x1, . . . , xn] and fix a monomial
order >. Let >1 be a good extension of > to A[y]. If G = {g1, . . . , gt} is a Gröbner basis for
〈h(f1), . . . , h(fm)〉 with respect to >1, then a(G) = {a(g1), . . . , a(gt)} is a Gröbner basis for I
with respect to >.

Proof. Let f ∈ I, then h(f) ∈ 〈h(f1), . . . , h(fm)〉. SinceG is a Gröbner basis for 〈h(f1), . . . , h(fm)〉
it follows that there exists a g ∈ G such that lm(g) divides lm(h(f)). But >1 is a good exten-
sion of >, so lm(h(f)) = lm(f) ∈ A. It follows that lm(g) ∈ A and therefore lm(g) = lm(a(g)).
Thus lm(a(g)) divides lm(f).

A problem with this approach is that it introduces new solutions, so-called solutions at infinity,
which are not present in the original system. Hence, a system of equations having a single
unique solution may actually be much harder to solve after homogenization. This is something
we want to avoid if possible. Fortunately, we can avoid it by considering the sugar degree
[GMN+91].

4.7.2 Sugar degree

Definition 4.7.3 (Sugar degree). Let f1, . . . , fm ∈ An be the input to a Gröbner basis al-
gorithm, and let f be a polynomial appearing during the execution of the algorithm. Then f
takes on any of the following three forms, and we define the sugar degree accordingly:

55

• If f = fi, then s-deg(f) := deg(fi) for i = 1, . . . ,m.

• If f = xαg, then s-deg(f) := |α|+ s-deg(g).

• If f = g + h, then s-deg(f) := max{s-deg(g), s-deg(h)}.

It is a kind of “phantom” degree in that it mimics the degree the polynomial would have
had it we had started by homogenizing the input sequence first. The popularity of the sugar
degree stems from the fact that it is easy to implement, and with it we can avoid the overhead
of homogenizing. Next, we explore the notion of a signature-degree, as there turns out to be
a connection between the notions of degree.

Definition 4.7.4. Let F = {f1, . . . , fm} be a sequence of polynomials in An and let p =
(xαei, f) ∈ Rm × 〈F 〉 be a labeled polynomial. We define the signature-degree of p as

sig-deg(p) = |α|+ deg(fi)

Indeed, they are equal to each other:

Proposition 4.7.5. Let p = (σ(f), f) be a labeled polynomial appearing during the computa-
tion of a signature-based Gröbner basis. Then sig-deg(p) = s-deg(f).

Proof. See [Ede13] theorem 4.2.

A consequence from this proposition is that by default Matrix-F5 9 processes polynomials
by increasing sugar degree. From an algorithmic point of view this is good news. We won’t
have the computational overhead of homogenizing the input and substituting sugar-degree
for degree in the proof of the algorithm shows that it correctly computes a Gröbner basis.

4.7.3 Degree fall

Now, if we do not want to homogenize the input, nor use the sugar degree, then the situation
changes a little bit.

Definition 4.7.6 (Macaulay matrix in the inhomogeneous case). The Macaulay matrix in
degree d of the sequence of inhomogeneous polynomials f1, . . . , fm ∈ An is defined as before,
except that its columns are indexed by all monomials of degree at most d.

When the algorithm computes an echelon form of the Macaulay matrix in degree d it might
be the case that one of the rows in this echelon form corresponds to a polynomial having
degree d′ < d. We call this behavior degree fall.

Definition 4.7.7 (Degree fall). We say that a degree fall occurs during the execution of
Matrix-F5 9 if the row corresponding to a polynomial of degree d is reduced to a row corre-
sponding to a polynomial of degree d′ < d.

Example 4.7.8. If f = xy + y and g = x, then y = f − yg will be computed when the
algorithm reaches degree 2, even though y has degree 1.

As the example illustrates, in the precense of a degree fall it might no longer be the case
that an echelon form of Md,i contains a d-Gröbner basis for 〈f1, . . . , fm〉. An immediate
consequence is that the F5-criterion no longer holds. There’s a subtlety in this statement: of
course the criterion might still predict some zero reductions (perhaps even all of them), but
if not all polynomials of degree d have been processed than this is not a likely scenario.

56

Remark 15. Observe that a degree fall takes place if the homogeneous part of highest degree
of some polynomial is reduced to zero.

The remark above immediately leads to the following proposition:

Proposition 4.7.9. If fh1 , . . . , f
h
m is a regular sequence (recall that fhi denotes the homoge-

neous part of largest degree of fi), then no degree fall occurs.

What is true, however, is that for large enough d the algorithm still outputs a Gröbner basis.
This is a good news, since it means that the algorithm doesn’t care whether the input is
homogeneous or not. This doesn’t mean that it’s sensible to ignore degree falls, as they can
have a major impact on the performance of the algorithm. Instead, we can detect when a
degree fall takes place and inject the corresponding row into the matrix of the relevant degree
and perform suitable reductions on it.
When computing an echelon form for Md,m we can add to any row corresponding to some fi
whose leading term has degree d′ < d a linear combination of rows from Md′,i. Doing this
will greatly speed up the algorithm.
It should be noted that in the case of degree fall it is better to use an algorithm such as
Faugère’s F5 [Fau99] which always reduces S-polynomials of the lowest degree first.

4.8 Complexity

The reductions take place implicitly when computing a echelon form. It is not surprising that
the running time of the Matrix-F5 algorithm is dominated by the cost of performing matrix
operations on the largest matrix appearing during the execution of the algorithm. We have
the following bound, but it is not very sharp since it does not take into account the syzygy-
and F5-criterion.

Proposition 4.8.1. Let I = 〈f1, . . . , fm〉 ⊆ k[x1, . . . , xn] be an ideal generated by homoge-
neous polynomials of degrees d1, . . . , dm respectively. We can compute a D-Gröbner basis for
I using Matrix-F5 within

O
(
m

(
n+D

D

)ω)
field operations (addition, subtraction, multiplication, division). Here ω is a parameter such
that two n×n matrices over k can be multiplied together in O(nω) field operations (e.g., using
the well known Strassen algorithm [Str69] we have ω = log2(7). The fastest algorithm to date
is by Le Gall [Gal12]).

Proof. The Gaussian elimination algorithm computes an echelon form of an l × c matrix of
rank r with coefficients in k within O(lcrω−2) field operations (see [Sto00] proposition 2.19).
This can be upper bounded by O(lcω−1) since r ≤ c. Now, the Macaulay matrix of f1, . . . , fm

in degree d has
(
n+d−1
n−1

)
columns and

∑m
i=1

((
n+d−deg(fi)−1

n−1

))
rows. Since we are computing

57

the echelon form of such Macaulay matrices up to and including degree D we get the following:

D∑
d=0

[(
m∑
i=1

(
n+ d− deg(fi)− 1

n− 1

))(
n+ d− 1

n− 1

)ω−1
]
≤ m

D∑
d=0

(
n+ d− 1

n− 1

)ω

≤ m

(
D∑
d=0

(
n+ d− 1

n− 1

))ω
since ω > 1

≤ m
(

(D + 1)

(
n+D − 1

n− 1

))ω
≤ m

(
n+D

n

)ω
and the result follows.

Corollary 4.8.2. Let I = 〈f1, . . . , fm〉 be an ideal in An. We can compute a Gröbner basis
for I using Matrix-F5 within

O
(
m

(
n+ dreg(I)

dreg(I)

)ω)
field operations.

Proof. This follows immediately from proposition 4.1.12.

In the inhomogeneous case we have to deal with degree falls, making it difficult to give a
precise bound on the number of field operations. However, if the sequence fh1 , . . . , f

h
m is

regular, then the bound remains to hold with dreg(I) replaced by dreg(J) where J is the ideal
generated by fh1 , . . . , f

h
m.

4.9 Choosing D

We are interested in values for D such that Matrix-F5 outputs a Gröbner basis. In the
literature, one often finds a result by Dubé [Dub90], stating that

D = 2

(
d2

2
+ d

)2n−2

with d = max{deg(fi) : 1 ≤ i ≤ m} is sufficient. This bound is very loose.

4.10 An improvement for sequences over F2

In the case that the field is F2 we can consider the ring F2[x1, . . . , xn]/〈x2
1, . . . , x

2
n〉 of squarefree

polynomials in x1, . . . , xn. When algorithm Matrix-F5 9 constructs the Macaulay matrix in
degree d it multiplies the polynomials corresponding to rows appearing in the Macaulay
matrix of degree d− 1 by variables at least as large as the largest variables appearing in the
signature. An immediate consequence is that this introduces squared factors. In the ring
above these will reduce to zero, so they are useless. We therefore replace the line x < maxV
by x ≤ maxV .

58

Now, any ideal in this ring is in a one-to-one correspondence with the ideals in F2[x1, . . . , xn]
containing 〈x2

1, . . . , x
2
n〉. So if we are interested in a Gröbner basis for

I ⊆ F2[x1, . . . , xn]/〈x2
1, . . . , x

2
n〉,

then it suffices to compute a Gröbner basis for 〈x2
1, . . . , x

2
n〉+ I ⊆ F2[x1, . . . , xn].

Remark 16. The ideal remains the same when we permutate the generators, but since Matrix-
F5 only allows signature-safe reductions (reductions by rows appearing above the row to be
reduced) it is important that the relations x2

1, . . . , x
2
n appear at the beginning of the input

sequence.

The remark above shows that during the execution of the Matrix-F5 algorithm rows will be
reduced to zero as a result of the relations x2

i = 0, 1 ≤ i ≤ n. In her thesis, Bardet [Bar04]
describes a criterion to prevent such reductions. However, she does not give a proof. We have
tried to fill this gap.

Theorem 4.10.1 (Frobenius criterion). Let t be the leading term of a polynomial correspond-

ing to a row in the matrix M̃d−di,i with label (s, i), then the row with label (t, i) in the matrix
Md,i is a linear combination of rows preceding it.

Proof. Let t = lm(h) with h =
∑i

k=1 hkfk. Observe that we can eliminate any squares from a
polynomial by subtracting a suitable combination of the first n rows from the row associated
with it. We thus have the following decomposition,

tfi =

i−1∑
k=1

fihkfk + hif
2
i + (t− h)fi =

i−1∑
k=1

fih̃kfk + (t− h)fi

where the first term belongs to Md,i−1 and the second term is a linear combination of rows
with smaller signature, as lm(t− h) < t.

According to Bardet the criterion remains to hold in the case that we add the homogenized
version of the field equations x2

i = xixn+1 (so xi > xn+1 for all 1 ≤ i ≤ n) instead of x2
i = 0,

but we were unable to prove this in the general case. We will give a proof in the case that
the monomial order is the degree reverse lexicographic order. Hence the setting is the ring
F2[x1, . . . , xn, xn+1]/〈x2

1 − x1xn+1, . . . , x
2
n − xnxn+1〉.

Theorem 4.10.2 (Frobenius criterion (second version)). Let t be the leading term of a poly-

nomial corresponding to a row in the matrix M̃d−di,i with label (s, i), then the row with label
(t, i) in the matrix Md,i is a linear combination of rows preceding it.

Proof. Let t = lm(h) with h =
∑i

k=1 hkfk. Observe that we can eliminate any squares from a
polynomial by subtracting a suitable combination of the first n rows from the row associated
with it. We thus have the following decomposition,

tfi =

i−1∑
k=1

fihkfk + hif
2
i + (t− h)fi =

i−1∑
k=1

fih̃kfk + hix
deg(fi)
n+1 fi + (t− h)fi

where the first term belongs to Md,i−1 and the second term is a linear combination of rows with

smaller signature, as lm(t − h) < t, as before. However, we have another term, hix
deg(fi)
n+1 fi.

59

Without loss of generality, we may assume that min{deg(fi) : 1 ≤ i ≤ m} ≤ 2. This follows
from the observation that the polynomials correspond to a system of equations, so if any
of the fi have degree equal to 1, then it’s possible to eliminate a number of variables and

substitute them in the equations of higher degree. Hence deg(x
deg(fi)
n+1) ≥ 2. But we know

that xn+1 appears at most once in t, by design. Hence lm(hix
deg(fi)
n+1) < t, and it follows that

t is a linear combination of rows preceding it.

4.11 An improvement for sequences of bilinear forms

The primary focus of current research in the field of Gröbner basis algorithms is to make use
of the algebraic structure of your input polynomials in order to predict more zero reductions
or speed up the algorithm by other means. In [FSEDS11] the authors focus on bihomogeneous
systems and are able to generate more syzygies in a preprocessing step which are then detected
by a new criterion. First we need some new terminology.

Definition 4.11.1 (Bihomogeneous polynomial). A polynomial f in k[x1, . . . , xn, y1, . . . , ym]
is said to be bihomogeneous of bidegree (d, e) if it has the following shape

f(x1, . . . , xn, y1, . . . , ym) =
∑

α∈Nn,β∈Nm
|α|=d
|β|=e

aα,βx
αyβ.

Proposition 4.11.2. If f is bihomogeneous of bidegree (d, e), then

f(λx1, . . . , λxn, µy1, . . . , µym) = λdµef(x1, . . . , xn, y1, . . . , ym).

If k is algebraically closed, then the reverse direction holds as well.

We will focus on polynomials of bidegree (1, 1), i.e., bilinear polynomials. We will follow the
exposition in [FSEDS11] and focus on the general overview as opposed to the details, as we
are mainly interested in the extension that is given to Matrix-F5 9.
Now, let F = {f1, f2, f3, f4} ⊆ Q[x1, x2, x3, y1, y2, y3] be four bilinear polynomials and put
I = 〈F 〉. Its algebraic set is denoted V (I) ⊆ C6. Finally, let > be the degree reverse
lexicographic order with x1 > x2 > x3 > y1 > y2 > y3.
Since f1, f2, f3, f4 are bilinear we have that

fi(a1, a2, a3, 0, 0, 0) = 0 · fi(a1, a2, a3, 0, 0, 0) = 0

for all (a1, a2, a3) ∈ C3 and for all 1 ≤ i ≤ 4. It follows that V (I) contains the subspace
of dimension 3 defined by y1 = y2 = y3 = 0. Hence the dimension of V (I) is at least 3. If
f1, f2, f3, f4 were regular, then theorem 2.7.17 combined with the Nullstellensatz says that
dimV (I) = dim I(V (I)) = dim

√
I = dim I = 2, but we have just showed that it is at least

3. This shows that f1, f2, f3, f4 is not a regular sequence. Consequently, there are reductions
to zero which are not prevented by the F5-criterion during the execution of the Matrix-F5
algorithm 9.
Consider the following submatrices of the Jacobian of the function defined by F .

Jacx(F) =

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

 and Jacy(F) =

∂f1
∂y1

∂f1
∂y2

∂f1
∂y3

∂f2
∂y1

∂f2
∂y2

∂f2
∂y3

∂f3
∂y1

∂f3
∂y2

∂f3
∂y3

∂f4
∂y1

∂f4
∂y2

∂f4
∂y3

60

Write x = (x1, x2, x3) and y = (y1, y2, y3). Moreover, let q = (q1, q2, q3, q4) ∈ Q[x1, x2, x3, y1, y2, y3].
Then we have the following equalities

q · Jacx(F) · x =

4∑
i=1

qifi and q · Jacy(F) · y =

4∑
i=1

qifi

which follow immediately from the bilinearity of the fi.
Now, suppose that we enlarge the matrix Jacx(F) by adding the vector (0, 0, 0, 0)T at the
beginning. The resulting 4× 4 matrix, which we denote by J , is clearly singular. Moreover,
as a consequence of the cofactor expansion of the determinant we have the following equality.

adj(J)J = det(J)I = 0

Therefore, every row of adj(J) is in the left nullspace of J . In particular, letting Mij denote
the (i, j) minor of J , we have that

q = (M11,−M21,M31,−M41)

is in this left nullspace. It follows that q is also in the left nullspace of Jacx(F). But then we
have

0 = q · Jacx(F) · x =

4∑
i=1

qifi.

In other words, v is a syzygy on f1, f2, f3, f4. Equivalently, the row with label (lm(M41), f4)
will reduce to zero during the execution of the Matrix-F5 algorithm. By symmetry, this
example also holds for the case that the matrix is Jacy(F).
The authors continue to generalize this example. We will show a number of their results and
end with a practical criterion that can be used to extend the Matrix-F5 algorithm in the case
that the input sequence is comprised of bilinear polynomials. All of the results below also
hold when we replace x by y and n by m, because of symmetry.

Theorem 4.11.3. Let i > n and let h be a linear combination of maximal minors of
JacobianMatrix(x, [f1, . . . , fi−1]), then h ∈ 〈f1, . . . , fi−1〉 : fi.

Proof. See [FSEDS11] theorem 2.

An immediate consequence of theorem 4.11.3 is that if h is a linear combination of maximal
minors, then the row with label (lm(h), fi) will be reduced to zero during the execution of the
Matrix-F5 algorithm (Indeed, it is a linear combination of rows prededing it). One naturally
considers the ideal of all maximal minors of JacobianMatrix(x, [f1, . . . , fi−1]), denoted Mx.
This is a subset of the colon ideal 〈f1, . . . , fi−1〉 : fi. This is corollary 1 in [FSEDS11]. If
we want to prevent zero reductions stemming from these maximal minors, then it becomes
necessary to test for membership in Mx. In other words, we need to be able to compute a
Gröbner basis for Mx. This might seem contradictory, but it turns out that in the generic
case it is not difficult to compute this Gröbner basis since it is a linear combination of the
generators. This is captured by the following theorem.

Theorem 4.11.4. In the general case, a Gröbner basis for Mx with respect to the degree
reverse lexicographic order is obtained by computing an echelon form of the Macaulay matrix
in degree n associated with the maximal minors of JacobianMatrix(x, [f1, . . . , fi−1]).

61

input : (f1, . . . , fm) ∈ k[x1, . . . , xn].
output: A linear basis of the k-vector space 〈f1, . . . , fm〉.
begin

M := MacaulayMatrix ([f1, . . . , fm]) ;

M := M̃ ;
return Rows(M)

end
Algorithm 11: Reduce

input : (f1, . . . , fs) ∈ k[x1, . . . , xn, y1, . . . , ym] such that s ≤ (n− 1) + (m− 1).
output: A sequence S of pairs (h, fi) with h ∈ 〈f1, . . . , fi−1〉 : fi and h /∈ 〈f1, . . . , fi−1〉.
begin

S := [] ;
for i := 1 to s do

if i > m then
T := Reduce(Minors(JacobianMatrix(y, [f1, . . . , fi−1]), i− 1)) ;
for h ∈ T do

Append(S, (h, fi)) ;
end

end
if i > n then

T := Reduce(Minors(JacobianMatrix(x, [f1, . . . , fi−1]), i− 1)) ;
for h ∈ T do

Append(S, (h, fi)) ;
end

end

end
return S

end
Algorithm 12: Preprocess

62

Proof. See [FSEDS11] theorem 3.

Combining theorems 4.11.3 and 4.11.4 immediately leads to algorithm 12.
We end up with a list of pairs in the colon ideal. The content of the following theorem is that
the rows associated with these pairs will reduce to zero.

Theorem 4.11.5 (Extended F5-criterion). Let f1, . . . , fs ∈ k[x1, . . . , xn, y1, . . . , ym] be bi-
homogeneous polynomials in of bidegree (1, 1) and fix a monomial ordering. Let (t, fi) be
a labeled polynomial encountered during an execution of the Matrix-F5 algorithm. Finally,
let S be the output of the preprocessing algorithm. If there exists a tuple (h, fi) ∈ S such
that lm(h) = t, then the row with signature (t, fi) will be reduced to zero during Gaussian
elimination.

Proof. We give the proof ourselves. By assumption, h ∈ 〈f1, . . . , fi−1〉 : fi. Then there exist
g1, . . . , gi−1 ∈ k[x1, . . . , xn, y1, . . . , ym] such that

hfi =
i−1∑
k=1

gkfk

It follows that

tfi = (t− h)fi +
i−1∑
k=1

gkfk

Since lm(t− h) < t it follows that the row associated with tfi is a linear combination of rows
preceding it, hence it will be reduced to zero during Gaussian elimination.

The criterion is easily implemented, as the following piece of pseudocode demonstrates. Recall

input : A label (t, fi) and a matrix M in row echelon form
output: A boolean value indicating whether the row with label (t, fi) will reduce to

zero
begin

return There is a row in M associated with a polynomial h such that t = lm(h) or
there is (h, fi) ∈ S such that t = lm(h).

end
Algorithm 13: Extended F5-criterion

that if f1, . . . , fm is a regular sequence no reduction to zero takes place during the execution
of the Matrix-F5 algorithm. We want to describe the sequences for which no reduction to zero
takes place in the extended version of the Matrix-F5 algorithm which we have just sketched.

Definition 4.11.6 (Biregular sequence). Let f1, . . . , fs be bilinear polynomials in

k[x1, . . . , xn, y1, . . . , ym]

and fix a monomial order > such that its restriction to k[x1, . . . , xn] (k[y1, . . . , ym]) is the
degree reverse lexicographic order. Moreover, we will make the assumption that s < (n− 1) +
(m−1). We call f1, . . . , fs a biregular sequence if it satisfies the following recursive definition:

• s = 1 or,

63

• f1, . . . , fs−1 is a biregular sequence and

lm(〈f1, . . . , fs−1〉 : fs) = 〈Monxs−m−1(m)〉+ 〈Monys−n−1(n)〉+ lm(〈f1, . . . , fs−1〉)

In the above Monxn(d) (Monyn(d)) denotes the set of all monomials of degree d in k[x1, . . . , xn]
(k[y1, . . . , yn]).

Indeed, the class of sequences which we have just described is exactly the class of biregular
sequence. This is captured by the following theorem.

Theorem 4.11.7. Let f1, . . . , fs be a biregular sequence in k[x1, . . . , xn, y1, . . . , ym], then
no reduction to zero takes place during the execution of the Matrix-F5 algorithm using the
extended F5-criterion.

Proof. See [FSEDS11] theorem 4.

Example 4.11.8. The following is an example of a biregular sequence. As the interactive
Magma session shows, the algorithm never prints any reduction to zero. We stopped at D = 6,
since the output forms a Gröbner basis for the ideal generated by the input sequence.

> R<x0,x1,x2,y0,y1,y2,y3> := PolynomialRing(GF(7), 7, "grevlex");

> h1 := x0*y0 + 5*x1*y0 + 4*x2*y0 + 5*x0*y1 + 3*x1*y1 + x0*y2 + 4*x1*y2 + 5*x2*y2

+ 5*x0*y3 + x1*y3 + 2*x2*y3;

> h2 := 2*x0*y0 + 4*x1*y0 + 6*x2*y0 + 2*x0*y1 + 5*x1*y1 + 6*x0*y2 + 4*x2*y2 + 3*x0*y3

+ 2*x1*y3 + 4*x2*y3;

> h3 := 5*x0*y0 + 5*x1*y0 + 2*x2*y0 + 4*x0*y1 + 6*x1*y1 + 4*x2*y1 + 6*x1*y2 + 4*x2*y2

+ x0*y3 + x1*y3 + 5*x2*y3;

> h4 := 6*x0*y0 + 5*x2*y0 + 4*x0*y1 + 5*x1*y1 + x2*y1 + x0*y2 + x1*y2 + 6*x2*y2

+ 2*x0*y3 + 4*x1*y3 + 5*x2*y3;

> h5 := 6*x0*y0 + 3*x1*y0 + 6*x2*y0 + 3*x0*y1 + 5*x2*y1 + 2*x0*y2 + 4*x1*y2 + 5*x2*y2

+ 2*x0*y3 + 4*x1*y3 + 5*x2*y3;

>

> MatrixF5Bilinear([h1,h2,h3,h4,h5], 6, 3);

[

x0*y0 + 5*x1*y0 + 4*x2*y0 + 5*x0*y1 + 3*x1*y1 + x0*y2 + 4*x1*y2 + 5*x2*y2 +

5*x0*y3 + x1*y3 + 2*x2*y3,

2*x0*y0 + 4*x1*y0 + 6*x2*y0 + 2*x0*y1 + 5*x1*y1 + 6*x0*y2 + 4*x2*y2 + 3*x0*y3

+ 2*x1*y3 + 4*x2*y3,

5*x0*y0 + 5*x1*y0 + 2*x2*y0 + 4*x0*y1 + 6*x1*y1 + 4*x2*y1 + 6*x1*y2 + 4*x2*y2

+ x0*y3 + x1*y3 + 5*x2*y3,

.

.

.

x0^2*x1^3*y3 + 3*x1^5*y3 + 6*x1^4*x2*y3 + 5*x0^2*x1*x2^2*y3 + 6*x0*x1^2*x2^2*y3

+ x1^3*x2^2*y3 + 2*x0^2*x2^3*y3

+ x0*x2^4*y3 + 6*x1*x2^4*y3 + 6*x2^5*y3,

x0*x1^4*y3 + 5*x1^5*y3 + 6*x1^4*x2*y3 + 5*x0*x1^2*x2^2*y3 + 6*x1^3*x2^2*y3

+ 3*x0^2*x2^3*y3 + 4*x0*x1*x2^3*y3 +

5*x1^2*x2^3*y3 + 6*x0*x2^4*y3 + 2*x1*x2^4*y3 + 5*x2^5*y3,

64

x1^4*x2*y3 + 2*x0^2*x1*x2^2*y3 + 5*x0*x1^2*x2^2*y3 + 3*x0*x1*x2^3*y3 + 6*x1^2*x2^3*y3

+ 2*x0*x2^4*y3 +

6*x2^5*y3

]

Definition 4.11.9 (Affine bilinear system). The system of polynomials f1, . . . , fs in

k[x1, . . . , xn−1, y1, . . . , ym−1]

is an affine bilinear system if there exist homogeneous g1, . . . , gs in k[x1, . . . , xn, y1, . . . , ym]
such that

fi(x1, . . . , xn−1, y1, . . . , ym−1) = gi(x1, . . . , xn−1, 1, y1, . . . , ym−1, 1)

Theorem 4.11.10 (Regularity bound in the affine case). For most affine bilinear systems,
dreg ≤ 1 + min{n,m}.

Proof. See [FSEDS11] theorem 6. Note that their notion of dreg seems to be equal to our
notion of dreg minus one.

4.11.1 A further decomposition

Write An,d,e for the vector space of polynomials in An having bidegree (d, e). Given an ideal
I ⊆ An we can consider the polynomials of bidegree (d, e) in it. This set forms a vector space
which we denote by Id,e. In other words, Id,e = I ∩An,d,e. Recall that we can write

I =
⊕
k∈N

Ik

Now, if I is generated by bihomogeneous polynomials we can further decompose Ik. Indeed,

Ik =
⊕
d,e∈N
d+e=k

Id,e

What does this mean from an algorithmic point of view? In [FSEDS11] the authors mention
that time is often not the bottleneck when trying to solve a system of equations, but rather
memory is. A direct consequence of the above decomposition is then that we are able to
decompose the problem of computing a linear basis for Ik into a number of subproblems,
namely the computation of linear bases for Id,e with d+ e = k, the union of which gives us a
linear basis for Ik.

How does this translate into an algorithm? Consider the matrix Mk appearing during the
execution of the Matrix-F5 algorithm and recall that a linear basis for Ik is obtained by com-
puting an echelon form of Mk. Replace Mk by the matrices Md,e such that d+ e = k and the
rows of which are indexed by the polynomials of bidegree (d, e), and the columns of which
are indexed by all monomials in An,d,e. A linear basis of Ik is now obtained by computing
echelon forms of these much smaller matrices, a problem which is a lot more tractable, and
possibly lends itself to parallelization.

This idea is readily generalized to systems of multihomogeneous polynomials.

65

Chapter 5

State of the art: the GVW
algorithm

We now present the GVW algorithm, a relatively modern signature-based algorithm which is
competitive with Faugère’s F5 algorithm, but is conceptually not much different from Buch-
berger’s algorithm. We decided to include it here for its simplicity and for its novel approach
to Gröbner basis computation. Like Matrix-F5, the algorithm is signature-based, but it does
not make use of linear algebra, although it can be adapted to perform the reductions by
matrix operations.

One of the fundamental differences between the GVW algorithm and the F5-family is that it is
not incremental in nature. Moreover, the signature order is not fixed and changing this order
can have a big impact on the performance of the algorithm. GVW is actually the generalised
version of an incremental algorithm called G2V. Toy implementations of both algorithm can
be found at the end of this text.

5.1 Theoretical foundations

Our exposition will closely follow [GVIW16]. Recall that An is the polynomial ring in the
variables x1, . . . , xn over some field k. Let f1, . . . , fm be polynomials in An generating an
ideal I = 〈f1, . . . , fm〉. Recall the surjective homomorphism

φ : Amn → I

given by
m∑
i=1

uiei 7→
m∑
i=1

uifi

where ei is the canonical basis of the free module Amn . The kernel H of this homomorphism
is the An-module of all syzygies on f1, . . . , fm, i.e.,

H = {(u1, . . . , um) ∈ Amn :

m∑
i=1

uifi = 0}

In addition to computing a Gröbner basis for I, the GVW-algorithm computes a Gröbner
basis for this syzygy module. The F5 algorithm tries to predict useless zero reductions by

66

considering only the principal syzygies. The GVW algorithm encounters many non-principal
syzygies while trying to compute a basis and uses these to predict useless zero reductions.

We consider the submodule

M = {(u, f) ∈ Amn ×An : φ(u) = f} ⊂ Amn ×An

generated by
(e1, f1), . . . , (em, fm)

that allows us to simultaneously operate on both elements from H and I.

In the following we make the convention that lm(f) = 0 if f = 0 and lm(u) = 0 if u = 0.
Moreover, we will need a map Amn × Amn → An which we will call division. This map takes
two terms, i.e., a vector of the form xαei where ei is the ith unit vector, and is only defined
if i = j and xα divides xβ in the usual sense. The result will be the monomial xβ−α ∈ R. In
this case, we will say that xαei divides xβej .

Definition 5.1.1 (Signature). Let (u, f) ∈ Amn × An. The signature of the pair (u, f) is
defined as the signature of u, i.e., σ(u, f) = σ(u) = lm(u).

Definition 5.1.2 (Top-reducibility). Let p1 = (u, f) and p2 = (v, g) be any two pairs in
Amn ×An.

• If g 6= 0, we say that p1 is top-reducible by p2 if

– f 6= 0 and lm(g) divides lm(f), and

– lm(tv) ≤ lm(u) where t = lm(f)
lm(g) .

The corresponding top-reduction is (u, f)− ct(v, g) = (u− ctv, f − ctg) where c = lc(f)
lc(g) .

• If g = 0, we say that p1 is top-reducible by p2 if lm(v) divides lm(u). The corresponding

top-reduction is (u, f)− ct(v, 0) = (u− ctv, f) where c = lc(u)
lc(v) and t = lm(u)

lm(v) .

Definition 5.1.3 (Regular top-reducibility). A top-reduction is called regular if lm(u) >
lm(tv).

Definition 5.1.4 (Super top-reducibility). A top-reduction is called super if it is not regular,
i.e., if lm(u) = lm(tv)

Observe that a pair is super top-reducible if and only if

lm(tu) = lm(v) and
lc(u)

lc(v)
=

lc(f)

lc(g)

The key difference between the two notions of reducibility is that the signature remains in-
variant under a regular top-reduction whereas it becomes smaller after a super top-reduction.
The algorithm never performs super top-reductions as they do not yield any new information.

Definition 5.1.5. Let Let G ⊂ Amn × An. A pair p is called regular top-reducible by G if
there exists a pair q in G such that p is regular top-reducible by q.

67

Definition 5.1.6 (Strong Gröbner basis). A subset G of M is called a strong Gröbner basis
for M if every non-zero pair in M is top-reducible by some pair in G.

Recall that as a submodule M naturally has a Gröbner basis. In general, the notion of a strong
Gröbner basis given above does not coincide with the former, although they are similar. Both
are saying that every element of the submodule is top-reducible by some element from the
Gröbner basis. The difference is that the top-reductions defined in this chapter are signature-
preserving.
From a strong Gröbner basis we can extract Gröbner bases for the ideal I and its syzygy
module H as follows:

Proposition 5.1.7. Let G = {(u1, v1), (u2, v2), . . . , (ut, vt)} be a strong Gröbner basis for M .
Then

• G0 = {ui : vi = 0, 1 ≤ i ≤ t} is a Gröbner basis for the syzygy module of f1, . . . , fm,
and

• G1 = {vi : 1 ≤ i ≤ t} is a Gröbner basis for the ideal 〈f1, . . . , fm〉.

Proof. First, we prove that G0 is a Gröbner basis for the syzygy module of f1, . . . , fm. To
this end, let u be a syzygy on f1, . . . , fm, then (u, 0) ∈M . Since G is a strong Gröbner basis
for M it follows that (u, 0) is top-reducible by (ui, vi) for some 1 ≤ i ≤ t. By definition of
top-reducibility, we have that vi = 0 and lm(ui) divides lm(u). Moreover, (ui, vi) ∈ G0. From
this the result follows. Next, we will prove that G1 is a Gröbner basis for I. To this end,
let 0 6= v ∈ I. Then there exists u = (u1, . . . , um) ∈ Amn such that φ(u1, . . . , um) = v. Let
u be minimal with respect to this property. It follows that (u, v) ∈ M . Since G is a strong
Gröbner basis for M there exists an 1 ≤ i ≤ t such that (u, v) is top-reducible by (ui, vi). If
vi = 0, then we can reduce (u, v) by (ui, 0) to get an element (u′, v) ∈M with φ(u′) = v and
u′ < u, which is a contradiction. If vi 6= 0, then by definition lm(v) is divisible by lm(vi).
Hence G1 is a Gröbner basis for I.

Next, we define the notion of a joint pair, abbreviated as J-pair:

Definition 5.1.8 (J-pair). Let p1 = (u, f) and p2 = (v, g) be two pairs from Amn × An with
both f and g non-zero. Let

tf =
lcm(lm(f), lm(g))

lm(f)
, tg =

lcm(lm(f), lm(g))

lm(g)

Suppose that max{tf lm(u), tg lm(v)} = tf lm(u). Then

• The J-pair of p1 and p2 equals tfp1 = (tfu, tff).

• The J-signature of p1 and p2 equals tf lm(u).

Remark 17. When tf lm(u) = tg lm(v) the J-pair of (u, f) and (v, g) remains undefined. This
condition is easily seen to be equivalent to lm(g) lm(u) = lm(f) lm(v) since lcm(lm(f), lm(g)) 6=
0. The latter condition can easily be computed without having to compute the lcm, hence we
use it as a means of checking whether we need to compute a J-pair in the algorithm.

68

The definition should remind the reader of the S-polynomial in Buchberger’s algorithm. The
difference between the two concepts is that the leading term of both polynomials is cancelled
during the construction of the S-polynomial, whereas the J-pair postpones such a cancellation.
By construction, the J-pair of two pairs p1 and p2 is always top-reducible by either p1 or p2.
However, it may happen that there exists a pair p3 distinct from p1 and p2 which is a better
reductor. We are being intentionally vague about what it means to be better since this can
only be backed up by empirical evidence.

Definition 5.1.9 (Eventually super top-reducible). Let G ⊂ Amn × An. A pair p is called
eventually super top-reducible by G if there exists a sequence of regular top-reductions of p by
pairs in G such that p reduces to a pair p′ that is no longer regular top-reducible by G, but
there exists a pair q in G such that p′ is super top-reducible by q.

Definition 5.1.10 (Covered). A pair p1 is covered by another pair p2 if σ(p2) divides σ(p1)

and t lm(v2) < lm(v1) where t = lm(u1)
lm(u2) . We also say that p2 covers p1.

Definition 5.1.11 (Covered by G). Let G ⊂ Amn × An. A pair p is covered by G if there
exists a pair q in G such that p is covered by q.

Recall that Buchberger’s algorithm is based on a simple test, Buchberger’s criterion. In this
new framework, an analogous test exists for determining whether a given set constitutes a
strong Gröbner basis without the need for reducing any polynomials. First, we need a lemma.

Lemma 5.1.12. Let t ∈ Tn and p = (u, f), q = (v, g) ∈ Amn ×An. If tp is regular top-reducible
by q, then t1p is a J-pair of p and q where

t1 =
lcm(lm(f), lm(g))

lm(f)
=

lm(g)

gcd(lm(f), lm(g))
and t1 divides t

In addition to this, t1p is regular top-reducible by q.

Proof. Since tp is regular top-reducible by q we see that both f and g are non-zero. Moreover,
there exists an s ∈ T such that

t lm(f) = s lm(g) and t lm(u) = lm(tu− csv) (5.1)

where c = t lm(f)
lm(g) . Let

t2 =
lcm(lm(f), lm(g))

lm(g)
=

lm(f)

gcd(lm(f), lm(g))

The first equation of 5.1 implies that

t =
lm(g)

gcd(lm(f), lm(g))
w = t1w

and

s =
lm(f)

gcd(lm(f), lm(g))
w = t2w

for some w ∈ T . The second equation of 5.1 then implies that t1 lm(u) = lm(t1u− ct2v). This
shows that t1p is the J-pair of p and q, and t1p is regular top-reducible by q.

69

Next, we present the theorem on which the test is based.

Theorem 5.1.13. Suppose that G is a subset of M such that for any term T ∈ Amn , there
exists a pair (u, f) ∈ G such that lm(u) divides T . The following are equivalent:

1. G is a strong Gröbner basis for M .

2. Every J-pair is eventually super top-reducible by G.

3. Every J-pair of G is covered by G.

Proof. (1) ⇒ (2): Let (u, f) ∈M be a J-pair. Since G is a strong Gröbner basis for M there
exists a pair in G top-reducing (u, f). We may perform a sequence of such top-reductions to
end up with a pair (v, g) ∈ M that is no longer regular top-reducible. Since (v, g) ∈ M it is
again top-reducible by G, but it is not regular top-reducible, so it must be super top-reducible.
This is precisely what it means for a pair to be eventually super top-reducible.
(2) ⇒ (3): Let (u, f) ∈ G be a J-pair. By (2) it is eventually super top-reducible by G, i.e.,
there exists a sequence of regular top-reductions ending in a pair (v, g) ∈ G such that (v, g) is
no longer regular top-reducible, but is super top-reducible by a pair (w, h) ∈ G. Since a J-pair
is regular top-reducible by construction, we deduce that lm(g) < lm(f) and lm(u) = lm(v).
If h = 0, then lm(w) divides lm(v) = lm(u) and t lm(h) = 0 < lm(f), so (u, f) is covered by
(w, h). If h 6= 0, then

lm(tw) = lm(v)

where t = lm(g)
lm(h) . It follows that t = lm(u)

lm(w) . Then t lm(w) = lm(u), i.e., lm(w) divides lm(u),

and t lm(h) = lm(g) < lm(f). It follows that (u, f) is covered by (w, h).
(3) ⇒ (1): We prove by contradiction. Suppose that G is not a strong Gröbner basis for M .
Then there exists a pair p = (u, f) ∈ M that is not top-reducible by any pair in G. Among
the pairs satisfying this property we pick one with minimal signature lm(u). We remark that
lm(u) 6= 0, since the pair (0, 0) is always super top-reducible. Next, we pick a pair q = (v, g)
from G satisfying

1. lm(u) = t lm(v) for some t ∈ Tn. The existence of such a pair follows from the assump-
tion stated in the theorem.

2. t lm(g) is minimal among all q satisfying (i).

We claim that tq is not regular top-reducible by G. We prove this by exhibiting a contradiction
to property (ii). Suppose that tq is regular top-reducible by G, say by q̃ = (ṽ, g̃) ∈ G. Note
that this implies that both g and g̃ are non-zero. By lemma 5.1.12 the J-pair of q and q̃ equals
t1q where

t1 =
lcm(lm(g), lm(g̃))

lm(g)
and t = t1w

for some w ∈ Tn. By assumption (3) the J-pair t1q is covered by G, i.e., there exists a pair

q̄ = (v̄, ḡ) ∈ G with t2 lm(ḡ) < t1 lm(g) where t2 = t1 lm(v)
lm(v̄) . Then

lm(u) = t lm(v) = t1w lm(v) = t2w lm(v̄)

and
wt2 lm(ḡ) < t1w lm(g) = t lm(g)

70

which contradicts property (ii).

Now, consider the following reduction

(ū, f̄) = p− ctq = (u, f)− ct(v, g)

where c = lc(u)
lc(v) . By construction, we have that lm(ū) < lm(u). Since we assumed that p

is not top-reducible we see that lm(f) 6= t lm(g). Moreover, (ū, f̄) is top-reducible by G.
For if it were not, then we would derive a contradiction based on the facts that (ū, f̄) ∈ M ,
lm(ū) < lm(u), and recalling that (u, f) was chosen to be minimal with respect to this
property. Hence there exists a pair r = (w, h) ∈ G top-reducing (ū, f̄). Without loss of
generality, we may assume that h 6= 0 (Indeed, just keep reducing by pairs with h-part equal
to 0 until this holds). Recall that lm(f) 6= t lm(g), so we can consider two cases:

• lm(f) < t lm(g). Then lm(f̄) = t lm(g), hence tq is regular top-reducible by r, contra-
dicting the assumption that it was not.

• lm(f) > t lm(g). Then lm(f̄) = lm(f). Now, since (ū, f̄) is top-reducible by r we see
that (u, f) is top-reducible by r, contradicting the assumption that it was not.

Since we arrive at a contradiction in both cases, such a pair p does not exist. It follows that
every pair in M is top-reducible by G. This is precisely the condition for G to be a strong
Gröbner basis for M .

This simple test automatically yields two criteria for predicting superfluous calculations. For
the first criterion, observe that a J-pair is covered by a syzygy if and only if it is top-reducible
by this syzygy. This leads to the following syzygy criterion:

Corollary 5.1.14 (Syzygy criterion). If a J-pair is top-reducible by a syzygy, then it may be
discarded.

Now, if p1 covers p2 and p2 covers p3, then p1 covers p3. It follows that the covering relation
is transitive. From this fact we deduce the following criterion:

Corollary 5.1.15 (Signature criterion). If a J-pair is covered by a pair in G or covered by
another J-pair, then it may be discarded.

The signature criterion shows that, given a signature, we only need to store one J-pair with
that signature. Experiments show that choosing the J-pair with minimal f -part performs
best, but this is just a heuristic.

5.2 The algorithm

As remarked, the algorithm has the same flavor as Buchberger’s algorithm. It is based on the
characterization provided by theorem 5.1.13. In particular, we will incrementally compute
new J-pairs of pairs in G until every single one of them is covered by G, starting with the
initial pairs (e1, f1), . . . , (em, fm). In the actual implementation, we store these pairs in two
lists, U and V , where U will store the u-part and V will store the f -part of the pair (u, f).
Once the algorithm terminates, V will contain a Gröbner basis for 〈f1, . . . , fm〉. Since it is

71

expensive to work with the vectors (u, f) we keep the u-part monic and only store (lm(u), f).
This doesn’t affect the outcome of the algorithm if we are only interested in a Gröbner basis
for 〈f1, . . . , fm〉. If, however, we are also interested in a Gröbner basis for the syzygy module
of f1, . . . , fm then we do need to store the entire vector representation. Once the algorithm
terminates, the polynomials in U will form a basis for this syzygy module. Now, let (u, f)
and (v, g) be any two pairs and suppose that we only store (lm(u), f) and (lm(v), g). Then
(lm(u), f) is regular top-reducible by (lm(v), g) when g 6= 0, lm(f) is divisible by lm(g) and
t lm(v) < lm(u) or t lm(v) = lm(u), but lc(f) 6= lc(g). The corresponding top-reduction then
is

h := f − ctg

where t = lm(f)
lm(g) and c = lc(f)

lc(g) , and if t lm(v) = lm(v), then we update v as

v =
v

1− c

as to keep the u-part of (u, h) monic. The result of the top-reduction is the pair (lm(u), h).
All the regular top-reductions performed by the algorithm are of this form.

For every system we are interested in, we know a number of relations between the generators
in advance. For example, we always know that the relations coming from the commutativity
of Am hold. Moreover, we have seen in the section on the various extensions of Matrix-F5
that sometimes we know more than just these relations. Therefore, it makes sense to store
the leading terms of the principal syzygies (and any other syzygies we know) in a list H which
will be updated every time we encounter a new zero reduction and will be used to predict
future zero reductions. Moreover, any time we add a new pair to the list of pairs found so
far, we also add the trivial relations between that pair and the known pairs to H.

Theorem 5.2.1 (Finite termination and correctness). Assume that the monomial order on
An is compatible with the monomial order on Amn . Then algorithm 14 terminates in a finite
number of steps and outputs a strong Gröbner basis for M .

Proof. First, we prove the finite termination. Given two pairs p = (u, f), q = (v, g) ∈ Rm×R
we say that p divides q if lm(u) divides lm(v) and lm(f) divides lm(g). Consider the list of
pairs in G where a pair occurs before another pair if the algorithm inserted the former pair
first:

(e1, f1), . . . , (em, fm), (lm(u1), g1), (lm(u2), g2), . . .

Put pi = (ui, gi) for i ≥ 1. We claim that pi does not divide pj whenever i < j. To see why
this is, we reason by contradiction. Suppose that pi divides pj for some i < j. Then

lm(uj) = s lm(ui) and lm(gj) = t lm(gi)

for certain s, t ∈ Tn.

We now consider two cases:

• If s > t, then lm(uj) = s lm(ui) > t lm(ui). It follows that pi regular top-reduces pj .
However, pi is not regular top-reducible, as it is the result of a sequence of regular
top-reductions until it no longer is. This is a contradiction.

72

input : F = {f1, . . . , fm} a sequence of polynomials and monomial orders ≤ and ≤ on
An and Amn respectively

output: A Gröbner basis for 〈F 〉 with respect to ≤
begin

U := {e1, . . . , em} ;
V := F ;
H := {lm(fjei − fiej) : 1 ≤ i < j ≤ m} ;
JP := Sort({J-pairs of (e1, f1), . . . , (em, fm)}) ;
while JP 6= ∅ do

(xα, i) := the first element of JP;
JP := Sort(JP \ {(xα, i)}) ;
if xαTi is divisible by some monomial from H then

continue;
end
if xα(Ti, vi) is covered by (U, V) then

continue;
end
(T, v) := result of regular top-reduction of xα(Ti, vi) by (U, V) ;
if v = 0 then

H := H ∪ {T} ;
continue;

end
for j := 1 to |U | − 1 do

if vjT 6= vTj then
H := H ∪max{vjT, vTj} ;
JP := JP ∪ {JPair((T, v), (Tj , vj))} ;

end

end
U := U ∪ {T} ;
V := V ∪ {v} ;

end
return V

end
Algorithm 14: GVW algorithm

73

input : G = {g1, . . . , gs} a Gröbner basis for I = 〈f1, . . . , fi〉, and fi+1 a polynomial.
Monomial orders ≤ and ≤ on An and Amn respectively

output: A Gröbner basis for I + fi+1 with respect to ≤
begin

U := {0, . . . , 0} (s times) ;
V := G ;
H := {lm(gi) : 1 ≤ i ≤ s} ;
v := fi+1 remG ;
if v = 0 then

H := H ∪ {1} ;
return V ;

end
U := U ∪ {1} ;
V := V ∪ {v} ;
JP := Sort({J-pairs of (0, g1), . . . , (0, gs) and (1, v)) ;
while JP 6= ∅ do

(xα, i) := the first element of JP;
JP := Sort(JP \ {(xα, i)}) ;
if xαTi is divisible by some monomial from H then

continue;
end
if xα(Ti, vi) is covered by (U, V) then

continue;
end
(T, v) := result of regular top-reduction of xα(Ti, vi) by (U, V) ;
if v = 0 then

H := H ∪ {T} ;
continue;

end
for j := 1 to |U | − 1 do

if vjT 6= vTj then
H := H ∪max{vjT, vTj} ;
JP := JP ∪ {JPair((T, v), (Tj , vj))} ;

end

end
U := U ∪ {T} ;
V := V ∪ {v} ;

end
return V

end
Algorithm 15: G2V algorithm

74

• If s ≤ t, then s lm(gi) ≤ t lm(gi) = lm(gj). Let p = (u, f) be the J-pair that was reduced
to pj by the algorithm. Since a J-pair is always regular top-reducible we deduce that
s lm(gi) ≤ lm(gj) < lm(f) and lm(u) = lm(uj) = s lm(ui). It follows that pi covers p.
This is a contradiction, as this would imply that p was discarded at the covering check.

Hence pi does not divide pj whenever i < j. So we end up with a sequence

(lm(u1), g1), (lm(u2), g2), . . .

in which no term is divisible by any previous term. Now, consider the homomorphism

h : Amn ×An → k[y1, . . . , ym, x], (xαei, x
β) 7→ yαi x

β

where yi = (y1, . . . , yn) for 1 ≤ i ≤ m, and x = (x1, . . . , xn). Next, define I1 = 〈h(lm(u1), g1)〉
and Ii+1 = Ii + 〈h(lm(ui+1), gi+1)〉. This gives us an ascending chain in k[y1, . . . , ym, x]:

I1 ⊆ I2 ⊆ · · ·

which eventually stabilizes to due to the Noetherianity of k[y1, . . . , ym, x]. It follows that G
is a finite set.

Next, let G be the output of the algorithm (recall that G is given by U and V). We prove that
G is indeed a strong Gröbner basis for M . By theorem 5.1.13, G is a strong Gröbner basis
for M if every J-pair of G is covered by G. Suppose, for the sake of contadiction, that there
exists a J-pair of G, say (u, f), that is not covered by G. Then this J-pair is extracted from
JP at some point in the algorithm and is top-reduced by a sequence of regular top-reductions
(at least one!) to another pair (u, g) with lm(g) < lm(f). But then (u, g) covers (u, f) and
(u, g) is added to G by the algorithm. This is a contradiction.

5.3 Complexity

Unfortunately, not much seems to be known about the complexity of the GVW algorithm
other than that it is comparable to that of the F5-family. Therefore, studying the complexity
of the GVW algorithm reduces to the problem of finding out what the highest degree is that
is reached during the computation of a Gröbner basis.

75

Chapter 6

Experimental results

In this chapter we will discuss a small number of experiments. Our toy implementations do
not compete with the implementation of F4 that is present in the Magma computer alge-
bra system, although our implementation of G2V behaves nicely, considering that it is not
completely optimized. The running time of Matrix-F5 relies heavily on the computation of
a particular type of echelon form, i.e., one that is the result of Gaussian elimination without
pivoting. Our implementation computes this in a very naive way, which is quite slow. We
tried to use Magma’s built-in echelon form method. Unfortunately, we were not able to ex-
tract the permutation matrix from the transformation matrix that is returned by the method,
which is what we need to permute back the rows in order to get the desired echelon form. We
believe that a hybrid between Matrix-F5 and the F4 algorithm could be very competitive.
This has been considered by, e.g., Albrecht in [Alb10].

The first experiment shows the absolute running times of the various algorithms on some
well known polynomial systems. A horizontal bar denotes that the computation took too
much time, so we aborted it. Note that it is not fair to compare the algorithms in this way,
as the running time depends very much on the implementation. As we have said, Magma’s
implementation is highly optimized, whereas our implementation of Matrix-F5 is far from
optimal. It would be interesting to see how Matrix-F5 performs when the modified Gaussian
elimination algorithm is optimized. Also, we feel that G2V might be able to beat Magma’s
implementation if the reduction step were implemented with fast linear algebra similar to
what F4 does.

Time(s)

G2V Magma Matrix-F5 Modified Matrix-F5

Cyclic(4) 0.000 0.000 17.970 17.030

Cyclic(5) 15.210 0.000 - -

Cyclic(6) - 0.030 - -

Katsura(4) 0.030 0.000 42.610 42.590

Katsura(5) 70.130 0.030 - -

Katsura(6) - 1.750 - -

For the second experiment we computed a number of invariants of some homogeneous systems
that we encountered during the writing of this thesis. Unfortunately, there does not seem to

76

be an obvious relation between the quantities.

dreg dim I ireg

4 1 3
6 4 4
6 2 5
4 1 3
3 1 6
4 1 6
3 1 6
5 2 5

In the last experiment we looked at the system from Example 4.11.8. As expected, both
the modified Matrix-F5 algorithm and the Matrix-F5 algorithm extended to the bilinear case
perform much better than the original Matrix-F5 algorithm. It is interesting to see that the
modified Matrix-F5 algorithm does not perform much worse than the version of Matrix-F5
which was optimized for systems of this particular shape.

Matrix-F5 Modified Matrix-F5 MatrixF5Bilinear

Time (s) 107.410 99.010 98.420

77

Part II

Algebraic coding theory

78

Chapter 7

Basic concepts of linear codes

In many applications one wants to transfer information from one party to another. The send-
ing party will be referred to as the sender and the receiving party as the receiver. The channel
through which this information is sent is often noisy and as a result errors may occur. Of
course, once an error has occurred, the receiver may simply ask the sender to retransmit the
data. However, this is not very efficient from a practical point of view. Moreover, sometimes
this isn’t even possible. The sender adds redundant information to the data being sent in
such a way that the original data may be reconstructed from the redundant information if
not too many errors take place. The process of adding redundant information is referred to
as encoding. The process of retrieving the original message from its distorted encoded form
is referred to as decoding. The set of all encoded messages, henceforth called codewords, is
called an error-correcting code, or simply code.

We will study a particular class of codes called block codes. The idea here is that the sender
encodes data in blocks of a fixed length k with symbols from a fixed alphabet into codewords
of a fixed length n with symbols from the same alphabet, and transmits these to the receiver.
In addition to this, we will impose a linear algebraic structure on the codes under consid-
eration. The alphabet for a linear code is always a finite field. Linear codes are easier to
construct, encode, and decode than their non-linear counterpart.

In this chapter, we will solve the decoding problem by means of Gröbner bases. We accomplish
this by rewriting the problem into a system of equations. The solution to these equations is
closely related to the errors that have occurred during transmission. However, this problem
is, in general, NP-hard. McEliece used this fact to develop a public key cryptosystem for
which there are no known effective attacks. In particular, it is known to withstand attacks
using Shor’s algorithm, making it a candidate for post-quantum cryptography. An immediate
consequence is that speed-ups in the decoding algorithm translate into a loss of security.

7.1 Introduction

Definition 7.1.1 (Linear code). A linear block code C of length n and dimension k is a
k-dimensional linear subspace of the n-dimensional vector space over Fq.

We call n and k the parameters of the code and we will often abbreviate the above by saying
that C is an [n, k]-code. It is customary in coding theory to view vectors as row vectors.

79

Vectors in Fnq are referred to as words and vectors belonging to C are called codewords.

Definition 7.1.2 (Information rate and redundancy). The information rate is the quantity
R(C) = k

n . It is a measure of how much information is being transmitted per codeword. It is
closely related to the redundancy r = n− k, the number of parity symbols in a codeword.

As a k-dimensional linear space, C admits a basis for vectors g1, . . . , gk such that any codeword
c in C has a unique linear representation with respect to this basis. If we collect these vectors
in a matrix, we find a method of describing C in an explicit way. This leads to the notion of
a generator matrix.

Definition 7.1.3 (Generator matrix). A generator matrix of an [n, k]-code is a k×n matrix
G whose row space equals C, i.e., such that

C = {mG : m ∈ Fkq}.

In the case that G = [Ik|P] where I is the k × k identity matrix and P is an k × (n − k)
matrix we say that G is in standard form. The code is then said to be systematic at the first
k positions, or simply systematic. If G is in standard form, the message bits are embedded
in the first k positions of its encoded form and we call the encoding function a systematic
encoder. Generalizing this, let J = {j1, . . . , jk} be any subset of {1, . . . , n} of size k such that
the submatrix consisting of the columns of G indexed by J forms the k × k identity matrix.
In this context, we say that C is systematic at J and call J an information set.
On the other hand, we can also describe C implicitly as the nullspace of a system of equations,
the parity check equations. This leads to the notion of a parity check matrix.

Definition 7.1.4 (Parity check matrix). A parity check matrix of an [n, k]-code C is an
(n− k)× n matrix H such that

C = {c ∈ Fnq : Hct = 0}.

Given a parity check matrix, it is easy to check if errors have occurred. We simply multiply
the received word by H and check whether the result equals zero. A non-zero result implies
that an error has occurred.

Associated with a code are a number of invariants, the most important one of which is its
minimum distance. Suppose any two distinct codewords differ in at least three positions and
let r be a received word originating from some codeword c and distorted by an error vector
e, i.e., r = c + e. If the number of errors is at most one, then r resembles c more than it
resembles any other codeword. Therefore, the receiver will assume c was sent. This idea leads
to the following natural metric on the vector space Fnq .

Definition 7.1.5 (Hamming distance). The Hamming distance between the words x, y ∈ Fnq
is defined to be

d(x, y) = |{1 ≤ i ≤ n : xi 6= yi}|.

In a similar way, we define the Hamming distance between a word y and a linear code C as

d(y, C) = min{d(y, c) : c ∈ C}.

We are now ready to define the minimum distance, the smallest distance between any two
distinct codewords.

80

Definition 7.1.6 (Minimum distance). Let C be a code with at least two codewords. We
define the minimum distance of C to be

d = d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

For applications one wants to compare codes with different parameters, so it makes sense to
look at ratios. To this end, we define the relative distance of a code.

Definition 7.1.7 (Relative distance). The relative distance of C is the quantity δ(C) = d(C)
n .

Closely related to the minimum distance is the number of errors that a code can correct. It
is referred to as the error-correcting capability.

Definition 7.1.8 (Error-correcting capability). The error-correcting capability of a linear

code C is the quantity τ(C) =
⌊
d(C)−1

2

⌋
.

Now, one of the fundamental goals of coding theory is to find codes with a high error-correcting
capability, a large relative minimum distance, and a large information rate. Unfortunately,
these are conflicting properties. Indeed, the following bound, known as the Singleton bound,
immediately makes this clear.

Theorem 7.1.9 (Singleton bound). Let C be an [n, k, d]-code. Then

d ≤ n− k + 1

Proof. See [MS77] chapter 1, §10, theorem 11.

Codes that achieve equality in the Singleton bound are called maximum distance separable,
or MDS for short.

Definition 7.1.10 (MDS code). Let C be an [n, k, d]-code. If d = n− k + 1, then we call C
an MDS code.

MDS codes are important since they have optimal error-correcting capability in the class of
all [n, k]-codes for fixed n and k.

The number of errors that have occurred is exactly equal to the number of non-zero entries
in the error vector. This inspires the following definition:

Definition 7.1.11 (Hamming weight). The Hamming weight of y ∈ Fnq is defined to be

wt(y) = d(y, 0).

Likewise, we have the Hamming weight of a code C

wt(C) = min{d(y, 0) : 0 6= y ∈ C}.

Definition 7.1.12 (support). The support of y ∈ Fnq is the set {i : i ∈ {1, . . . , n}, yi 6= 0}.

Observe that the weight of a word is exactly equal to the size of its support.

Lemma 7.1.13. For every x, y ∈ Fnq we have that

wt(x− y) = d(x, y).

81

Proof.

wt(x− y) = d(x− y, 0) = |{1 ≤ i ≤ n : xi − yi 6= 0}| = |{1 ≤ i ≤ n : xi 6= yi}| = d(x, y)

For linear codes, we have a relation between its minimum distance and its minimum weight.

Proposition 7.1.14. The minimum distance of a linear code C is equal to wt(C).

Proof. Let x 6= y ∈ C. By lemma 7.1.13, we have that d(x, y) = wt(x − y). Now, x − y is a
non-zero vector in C. Taking the minimum on both sides yields the result.

Let C be an [n, k]-code. If, in addition to these parameters, we also know the minimum
distance d, we will say that C is an [n, k, d]-code.

Proposition 7.1.15. Let H be a parity check matrix of a linear code C. Then the minimum
distance of C is equal to the smallest number d such that there exist d dependent columns of
H.

Definition 7.1.16 (Hamming ball). The Hamming ball around a word x ∈ Fnq of radius r is
the set of all words of distance at most r to x, i.e.,

B(x, r) = {y ∈ Fnq : d(x, y) ≤ r}.

Observe that |B(x, r| =
∑r

i=0

(
n
i

)
(q − 1)i.

7.2 The Golay codes

In this section, we will briefly describe a linear code with special properties that will be used
as a running example throughout the remainder of this text: the Golay code. In fact, there
are four such codes. The first two such codes are binary.

Definition 7.2.1 (Extended binary Golay code). The extended binary Golay code, denoted
G24, is a [24, 12]-code over F2 given by the generator matrix G = (I12|M) in standard form
where

M =

0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1

Now, there are ways of obtaining a new code from a given code. One of those ways is
called puncturing. When we puncture a code on a specific coordinate, we simply delete that
coordinate from all codewords.

82

Definition 7.2.2 (Binary Golay code). The binary Golay code, denoted G23, is a [23, 12, 7]
code over F2 obtained by puncturing G24 in any of its coordinates. All these punctured codes
are equivalent, so the article “the” is justified.

Remark 18. Two codes C and C ′ are said to be equivalent if there exists an isometry

φ : Fnq → Fnq

such that φ(C) = C ′. Recall that an isometry is a map that leaves the (Hamming) metric
invariant.

Next there are the two ternary Golay codes.

Definition 7.2.3 (Extended ternary Golay code). The extended ternary Golay code, denoted
G12, is a [12, 6]-code over F3 given by the generator matrix G = (I6|M) in standard form
where

M =

0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0

Definition 7.2.4 (Ternary Golay code). The ternary Golay code, denoted G11, is a [11, 6, 5]-
code obtained by puncturing G12 in any of its coordinates. All these punctured codes are
equivalent, so the article “the” is justified.

Definition 7.2.5 (Perfect code). A linear code C over Fq is called perfect if the Hamming
balls of radius τ around the codewords cover the entire vector space, i.e., if⋃

c∈C
B(c, τ) = Fnq

where τ denotes the error-correcting capability.

In other words, a perfect code is such that for every word y ∈ Fnq there exists a unique
codeword c such that c differs in at most τ positions from y.

Proposition 7.2.6. Both the binary and ternary Golay codes are perfect.

7.3 Syndrome decoding

When a receiver receives a word r = c+ e composed of a codeword c ∈ C and an error vector
e ∈ Fnq , he or she wants to find out what the original codeword was. We now make this
precise:

Definition 7.3.1 (Decoding problem). Let C be a linear code, and let y ∈ Fnq be a received
word. The decoding problem is the problem of finding a codeword c ∈ C such that d(y, C) =
d(y, c), i.e., that of finding a codeword closest to y with respect to the minimum distance.

Berlekamp, et al. [BMvT06] proved that the decoding problem is, in fact, NP-hard. In
general, multiple codewords may satisfy the equality above. Therefore, we consider a more
restricted problem:

83

Definition 7.3.2 (Bounded distance decoding problem). The bounded distance decoding prob-

lem is the decoding problem, with the additional assumption that d(y, C) ≤ bd(C)−1
2 c.

This additional assumption ensures that that there exists a unique codeword c satisfying
d(y, C) = d(y, c). This is not an unreasonable assumption to make, as the class of perfect
codes always satisfies this. It is unknown whether this version of the decoding problem is
NP-hard or not, although Vardy [Var97] conjectures that it is. The problem now becomes
one of finding an efficient algorithm for retrieving c. A first approach would be to try the
method of bruteforce. The receiver simply computes d(r, c) for every c ∈ C and outputs the
c for which d(r, c) is minimal. However, this is not very efficient. In fact, the complexity is
equal to O(nqk) since there are qk codewords and for each codeword we have to compute the
distance between r and c, which can be done in O(n) time.
If the information rate R(C) > 1

2 , we can do much better by using the parity check matrix.
Recall that r is in the code if Hrt = 0. When e is non-zero, i.e., when an error has occurred,
this value will not be equal to zero. This leads to the following definition.

Definition 7.3.3 (Syndrome). The syndrome of a word r with respect to H is s(r) = Hrt ∈
(Fq)n−k.

We say that two words x and y are related if their syndromes are equal, i.e., if s(x) = Hxt =
Hyt = s(e). This happens exactly when H(x − y)t = 0. In other words, x is related to y if
their difference x−y ∈ C. This relation is, in fact, an equivalence relation. It follows that the
set Fnq can be partitioned into disjoint equivalence classes. These equivalence classes are also
called cosets. Each coset contains an element of minimal weight, corresponding to the most
plausible error pattern. We usually choose this element of minimal weight as a representative
and refer to it as the coset leader. Now, a simple calculation shows that the syndromes of
both r and e are equal:

s(r) = Hrt = H(c+ e)t = Hct +Het = Het = s(e)

Since r is known to the receiver, the syndrome of e is known to the receiver as well and we
assume that this e is in fact the coset leader of the coset of r. It follows that the receiver
decodes r as r− e. The complexity of this algorithm is O(nqn−k). Assuming that k > n

2 this
is indeed better than the brute force approach.

input : An (n− k)× n parity check matrix H describing a linear code C, a vector
r = c+ e composed of a codeword c and an error vector e of weight at most τ

output: A codeword c
begin

s := Hrt ;
e := min{wt(s+ c) : c ∈ C} ;
return r − e ;

end
Algorithm 16: Syndrome decoding

84

Chapter 8

Cyclic codes

8.1 Introduction

Before returning to the general case, we will study a subclass of linear codes which have good
algebraic properties. It turns out that there exist efficient decoding algorithms for decoding
such codes.

Definition 8.1.1 (Cyclic code). A linear code C is said to be cyclic if for every (c0, . . . , cn−1) ∈
C we also have (cn−1, c0, . . . , cn−2) ∈ C.

Given a codeword c = (c0, c1, . . . , cn−1) in a cyclic code C, we can associate it with the
polynomial c(X) = c0 + c1X + · · · + cn−1X

n−1. A cyclic right-shift of a codeword then
corresponds to a multiplication by X and taking the remainder after division by Xn − 1. In
this way, we obtain a one-to-one correspondence between cyclic codes of length n and ideals
in the quotient ring Fq[X]/(Xn − 1). In the following, we will identify the two and write c
for the actual codeword and c(X) for its polynomial representation.

Proposition 8.1.2. A linear code C is cyclic if and only if C is an ideal in Fq[X]/(Xn− 1).

Since Fq[X] is a principal ideal ring it follows that there exists a polynomial g ∈ Fq[X]
generating C as an ideal.

Definition 8.1.3 (Generator polynomial). Let C be a non-trivial cyclic code. Then there
exists a unique monic polynomial g ∈ Fq[X] of lowest degree dividing Xn − 1 such that
C = 〈g(X) + 〈Xn−1〉〉. This polynomial is called the generator polynomial of the cyclic code.

If we assume that gcd(n, q) = 1, then Xn − 1 has no repeated factors over Fq. Let Fqm be
the splitting field of Xn − 1, and let α ∈ F∗qm be a primitive nth root of unity. Then Xn − 1
factors completely over Fqm as

Xn − 1 =

n−1∏
i=0

(X − αi).

Since the generator polynomial g divides Xn − 1 it follows that

g(X) =
∏

i∈J(C)

(X − αi)

for some subset J(C) ⊆ {0, . . . , n− 1}. This subset is called the complete defining set of C.

85

Definition 8.1.4 (Complete defining set). A complete defining set of C is a subset J(C) of
{0, . . . , n− 1} comprised of all i such that c(αi) = 0 for all c ∈ C.

Now, J(C) is partitioned into cyclotomic cosets, i.e., sets of the form {qij mod n : i ∈ N}
for j ∈ J(C). In order to completely specify the code in an unambiguous way it is sufficient
to choose one representative in each coset. This leads to the notion of a defining set.

Definition 8.1.5 (Defining set). A defining set of C is a subset J of {0, . . . , n− 1} such that
c(x) ∈ C if c(αi) = 0 for all i ∈ J .

A code can have different defining sets. However, there is a unique complete defining set.

8.2 BCH codes

An important class of cyclic codes for which efficient decoding algorithms are known are the
BCH codes, named after Bose, Chaudhuri [BRC60], and Hocquenghem [Hoc59].

Definition 8.2.1 (BCH code). A cyclic code C of length n is said to be a BCH code of
designed distance δ if its generator polynomial g(X) is the least common multiple of the
minimal polynomials of αl, αl+1, . . . , αl+δ−2 for some l, where α is a primitive nth root of
unity. This is equivalent with requiring that the complete defining set contains the consecutive
integers l, l + 1, . . . , l + δ − 2.

The following lower bound on the minimum distance justifies the use of the word “designed”
in the definition above.

Theorem 8.2.2 (BCH bound). The minimum distance of a BCH code of designed distance
δ is at least δ.

So the theorem states that the minimum distance is least δ if the complete defining set contains
δ − 1 consecutive integers.

Example 8.2.3. The [11, 6, 5] ternary Golay code is equivalent to a cyclic code with complete
defining set J(C) = {1, 3, 4, 5, 9}. Note that we could also have specified the code by the
defining set J = {1, 3}. Its generator polynomial is

g(X) =
∏

i∈J(C)

(X − αi) = 2 +X2 + 2X3 +X4 +X5.

Observe that T contains the consecutive integers 3, 4, 5, hence it is of designed distance δ = 4.
The BCH bound then says that d(C) ≥ 4, but we have already seen that d(C) = 5. This shows
that the true minimum distance can be strictly larger than what the BCH bound predicts.

8.3 Decoding beyond the BCH error-correcting capability

Throughout the years many algorithms have been developed for decoding BCH codes. We
just mention the Peterson-Gorenstein-Zierler decoding algorithm [Pet60] [GZ61], the decoding
algorithm by Sugiyama et al. [SKHN75], and the Berlekamp-Massey decoding algorithm
[Ber84]. While these algorithms are very efficient in practice, they only correct up to the BCH

86

error-correcting capability which is derived from the BCH bound. Often the real minimum
distance is larger, so we are interested in methods of decoding that incorporate this knowledge.
In this section, we will describe a first approach to formulating a system of equations solving
the decoding problem in the specific case of a cyclic code. To this end, let C be a τ -error
correcting cyclic code with complete defining set J(C) = {i1, . . . , ir} with respect to the
primitive nth root of unity α ∈ Fqm . Now, let c be a codeword. We know that its associated
polynomial c(X) satisfies c(αil) = 0 for 1 ≤ l ≤ r. Notice that this is the same as saying that
(1, αil , . . . , α(n−1)il) · (c0, . . . , cn−1) = 0. It follows that we can use J(C) to define a parity
check matrix H for C as follows:

H =

1 αi1 α2i1 · · · α(n−1)i1

1 αi2 α2i2 · · · α(n−1)i2

...
...

...
. . .

...

1 αir α2ir · · · α(n−1)ir

Now, suppose that the receiver received a word r of the form r = c + e with c ∈ C and
e ∈ Fnq . Recall that s = Hrt is called the syndrome of r with respect to H. The lth entry
of s is actually equal to the associated polynomial r(X) evaluated at αil . Now, for each
0 ≤ i ≤ n− 1 we define si = r(αi). For each j in the complete defining set of C we have that
sj = r(αj) = c(αj) + e(αj) = e(αj). We call the sj with j ∈ J(C) the known syndromes. The
sj with j ∈ {0, . . . , n− 1} \ J(C) are called the unknown syndromes. As the name suggests,
the known syndromes are known to the receiver.
If the error vector e = (e0, . . . , en−1) is supported by the indices {j1, . . . , jt}, henceforth
referred to as the error positions, then the associated polynomial has the shape

e(X) = ej1X
j1 + ej2X

j2 + · · ·+ ejtX
jt .

We will call the set {ej1 , . . . , ejt} the error values. This leads to the following system of
equations:

ej1(αj1)i1 + · · ·+ ejt(α
jt)i1 = si1

ej1(αj1)i2 + · · ·+ ejt(α
jt)i2 = si2

...

ej1(αj1)ir + · · ·+ ejt(α
jt)ir = sir

The set {αj1 , . . . , αjt} is the set of so-called error locators. Next, we introduce variables. Let
Yl = ejl and Zl = αjl . Substituting the variables in the above reveals the shape of this system:

Y1Z
i1
1 + · · ·+ YtZ

i1
t = si1

Y1Z
i2
1 + · · ·+ YtZ

i2
t = si2

...

Y1Z
ir
1 + · · ·+ YtZ

ir
t = sir

(8.1)

Hence we have a system of equations that is nonlinear with coefficients in Fqm , but linear in
the Yl with coefficients in the field Fqm(Z1, . . . , Zt). We can try to find the Zl and then solve
for the Yl by means of Gaussian elimination.

87

8.3.1 Cooper’s method

We will now show how to find the Zl by means of Gröbner bases and elimination theory. We
will first treat the syndromes as constants and in the next section we will discuss an approach
due to Cooper treating the syndromes as variables.

We introduce equations specifying which values the variables are allowed to take on.

Znl = 1 for all 1 ≤ l ≤ t

since α is an nth root of unity. Now, Yl = ejl ∈ Fq \ {0} and so we introduce the equations

Y q
l = Yl for all 1 ≤ l ≤ t

Finally, the equations
ZkZlp(n,Zk, Zl) for all 1 ≤ k < l ≤ t

where

p(n,X, Y) =
Xn − Y n

X − Y
=

n−1∑
i=0

XiY n−1−i

are introduced to ensure that Zk and Zl are distinct for each k and l, or at least one of them
is zero.

Writing Y = (Y1, . . . , Yt), Z = (Z1, . . . , Zt), the previous discussion leads to the ideal defined
by the following parametrized set of polynomials in Fq[Y,Z]:

Cooperq,r,w,Y,Z =

sik −

∑w
l=1 YlZ

ik
l for all 1 ≤ k ≤ r

Znl − 1 for all 1 ≤ l ≤ w
Y q
l − Yl for all 1 ≤ l ≤ w

ZkZlp(n,Zk, Zl) for all 1 ≤ k < l ≤ w

We want to eliminate the variables Y1, . . . , Yt, Z2, . . . , Zt, so when computing a Gröbner basis
for the ideal generated by the system above we choose the monomial order equal to the
lexicographic order with Y1 > · · · > Yt > Zt > · · · > Z2 > Z1. In this case, the elimination
ideal 〈Cooperq,r,t,Y,Z〉 ∩ Fqm [Z1] will contain a unique polynomial, the roots of which are the
error locators we are after.

Proposition 8.3.1. Suppose that the number of errors t is at most τ . Let g(Z1) be the monic
generator of the ideal 〈Cooperq,r,t,Y,Z〉 ∩ Fqm [Z1]. Then the zeros of g are the error locators.

Proof. See [CCS99] chapter 11, proposition 3.6.

Remark 19. Note that w is set to t in the above!

The following theorem captures all the important ideas underlying the decoding algorithm
that we will give afterwards.

Theorem 8.3.2. Suppose that the number of errors t is at most τ . Let l(Z1) denote the gen-
erator from proposition 8.3.1. Let g(Z1) be the monic generator of the ideal 〈Cooperq,r,w,Y,Z〉∩
Fqm [Z1]. Then

g(Z1) =

1 if w < t

l(Z1) if w = t
Zn1 − 1 if w > t

88

Proof. See [CCS99] chapter 11, theorem 3.7.

To decode we then do the following: let r be a received word with t errors,

1. Compute the known syndrome vector s(r). If s(r) = 0, then no errors have occurred.
If not, then go to 2.

2. Compute the reduced Gröbner basis Gw for w = 1, . . . until Gw 6= {1}. Let g(Z1) be
the unique element in Gw∩Fqm [Z1]. If deg(g) > 1, then too many errors have occurred.
Otherwise, find the roots of g. These are the error locators. We know the locators and
we also know t, i.e., the number of errors that have occurred and so the error values
follow by Gaussian elimination applied to the system 8.1.

Example 8.3.3. Let C be the ternary Golay code with parameters [11, 6, 5]. It can correct
at most τ = 2 errors. Its complete defining set is J(C) = {1, 3, 4, 5, 9}. We will show how to
correct two errors in a randomly chosen codeword distorted in two positions by means of an
interactive Magma session.

> C := GolayCode(GF(3), false);

> T := [1,3,4,5,9];

> n := Length(C);

> r := Length(C)-Dimension(C);

> t := Floor((MinimumDistance(C)-1)/2);

> q := #Field(C);

> P<x> := PolynomialRing(Field(C));

> F := SplittingField(x^n-1);

> a := RootOfUnity(n, Field(C));

> H := Matrix(F, r, n, [<i,j, a^((j-1)*T[i])> : i in [1..r], j in [1..n]]);

> y := Random(C);

> y;

(1 1 1 2 1 2 2 1 2 2 2)

> y[1] := 2;

> y[4] := 0;

> s := y*Transpose(H);

>

> w := 1;

> Q<[X]> := PolynomialRing(F, 2*w);

> Cooper :=

> [s[i]-&+[X[l]*X[w+(w-l+1)]^(T[i]) : l in [1..w]] : i in [1..r]] cat

> [X[w+(w-l+1)]^(n)-1 : l in [1..w]] cat

> [X[l]^(q)-X[l] : l in [1..w]];

> GroebnerBasis(Cooper);

[

1

]

>

> w := 2;

> Q<[X]> := PolynomialRing(F, 2*w);

> Cooper :=

89

> [s[i]-&+[X[l]*X[w+(w-l+1)]^(T[i]) : l in [1..w]] : i in [1..r]] cat

> [X[w+(w-l+1)]^(n)-1 : l in [1..w]] cat

> [X[l]^(q)-X[l] : l in [1..w]];

> Cooper;

[

2*X[1]*X[4] + 2*X[2]*X[3] + F.1^211,

2*X[1]*X[4]^3 + 2*X[2]*X[3]^3 + F.1^149,

2*X[1]*X[4]^4 + 2*X[2]*X[3]^4 + F.1^151,

2*X[1]*X[4]^5 + 2*X[2]*X[3]^5 + F.1^131,

2*X[1]*X[4]^9 + 2*X[2]*X[3]^9 + F.1^205,

X[4]^11 + 2,

X[3]^11 + 2,

X[1]^3 + 2*X[1],

X[2]^3 + 2*X[2]

]

> GroebnerBasis(Cooper);

[

X[1] + 2,

X[2] + 2,

X[3] + X[4] + F.1^90,

X[4]^2 + F.1^90*X[4] + F.1^66

]

> R<z> := PolynomialRing(F);

> Roots(UnivariatePolynomial(X[4]^2 + F.1^90*X[4] + F.1^66));

[<1, 1>, <F.1^66, 1>]

> a^0;

1

> a^3;

F.1^66

>

8.3.2 On- and offline decoding

We introduce the concepts of online and offline decoding. When we are talking about online
decoding, we mean that we set up a system of equations every time we receive a word. The
solution of this system of equations should solve the decoding problem immediately. When
we are talking about offline decoding, we mean that we set up a system of equations in which
we treat the syndromes as variables and we do this only once. Solving this system will yield
a number of closed formulas in the syndrome variables. When we evaluate these formulas at
values specific to a received words, the result should yield a solution to the decoding problem.
As we have seen, solving a system of equations is generally a hard problem. The advantage of
offline decoding is that we have to solve a system of equations only once. Thereafter, decoding
is very simple.

Following this approach, we introduce the variables S = (S1, . . . , Sr) for the syndromes

90

(si1 , . . . , sir). Since the syndromes sim are elements of Fqm we introduce the equations

Sq
m

i = Si for all 1 ≤ i ≤ r.

The other variables satisfy the same relations as in the previous section. However, observe
that the receiver does not know the quantity t, the number of errors that have occurred, in
advance. It is convenient to add so-called ghost locations, i.e., τ − t locations where the Zl
take on the value zero. This amounts to replacing t by τ , the error-correcting capability.

We consider the ideal defined by the following parametrized set of polynomials in Fq[S, Y, Z]

Cooperq,r,τ,S,Y,Z =

Si −

∑τ
l=1 YlZ

i
l for all 1 ≤ i ≤ r

Sq
m

i − Si for all 1 ≤ i ≤ r
Zn+1
l − Zl for all 1 ≤ l ≤ τ
Y q−1
l − 1 for all 1 ≤ l ≤ τ

ZlZmp(n,Zl, Zm) for all 1 ≤ l < m ≤ τ

Now, letG be the reduced Gröbner basis for the ideal defined by the polynomials in Cooperq,r,τ,S,Y,Z
with respect to the lexicographic order induced by

Yt > · · · > Y1 > Z1 > · · · > Zt > Sr > · · · > S1.

It contains a particularly interesting polynomial called the general error locator polynomial.

Theorem 8.3.4. Every cyclic [n, k]-code C with error capacity τ possesses a general error
locator polynomial L, i.e., a polynomial in Fq[X,T] where X = (X1, . . . , Xr) satisfying

• L(X,T) = a0(X) + a1(X)T + · · ·+ aτ−1(X)T τ−1 +T τ with aj ∈ F[X] for 0 ≤ j ≤ τ − 1

• Given a syndrome vector s = (s1, . . . , sr) ∈ (Fqm)r corresponding to an error vector of
weight t ≤ τ having error locations j1, . . . , jt, if we evaluate L at Xi = si for 1 ≤ i ≤ r,
then the zeros of L(s, T) are exactly equal to αj1 , . . . , αjt and 0 of multiplicity τ − t. In
other words, we have the relation

L(s, T) = T τ−t
t∏
i=1

(T − αji)

This polynomial is precisely the element of the reduced Gröbner basis having degree τ
with respect to Zτ .

Proof. See [OS05] theorem 6.8 and theorem 6.9.

Example 8.3.5. Let C be the binary cyclic BCH code with parameters [15, 7, 5], i.e., the
error-correcting capability τ = 2. This code has J(C) = {1, 2, 4, 8, 3, 6, 12, 9} as complete
defining set. We want to find the general error locator polynomial of C. We demonstrate this
by means of an interactive Magma session.

> n := 15;

> k := 7;

> r := n-k;

91

> t := 2;

> T := [1,2,4,8,3,6,12,9];

> P<x> := PolynomialRing(GF(2));

> F := SplittingField(x^n-1);

> a := RootOfUnity(n, GF(2));

> Q<[X]> := PolynomialRing(F, t+r);

> Cooper :=

> [X[t+(r-i+1)]-&+[X[l]^(T[i]) : l in [1..t]] : i in [1..r]] cat

> [X[t+(r-i+1)]^(#F)-X[t+(r-i+1)] : i in [1..r]] cat

> [X[l]^(n+1)-X[l] : l in [1..t]] cat

> [X[l]*X[m]*&+[X[l]^i*X[m]^(n-1-i) : i in [0..n-1]] : l, m in [1..t] | l lt m];

> Cooper;

[

X[1] + X[2] + X[10],

X[1]^2 + X[2]^2 + X[9],

X[1]^4 + X[2]^4 + X[8],

X[1]^8 + X[2]^8 + X[7],

X[1]^3 + X[2]^3 + X[6],

X[1]^6 + X[2]^6 + X[5],

X[1]^12 + X[2]^12 + X[4],

X[1]^9 + X[2]^9 + X[3],

X[10]^16 + X[10],

X[9]^16 + X[9],

X[8]^16 + X[8],

X[7]^16 + X[7],

X[6]^16 + X[6],

X[5]^16 + X[5],

X[4]^16 + X[4],

X[3]^16 + X[3],

X[1]^16 + X[1],

X[2]^16 + X[2],

X[1]^15*X[2] + X[1]^14*X[2]^2 + X[1]^13*X[2]^3 + X[1]^12*X[2]^4 + X[1]^11*X[2]^5

+ X[1]^10*X[2]^6 +

X[1]^9*X[2]^7 + X[1]^8*X[2]^8 + X[1]^7*X[2]^9 + X[1]^6*X[2]^10 + X[1]^5*X[2]^11

+ X[1]^4*X[2]^12 +

X[1]^3*X[2]^13 + X[1]^2*X[2]^14 + X[1]*X[2]^15

]

> GroebnerBasis(Cooper);

[

X[1] + X[2] + X[10],

X[2]^2 + X[2]*X[10] + X[6]*X[10]^14 + X[10]^2,

X[2]*X[10]^15 + X[2],

X[3] + X[6]^4*X[10]^12 + X[6]^2*X[10]^3 + X[6]*X[10]^6,

X[4] + X[6]^4,

X[5] + X[6]^2,

X[6]^8 + X[6]^4*X[10]^12 + X[6]^2*X[10]^3 + X[6]*X[10]^6,

X[6]*X[10]^15 + X[6],

92

X[7] + X[10]^8,

X[8] + X[10]^4,

X[9] + X[10]^2,

X[10]^16 + X[10]

]

Theorem 8.3.4 ensures that the reduced Gröbner basis contains the unique general error locator
polynomial. It should be of degree 2 with respect to Z2. Indeed, we find L(X1, X2, T) =
T 2 + TX1 +X4X

1
1 4 +X2

1 .

8.3.3 Newton identities based method

In this section we will only consider binary codes. We call the polynomial in theorem 8.3.4
the generalized error locator polynomial because it generalizes the following notion:

Definition 8.3.6 (Plain error locator polynomial).

σ(Z) =

t∏
k=1

(1− αjkZ)

The plain error locator polynomial encodes the inverse of the error locators as its roots and
plays an important role in many of the traditional BCH decoding algorithms. As we have
observed before, in order to solve 8.1 it suffices to find the error locators. This is equivalent
to finding the plain error locator polynomial, as the error locators will follow from the roots.
How do we find σ(Z)? Let us expand σ(Z) to find

σ(Z) = σtZ
t + σt−1Z

t−1 + · · ·+ σ1Z + 1

where the σi are the elementary symmetric functions in the error locators Z1, . . . , Zt.

σi = (−1)i
∑

1≤j1<j2<···<ji≤t
Zj1Zj2 . . . Zji , for 1 ≤ i ≤ t

It follows that finding the plain error locator polynomial is equivalent to finding σi for all
1 ≤ i ≤ t. Now, the syndromes satisfy the so-called generalized Newton identities (see [MS77]
theorem 24)

si+t +

t∑
j=1

σjsi+t−j = 0 for 1 ≤ i ≤ t

In the binary case this is equivalent with{
si +

∑i−1
j=1 σjsi−j + iσi = 0 for 1 ≤ i ≤ t
si +

∑t
j=1 σjsi−j = 0 for 1 + t ≤ i ≤ n+ t

We will use these equations to set up a system of equations. First, we will consider the
syndromes as variables, i.e., we will focus on offline decoding. Clearly, we have

si+n = e(ai+n) = e(ai) = si for all 1 ≤ i ≤ n

and
s2
i = (e(ai))2 = e(a2i) = s2i for all 1 ≤ i ≤ n

93

Now, α ∈ F2m \ {0} and so Zl ∈ F2m \ {0}. Therefore, we find the relation

σ2m

i = σi for all 1 ≤ i ≤ t

Next, we introduce the variables S = (S1, . . . , Sn+w) and X = (X1, . . . , Xw) for the syndromes
and σi respectively. Finally, we consider the ideal generated by the following polynomials in
F2[S,X]:

Newtonw,n,S,X =

X2m
i −Xi for all 1 ≤ i ≤ w
S2m
i − Si for all 1 ≤ i ≤ n
S2
i − S2i for all 1 ≤ i ≤ n

Si+n − Si for all 1 ≤ i ≤ w
Si +

∑i−1
j=1XjSi−j + iXi for all 1 ≤ i ≤ w
Si +

∑w
j=1XjSi−j for all 1 + w ≤ i ≤ n+ w

In the case of online decoding, we add to Newtonw,n,S,X the polynomials Si− si for i ∈ J(C)
and Xt+1, . . . , Xw.

Proposition 8.3.7. Let I be the ideal generated by the polynomials in Newtonw,n,S and
polynomials Si − sik for 1 ≤ k ≤ r and σt+1, . . . , σw. Then

I = 〈X1 − σt, . . . , Xt − σt, Xt+1, . . . , Xw, Si − si, i ∈ {0, . . . , n− 1} \ J(C)〉

Proof. See [ABF09] theorem 10.

To decode we then do the following: let r be a received word with t errors,

1. Compute the known syndrome vector s(r). If s(r) = 0, then no errors have occurred.
If not, then go to 2.

2. Compute the reduced Gröbner basis Gw for w = 1, . . . until Gw 6= {1}. Then w = t and
Gw contains the polynomials X1 − σt, . . . , Xt − σt.

To summarize: the resulting value of w will yield t and the solution will yield the σi. We then
know the plain error locator polynomial, the roots of which are easy to find. From the error
locators the error locations are readily found. Since we are working over F2 the error values
are all equal to 1, so the problem is solved.

Example 8.3.8. Let C be the binary BCH code with parameters [31, 16, 7] and complete
defining set J(C) = {1, 2, 4, 8, 16, 5, 10, 20, 9, 18, 7, 14, 28, 25, 19}. Since J(C) contains 4 con-
secutive integers the BCH bound says that d(C) ≥ 5, hence most BCH decoding algorithms
are only able to correct at most two errors. However, the true error-correcting capability of
C is τ = 3. We will now try to correct three errors. Let

r = (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1)

and assume for now that we do not know the number of errors in r, but we do know that it is
at most τ . The known syndromes are s1 = a5, s5 = a8, s7 = a26. We illustrate the decoding
process by means of an interactive Magma session.

94

> n := 31;

> tau := 3;

> P<x> := PolynomialRing(GF(2));

> F := SplittingField(x^n-1);

> a := RootOfUnity(n, GF(2));

>

> w := 1;

> Q<[X]> := PolynomialRing(F, 2*n+tau, "grevlex");

> Newton :=

> [X[2*n+i]^#F-X[2*n+i] : i in [1..w]] cat

> [X[i]^2-X[2*i] : i in [1..n]] cat

> [X[i+n]-X[i] : i in [1..w]] cat

> [X[1] + X[2*n+1]] cat

> [X[i] + &+[X[2*n+j]*X[i-j] : j in [1..i-1]] + i*X[2*n+i]: i in [2..w]] cat

> [X[i] + &+[X[2*n+j]*X[i-j] : j in [1..w]]: i in [1+w..n+w]] cat

> [X[2*n+i] : i in [w+1..tau]] cat

> [X[1]-a^5, X[5]-a^8, X[7]-a^26];

>

> GroebnerBasis(Newton);

[

1

]

> w := 2;

> Q<[X]> := PolynomialRing(F, 2*n+tau, "grevlex");

> Newton :=

> [X[2*n+i]^#F-X[2*n+i] : i in [1..w]] cat

> [X[i]^2-X[2*i] : i in [1..n]] cat

> [X[i+n]-X[i] : i in [1..w]] cat

> [X[1] + X[2*n+1]] cat

> [X[i] + &+[X[2*n+j]*X[i-j] : j in [1..i-1]] + i*X[2*n+i]: i in [2..w]] cat

> [X[i] + &+[X[2*n+j]*X[i-j] : j in [1..w]]: i in [1+w..n+w]] cat

> [X[2*n+i] : i in [w+1..tau]] cat

> [X[1]-a^5, X[5]-a^8, X[7]-a^26];

> GroebnerBasis(Newton);

[

1

]

> w := 3;

> Q<[X]> := PolynomialRing(F, 2*n+tau, "grevlex");

> Newton :=

> [X[2*n+i]^#F-X[2*n+i] : i in [1..w]] cat

> [X[i]^2-X[2*i] : i in [1..n]] cat

> [X[i+n]-X[i] : i in [1..w]] cat

> [X[1] + X[2*n+1]] cat

> [X[i] + &+[X[2*n+j]*X[i-j] : j in [1..i-1]] + i*X[2*n+i]: i in [2..w]] cat

> [X[i] + &+[X[2*n+j]*X[i-j] : j in [1..w]]: i in [1+w..n+w]] cat

> [X[2*n+i] : i in [w+1..tau]] cat

95

> [X[1]-a^5, X[5]-a^8, X[7]-a^26];

> GroebnerBasis(Newton);

[

X[1] + F.1^5,

X[2] + F.1^10,

X[3] + F.1^24,

X[4] + F.1^20,

X[5] + F.1^8,

X[6] + F.1^17,

X[7] + F.1^26,

X[8] + F.1^9,

X[9] + F.1^2,

X[10] + F.1^16,

X[11] + F.1^4,

X[12] + F.1^3,

X[13] + F.1^16,

X[14] + F.1^21,

X[15] + F.1^16,

X[16] + F.1^18,

X[17] + F.1^12,

X[18] + F.1^4,

X[19] + F.1^13,

X[20] + F.1,

X[21] + F.1^2,

X[22] + F.1^8,

X[23] + F.1^8,

X[24] + F.1^6,

X[25] + F.1^22,

X[26] + F.1,

X[27] + F.1^4,

X[28] + F.1^11,

X[29] + F.1^2,

X[30] + F.1,

X[31] + 1,

X[32] + F.1^5,

X[33] + F.1^10,

X[34] + F.1^24,

X[36] + F.1^8,

X[38] + F.1^26,

X[40] + F.1^2,

X[42] + F.1^4,

X[44] + F.1^16,

X[46] + F.1^16,

X[48] + F.1^12,

X[50] + F.1^13,

X[52] + F.1^2,

X[54] + F.1^8,

96

X[56] + F.1^22,

X[58] + F.1^4,

X[60] + F.1^2,

X[62] + 1,

X[63] + F.1^5,

X[64] + F.1^5,

X[65] + F.1^4

]

So we find that σ1 = a5, σ2 = a5, and σ3 = a4. Plugging these into σ(Z) and finding its roots
yields:

> Q<z> := PolynomialRing(F);

> Roots(F.1^4*z^3+F.1^5*z^2+F.1^5*z+1);

[<F.1^6, 1>, <F.1^24, 1>, <F.1^28, 1>]

It follows that the inverted error locators are a6, a24, and a28 and therefore the error locators
are a25, a7, and a3. Finally, the locators yield the error positions 3, 5, and 25.

97

Chapter 9

Decoding general linear codes

9.1 The method of unknown syndromes

In this section, we will forget about any extra structure and focus on general linear codes.
We will set up a system of quadratic equations, the solution to which will solve the decoding
problem.
Throughout this section, let C be a linear [n, k, d]-code over Fq having parity check matrix
H. Let b1, . . . , bn be a basis for the vector space Fnq . Write B for the n × n matrix having
rows equal to b1, . . . , bn. If we let hi denote the ith row of H, then we can express this in the
basis as

hi =

n∑
j=1

aijbj

for suitable scalars ai1, . . . , ain ∈ Fq. It follows that there exists an (n− k)×n matrix A such
that H = AB where A = (aij).

Definition 9.1.1 (Unknown syndrome). The unknown syndrome of a word e with respect to
B is u(e) = Bet.

Remark 20. The unknown syndrome thus defined is a generalized notion than that of the
unknown syndrome in the context of cyclic codes.

Proposition 9.1.2. The matrix B is invertible.

Proof. The row space of B equals Fnq . Hence, the rank of B is n and the result follows.

The receiver receives a word y = c + e composed of a sent codeword c ∈ C and an error
vector e ∈ Fnq . Recall that the problem we are faced with is the recovery of the error vector e.
However, since the matrix B is invertible, we can simply recover e by computing B−1u(e) =
B−1Bet = et. Thus, our new goal is trying to find the unknown syndrome vector u(e).

Definition 9.1.3 (Star product). The star product between x, y ∈ Fnq is defined as

x ∗ y = (x1y1, . . . , xnyn)

Definition 9.1.4 (Structure constants). For every 1 ≤ i, j ≤ n the star product bi ∗ bj can
be expressed in the basis vectors as

bi ∗ bj =
n∑
l=1

µijl bl

98

The scalars µijl are called the structure constants of the basis vectors b1, . . . , bn.

Definition 9.1.5 (Matrix of unknown syndromes). The n×n matrix of unknown syndromes
of a word y, denoted U(e), is given by

uij(e) = (bi ∗ bj) · e =
n∑
l=1

µijl ul(e)

where ul(e) is the lth entry of the vector of unknown syndromes, u(e).

Proposition 9.1.6. We have that U(e) = B diag(e)BT . Furthermore, the rank of U(e) is
equal to wt(e).

Proof. uij(e) = (bi ∗ bj) · e = (bi1bj1, . . . , binbjn) · e =
∑n

l=1 bilelbjl. It follows that U(e) =
B diag(e)BT . Now, B is invertible, hence rkB = rkBT = n. Therefore,

rkU(e) = rkB diag(e)BT = rk diag(e)BT = rk diag(e) = wt(e)

.

Definition 9.1.7 (MDS basis, matrix). Let b1, . . . , bn be a basis for Fnq . Write Bi for the
matrix having rows equal to b1, . . . , bi. If all i × i submatrices of Bi have full rank, for
i = 1, . . . , n, then we call b1, . . . , bn an ordered MDS basis and the associated matrix B an
MDS matrix.

The name MSD basis is derived from the fact that the code described by parity check matrix
Bi is an MDS code for every 1 ≤ i ≤ n.

Definition 9.1.8 (Vandermonde basis, matrix). Assume that n ≤ q. Let x = (x1, . . . , xn) ∈
Fnq be a vector of pairwise distinct elements, and let bi = (xi−1

1 , . . . , xi−1
n). We call b1, . . . , bn

a Vandermonde basis and the associated matrix B a Vandermonde matrix.

Proposition 9.1.9. If b1, . . . , bn ∈ Fnq is a Vandermonde basis, then it is an MDS basis.

If there exists an element of order n, say α, we may pick xj = αj−1, j = 1, . . . , n to obtain a
Vandermonde basis.
There exists an integer m such that n ≤ qm. Hence, after a finite field extension, we may
assume that our field satisfies the assumptions in definition 9.1.7. In the following, the finite
field under consideration will be Fqm .

Definition 9.1.10. Let M = (mij) be an m × n matrix over some field. We define Mvw to
be the v× v submatrix of M given by the first v rows of M and then restricting to the first w
positions, i.e.,

Mvw = (mij)1≤i≤v,1≤j≤w

We will also write Mv for Mvn.

Proposition 9.1.11. Assume that B is an MDS matrix. Write t = wt(e). Then

rkUnv(e) = min{v, t}

99

Proof. From the identity Unv(e) = B diag(e)BT
v it follows that

rkUnv(e) ≤ min{rkB, rk diag(e), rkBT
v } = min{n, t, v} = min{t, v}.

We will show that rkUnv(e) ≥ min{t, v}. After a permutation of the columns of B, we
may assume that the t non-zero entries of e, denoted e1, . . . , et, are on the first t positions.
B remains an MDS matrix, as the rank is permutation invariant. Write e′ = (e1, . . . , et).
Then B diag(e)BT

v has Bt diag(e′)BT
vt as a submatrix. Now, diag(e′) is invertible, since its

diagonal consists of only non-zero entries. It follows that rkBt diag(e′)BT
vt = rkBtB

T
vt. Now,

Bt is a submatrix of B, an MDS matrix, so it has full rank and is invertible. It follows that
rkBtBT

vt = rkBT
vt, but this equals min{v, t} as B is MDS. Hence, since Unv(e) contains a

submatrix of rank min{v, t} it follows that rkUnv(e) ≥ min{v, t}.

By proposition 9.1.6, the rank of U(e) is equal to wt(e). Write t = wt(e). It follows that
any t + 1 vectors in the row space of U(e) are linearly dependent. In particular, there exist
v1(e), . . . , vt(e) ∈ Fq such that

∑t
j=1 uij(e)vj(e) = ui(t+1) for all i = 1, . . . , n. By substitution

of, it follows that this equals
∑t

j=1

(∑n
l=1 µ

ij
l ul(e)

)
vj(e) =

∑n
l=1 µ

i(t+1)
l ul(e).

Definition 9.1.12. Define the linear functions Uij in the variables U1, . . . , Un by

Uij =
n∑
l=1

µijl Ul

Evaluating (U1, . . . , Un) at u(e) = (u1, . . . , un) gives Uij = uij .

Definition 9.1.13. The ideal I(t, U, V) is the ideal in Fq[U1, . . . , Un, V1 . . . , Vt] generated by
the elements

∑t
j=1 UijVj − Ui(t+1) for i = 1, . . . , n.

Using the relation H = AB we can express the known syndrome of y in terms of the unknown
syndrome of y as follows:

si(y) = si(e) = hi · e = (

n∑
j=1

aijbj) · e =

n∑
j=1

aij(bj · e) =

n∑
j=1

aijuj(e) (9.1)

Definition 9.1.14. The ideal J(y) is the ideal in Fq[U1, . . . , Un] generated by the elements∑n
l=1 ajlUl − sj(y) for j = 1, . . . , n− k.

Definition 9.1.15. The ideal J(t, y) is the ideal in Fq[U1, . . . , Un, V1 . . . , Vt] generated by
I(t, U, V) and J(y).

Lemma 9.1.16. If r = c + e with c ∈ C and e ∈ Fnq with wt(e) = t, then there exists a v
such that (u(e), v) is a zero of J(t, r).

Proof. Clearly, u(e) is a solution of J(r) by 9.1. By proposition rkUnv(e) = min{v, t}.
Hence, if v > t, then rkUnv(e) = t. It follows that the (t + 1)th column of Un(t+1)(e) is a
linear combination of the first t columns. Therefore, there exists a v solving J(t, r).

Lemma 9.1.17. Let (u, v) be a solution of J(t, r). Then there exists a unique e with wt(e) ≤ t
such that u = u(e). Moreover, r = c+ e for some c ∈ FqmC for some m ∈ Z>0.

100

Proof. We have that (u, v) is a solution of J(t, r), so in particular u is a solution of J(r).
Hence, it is the vector of unknown syndromes with respect to a unique e, i.e., u = u(e).
Moreover, it follows that the (t + 1)th column of U(e) is a linear combination of the first
t columns. Therefore, rkUn(t+1)(e) ≤ t. On the other hand, proposition 9.1.11 says that
rkUn(t+1)(e) = min{t + 1,wt(e)}. Hence, min{t + 1,wt(e)} ≤ t implies that wt(e) ≤ t.
Now, si(r) =

∑n
i=1 aijuj = si(e) ∈ Fqm for 1 ≤ i ≤ n. It follows that s(e) = s(r). Hence

the syndrome of r − e equals 0, but this implies that r − e ∈ FqmC. Hence, there exists a
c ∈ FqmC such that r = c+ e.

Lemma 9.1.18. If (u, v) and (u,w) are distinct solutions of J(t, r), then there exists a
solution (u, z) of J(t′, r) for some t′ < t. Moreover, if t′ = 0, then r ∈ FqmC for some
m ∈ Z>0.

Proof. Let (u, v) and (u,w) be solutions of J(t, r) such that v 6= w. Lemma 9.1.17 says that
u = u(e). Moreover, (u, v) and (u,w) are solutions of I(t, U, V) and thus we have

t∑
l=1

uilvl = ui(t+1) and
t∑
l=1

uilwl = ui(t+1) for 1 ≤ i ≤ n

It follows that
t∑
l=1

uil(vl − wl) = 0 for 1 ≤ i ≤ n

By assumption, v 6= w, so there exists at least one l such vl−wl 6= 0. Hence the first t columns
of U are linearly dependent, i.e., there exists a t′ < t such that the t′ + 1th column of U is a
linear combination of the first t′. It follows that there exists a solution (u, z) of J(t′, r). Now,
suppose that t′ = 0. Then lemma 9.1.17 says that u = u(e) for a unique e with wt(e) = 0 and
r = c+ e for some c ∈ FqmC. Since wt(e) = 0, we see that e = 0 and so r = c ∈ FqmC.

Theorem 9.1.19. Let B be an MDS matrix whose rows have structure constants µijl associ-
ated with it. Let H be a parity check matrix of a code C such that H = AB. Let r = c + e
be a received word composed of a codeword c ∈ C and error vector e ∈ Fnq . Suppose that

0 < wt(e) ≤ bd−1
2 c. Let t be the smallest positive integer such that there exists a solution

(u, v) of J(t, r) over Fq. Then wt(e) = t and the solution is unique and satisfies u = u(e).

Proof. Observe that lemma 9.1.16 says that there exists a v such that (u(e), v) is a solution
of J(wt(e), r). Now, J(s, r) is parametrized by s and our observation shows that for at least
one such s the system is solvable. Now, let t be minimal with this property. In particular,
we know that t ≤ wt(e). Let (u, v) be an arbitrary corresponding solution to J(t, r). First,
we prove that u is unique. Lemma 9.1.17 says that there exists a unique e with wt e ≤ t with
u = u(e) and r = c+ e for some c ∈ FqmC. It follows that wt e ≤ t ≤ wt e. Hence,

wt e− e = d(e, e) ≤ d(e, 0) + d(0, e) = wt e+ wt e ≤ 2 wt e ≤ d− 1 < d(C) = wt(C)

but then we have found a codeword of weight less than wt(C). This means that it is the zero
codeword, i.e., e = e. Hence u = u(e) = u(e), and by uniqueness this equals u(e). Since u
was picked arbitrarily, it follows that there is in fact a unique u equal to u(e).
Next, we prove that v is unique. To this end, let (u, ṽ) be a solution of J(t, r) such that v 6= ṽ.
Observe that r is not a codeword, since wt(e) > 0. Hence, lemma 9.1.18 says that there exists
a solution (u, z) of J(t′, r) for some t′ < t. However, this contradicts the minimality of t.
Hence, v is unique. Since both u and v are unique, the solution itself is unique.

101

Theorem 9.1.19 shows that u = u(e). Since e ∈ Fq it follows that u ∈ Fq. From this, using the
equations, we can deduce that v ∈ Fq as well. Hence, the entire solution lies in Fq. It follows
that V (〈J(t, r)〉) = V (〈J(t, r)〉+ 〈U q1 −1, . . . , U qn−1, V q

1 −1, . . . , V q
t −1〉). Moreover, it follows

from Seidenberg’s theorem 2.5.21 that 〈J(t, r)〉 + 〈U q1 − 1, . . . , U qn − 1, V q
1 − 1, . . . , V q

t − 1〉 is
radical.

Theorem 9.1.20 (Lexicographic case). Let r = c+e be a received word composed of codeword

c ∈ C and error vector e ∈ Fnq . Assume that wt(e) ≤ bd(C)−1
2 c. Let t be the smallest integer

such that V (J(t, r) + 〈xq
m

1 − 1, . . . , xq
m

n − 1〉) 6= ∅. Then this solution is unique. Moreover,
the reduced Gröbner basis for the ideal J(t, r) with respect to the lexicographic order has the
shape

Ui − ui(e), i = 1, . . . , n

Vj − vj , j = 1, . . . , t

Proof. By adding the field equations, lemma 2.5.21 tells us that the ideal is radical. Moreover,
by theorem 9.1.19 the ideal is zero-dimensional. Hence lemma 2.5.25 says that the reduced
Gröbner basis looks like the claim.

Theorem 9.1.21 (General case). Let r = c + e be a received word composed of codeword

c ∈ C and error vector e ∈ Fnq . Assume that wt(e) ≤ bd(C)−1
2 c. Let t be the smallest integer

such that V (J(t, r)) 6= ∅. Then this solution is unique. Moreover, the reduced Gröbner basis
for the ideal J(t, r) with respect to any monomial order has the shape

Ui − ui(e), i = 1, . . . , n

Vj − vj , j = 1, . . . , t

Proof. See [BP09] theorem 51.

Example 9.1.22. Consider the following example where we let C be the Golay code over F3

and introduce two errors to a random codeword. We present the example as an interactive
Magma session.

> C := GolayCode(GF(3), false);

> C;

[11, 6, 5] "Unextended Golay Code" Linear Code over GF(3)

Generator matrix:

[1 0 0 0 0 0 2 0 1 2 1]

[0 1 0 0 0 0 1 2 2 2 1]

[0 0 1 0 0 0 1 1 1 0 1]

[0 0 0 1 0 0 1 1 0 2 2]

[0 0 0 0 1 0 2 1 2 2 0]

[0 0 0 0 0 1 0 2 1 2 2]

> r := Random(C);

> r;

(0 0 1 2 1 0 2 1 0 0 2)

> r[3] := 0; r[11] := 1;

> t := 2;

102

> FE, _ := ext<Field(C) | Ceiling(Log(#Field(C), Length(C)))>;

> C, _ := ExtendFieldCode(C, FE);

> Field(C);

Finite field of size 3^3

> a := [PrimitiveElement(Field(C))^(i-1) : i in [1..Length(C)]];

> B := Matrix(Field(C), Length(C), Length(C), [<i, j, a[j]^(i-1)> : i, j in [1..Length(C)]]);

> mu := [[StarProduct(B[i], B[j])*B^(-1) : j in [1..Length(C)]] : i in [1..Length(C)]];

> A := ParityCheckMatrix(C)*B^(-1);

> s := r*Transpose(ParityCheckMatrix(C));

> P<[X]> := PolynomialRing(Field(C), Length(C)+t, "grevlex");

> J := [&+[A[j, l]*X[l] : l in [1..Length(C)]] - s[j] : j in [1..Length(C)-Dimension(C)]];

> I := [&+[&+[mu[i,j,l]*X[l] : l in [1..Length(C)]]*X[Length(C)+j] : j in [1..t]]-&+[mu[i,t+1,l]*X[l]

: l in [1..Length(C)]] : i in [1..Length(C)]];

> sys := J cat I;

> sys;

[

FE.1^23*X[1] + FE.1^58*X[2] + FE.1^5*X[3] + FE.1^68*X[4] + FE.1^69*X[5] + FE.1^12*X[6]

+ FE.1^57*X[7] + FE.1^44*X[8] + FE.1^49*X[9] +

FE.1^69*X[10] + FE.1^44*X[11],

FE.1^7*X[1] + FE.1^56*X[2] + FE.1^51*X[3] + FE.1^50*X[4] + FE.1^23*X[5] + FE.1^50*X[6]

+ FE.1^22*X[7] + FE.1^71*X[8] + FE.1^17*X[9] +

FE.1^28*X[10] + FE.1^66*X[11] + 1,

FE.1^42*X[1] + FE.1^76*X[2] + FE.1^49*X[3] + FE.1^36*X[4] + FE.1^16*X[5] +

FE.1^15*X[6] + 2*X[7] + FE.1^17*X[8] + FE.1^53*X[9] +

FE.1^55*X[10] + FE.1^30*X[11],

FE.1^49*X[1] + FE.1^8*X[2] + FE.1^17*X[3] + FE.1^22*X[4] + FE.1^60*X[5] + FE.1^38*X[6]

+ FE.1^65*X[7] + FE.1^3*X[8] + FE.1^76*X[9] +

FE.1^4*X[10] + FE.1^45*X[11] + 1,

FE.1^58*X[1] + FE.1^48*X[2] + FE.1^68*X[3] + FE.1^14*X[4] + FE.1^52*X[5] +

2*X[6] + FE.1^36*X[7] + FE.1^25*X[9] + FE.1^3*X[10] +

FE.1^4*X[11] + 1,

X[1]*X[12] + X[2]*X[13] + 2*X[3],

X[2]*X[12] + X[3]*X[13] + 2*X[4],

X[3]*X[12] + X[4]*X[13] + 2*X[5],

X[4]*X[12] + X[5]*X[13] + 2*X[6],

X[5]*X[12] + X[6]*X[13] + 2*X[7],

X[6]*X[12] + X[7]*X[13] + 2*X[8],

X[7]*X[12] + X[8]*X[13] + 2*X[9],

X[8]*X[12] + X[9]*X[13] + 2*X[10],

X[9]*X[12] + X[10]*X[13] + 2*X[11],

X[10]*X[12] + X[11]*X[13] + FE.1^15*X[1] + FE.1^53*X[2] + FE.1^49*X[3] + FE.1^63*X[4]

+ FE.1^7*X[5] + FE.1^6*X[6] + FE.1^41*X[7] +

FE.1^32*X[8] + FE.1^78*X[9] + FE.1^54*X[10] + FE.1^48*X[11],

X[11]*X[12] + FE.1^55*X[1]*X[13] + FE.1^13*X[2]*X[13] + FE.1^9*X[3]*X[13] +

FE.1^23*X[4]*X[13] + FE.1^47*X[5]*X[13] +

FE.1^46*X[6]*X[13] + FE.1*X[7]*X[13] + FE.1^72*X[8]*X[13] + FE.1^38*X[9]*X[13]

+ FE.1^14*X[10]*X[13] + FE.1^8*X[11]*X[13] +

103

FE.1^23*X[1] + FE.1^50*X[2] + FE.1^44*X[3] + FE.1^16*X[4] + FE.1^49*X[5]

+ FE.1^69*X[6] + FE.1^37*X[7] + FE.1^68*X[8] +

FE.1^78*X[9] + FE.1^20*X[10] + FE.1^32*X[11]

]

> GroebnerBasis(sys);

[

X[1] + 2,

X[2] + FE.1^31,

X[3] + FE.1^42,

X[4] + FE.1^13,

X[5] + FE.1^74,

X[6],

X[7] + FE.1^46,

X[8] + FE.1^77,

X[9] + FE.1^38,

X[10] + FE.1^39,

X[11] + FE.1^60,

X[12] + FE.1^12,

X[13] + FE.1^71

]

These results readily lead to the algorithm 17 for decoding a general code.

input : An (n− k)× n parity check matrix H describing an [n, k, d]-code C, a word
y = c+ e ∈ Fnq composed of a codeword c ∈ C and an error vector e ∈ Fnq , and
a monomial ordering >.

output: The codeword c.
begin

G := [1] ;
t := 1 ;
while G = [1] do

G := ReducedGroebnerBasis(J(t, y), >) ;
t := t+ 1 ;

end
G is of the form [Uj − uj , Vl − vl]1≤j≤n,1≤l≤t
u := [−ConstantCoefficient(G[1]), . . . ,−ConstantCoefficient(G[n])] ;
e := B−1u ;
return y − e

end
Algorithm 17: General decoding algorithm

104

9.2 Applications

9.2.1 The McEliece cryptosystem

In [Mce78] McEliece proposed a cryptosystem based on the hardness of decoding a general
linear code. In its original description, which remains unbroken until today, a random Goppa
code disguised as a general linear code is used. Goppa codes know an efficient decoding
algorithm. Knowledge of this decoding algorithm together with the permutation matrix used
to disguise the code.
The system takes as input the parameters n, t ∈ N with t much smaller than n.
The private key consists of a random Goppa code of length n, dimension k and minimum
distance at least 2t+ 1. Hence, its error-correcting capability equals t. This code is described
by a k × n generator matrix G. Associated with the code is an efficient decoding algorithm
DG. We generate a random n × n permutation matrix P and a random k × k non-singular
matrix S which are both kept secret.
The public key is formed by permuting the coordinates of the code. As a second step, the
rows of the generator matrix of this permuted code are scrambled to ensure that it is not
in standard form, as this would reveal most of the bits of the plaintext. We then compute
Ĝ = SGP , which generates a code with the same minimum distance. Finally, we publish Ĝ.
After setting up the key-pair, the algorithms below are used by anyone wishing to communi-
cate in a secure way.

input : A plaintext message m ∈ Fkq , a k × n generator matrix Ĝ, and a parameter t
output: A ciphertext c ∈ Fnq
begin

Choose a vector e ∈ Fnq of weight t randomly ;

// The message is hidden by distorting it with e ;

return mĜ+ e
end

Algorithm 18: McEliece encryption

input : A ciphertext c ∈ Fnq , a × permutation matrix P , a × non-singular matrix S,
and an efficient decoding algorithm DG

output: A plaintext message m ∈ Fkq
begin

Calculate cP−1 = mSG+ eP−1 ;
Compute mS = DG(cP−1) ;
m = (mS)S−1 ;
return m

end
Algorithm 19: McEliece decryption

There are two ways of attacking this system:

• Try to recover G, given Ĝ, i.e., finding the secret code (structural attack).

• Try to recover m given c without learning anything about the secret code (general
attack).

105

Now, we have seen how we can set up a system of equations corresponding to the code
described by Ĝ and solve this by means of a Gröbner basis computation to find m.

9.2.2 Finding the minimum distance

It is possible to find the minimum distance of the code by solving the system J(t, r) with
the parameter r set to 0. The idea is that the smallest t for which the system J(t, 0) has a
solution with non-zero u-component corresponds exactly to the minimum distance.

Theorem 9.2.1. Let B be an MDS matrix with structure constant µijl . Let H be a parity
check matrix for the code C such that H = AB for some A. Let t be the smallest integer such
that J(t, 0) has a solution (u, v) with u 6= 0. Then d(C) = t.

Proof. Let 0 6= c ∈ C be a code word with wt(c) = d(C). Now, c + (−c) = 0 and wt(−c) =
d(C) as well. Hence, lemma 9.1.17 says that there exists a v such that (u(−c), v) is a zero of
J(d(C), 0). Since −c 6= 0 we also have that u(−c) 6= 0. Are there any solutions to J(t, 0) with
t < d(C) and u 6= 0? Suppose there is one, say (u′, v′). Then by lemma 9.1.18 there exists a
unique e with wt(e) ≤ t such that u′ = u′(e). Now, u′ 6= 0 so e 6= 0. Moreover, 0 = r = c+ e
for some c ∈ FqmC for some m ∈ Z>0, hence e = −c ∈ FqmC. But since d(C) = d(FqmC)
we have found a code word of weight strictly smaller than the minimum weight, which is of
course a contradiction.

Example 9.2.2. > C := GolayCode(GF(3), false);

> C;

[11, 6, 5] "Unextended Golay Code" Linear Code over GF(3)

Generator matrix:

[1 0 0 0 0 0 2 0 1 2 1]

[0 1 0 0 0 0 1 2 2 2 1]

[0 0 1 0 0 0 1 1 1 0 1]

[0 0 0 1 0 0 1 1 0 2 2]

[0 0 0 0 1 0 2 1 2 2 0]

[0 0 0 0 0 1 0 2 1 2 2]

>

> MyMinimumDistance(C);

5

106

Chapter 10

Linear codes as binomial ideals

It turns out that we can associate with a systematic linear code C a binomial ideal that is
the sum of a toric ideal and a non-prime ideal in the case that the finite field is a prime
field. We can easily read off the reduced Gröbner basis, G say, for this ideal with respect to
any ordering from a generator matrix of C. Given G, encoding and decoding is reduced to
multivariate division by G. This chapter closely follows the exposition by Schmidt [Sch14],
but the idea goes back to [BQBTFMM08] and can be found in full detail in [MC13].

10.1 Toric ideals

We need some terminology that was not covered in the first chapter. Let k[X] = k[x1, . . . , xn].

Definition 10.1.1 (Binomial). A binomial in k[X] is a polynomial that is the sum of two
terms, i.e., it has the form aXu + bXv where a, b ∈ k and u, v ∈ Nn. A binomial is said to be
unitary if a = 1 and b = −1. A unitary binomial is said to be pure if gcd(Xu, Xv) = 1.

Definition 10.1.2 (Binomial ideal). An ideal in k[X] is a binomial ideal if it is generated by
binomials.

A Gröbner basis for a binomial ideal relative to any monomial order consists entirely of
binomials. This can be seen by taking the generating set, consisting of binomials, and applying
Buchberger’s algorithm to it.
There exists a subclass of binomial ideals, the toric ideals, that frequently make an appearance
in various applied mathematics problems.

Definition 10.1.3 (Toric ideal). A binomial ideal that is prime is called a toric ideal.

Toric ideals often arise as follows. Let A ∈ Zd×n be an integer matrix. Each column vector
ai = (ai1, . . . , aid)

T of A can be identified with a so-called Laurent monomial in

k[y1, . . . , yd, y
−1
1 , . . . , y−1

d] =: k[Y, Y −1],

the ring of Laurent polynomials, as follows:

ai 7→ Y ai = yai11 · · · · · yidd for 1 ≤ i ≤ n
Let φ : k[X]→ k[Y, Y −1] be the k-algebra homomorphism given by

φ(xi) = Y ai for 1 ≤ i ≤ n

107

We will associate the kernel of φ with the matrix A. It turns out that this is a toric ideal.

Definition 10.1.4 (Toric ideal associated with A). The toric ideal associated with A, denoted
IA, is the kernel of φ.

Now, let u ∈ Zn and write u+ = (max{0, u1}, . . . ,max{0, un}) and u− = (−u)+. Then we
can write u = u+ − u− in a unique way.

Proposition 10.1.5. IA is spannend as a k-vector space by

IA = 〈Xu+ −Xu− : u ∈ Zn, Au = 0〉

Moreover, IA is prime. It follows that IA is toric.

Proof. We have that k[X]/IA ' k[Y a1 , . . . , Y an] and the right hand side is an integral domain.
It follows that IA is a prime ideal. Next, let u ∈ Zn with Au = 0. The latter implies that
Au+ = Au−. In turn, this implies that

φ(Xu+ −Xu−) = φ(Xu+)− φ(Xu−) = Y Au+ − Y Au− = Y Au− − Y Au− = 0

and so Xu+ − Xu− ∈ IA. For the other direction, let f ∈ IA and suppose that f can not
be written as a k-linear combination of the Xu+ −Xu− and has minimal leading monomial
among all polynomials with this property. By assumption φ(f) = 0. In particular, φ(lm(f))
must cancel, hence there exists some other monomial xβ appearing in f with xβ < lm(f) such
that f ′ := φ(lm(f)) = φ(xβ). The polynomial f − lm(f) + xβ can also not be written as a
k-linear combination of the Xu+ −Xu− . But lm(f ′) < lm(f), which is a contradiction.

This shows a connection between the toric ideal and the kernel of the matrix A.
From now on we assume that the entries of A are non-negative integers. This simplifies things
somewhat. In particular, IA = I is equal to the elimination ideal 〈xi−Y ai : 1 ≤ i ≤ n〉∩k[X].
Hence, we can find a Gröbner basis for I by considering the ideal J = 〈xi − Y ai : 1 ≤ i ≤ n〉
in k[X,Y] and computing a Gröbner basis G for J relative to the lexicographic order with
x1 > · · · > xn > y1 > · · · > yd. The elimination theorem then tells us that G ∩ k[X] is a
Gröbner basis for J ∩ k[X] = I.
Let p be a prime number. We can associate with the toric ideal IA a binomial ideal

IA,p = IA + 〈xpi − 1 : 1 ≤ i ≤ n〉

10.2 The code ideal

Let C be a systematic [n, k] code over Fq. We can view Fq = Fpl as a finite dimensional vector
space over its prime field Fp. Let {b1, . . . , bl} be any basis for Fq as an Fp vector space. Then
there exists a unique vector space isomorphism

ψ : Fq → Flp

such that ψ(bi) = ei for 1 ≤ i ≤ l. It follows that we can identify elements of Fq with
vectors with entries in Fp. Now, we can represent the elements of Fp by the integers in the
set {0, . . . , p− 1} using the ring isomorphism Fp → Z/pZ. As a result, vectors with entries in
Fp are mapped to integral vectors. Formally, we have a map

f : Flp → Zl

108

The composition of f and ψ yields a mapping converting elements from Fq to integral vectors.
Applying this map componentwise to vectors of elements in Fq yields a mapping

g : Fnq → Zln

Let X denote the vector of the n variables X1, . . . , Xn, and, for 1 ≤ i ≤ n let Xi be decompos-
able as xi1, . . . , xil. Let k[X] be the polynomial ring in nl variables. We can identify vectors
in Fnq with monomials in k[X] as follows. Let u ∈ Fnq , then the corresponding monomial is

xg(u).

Zln → Flnp
We can then define an ideal relative to C:

Definition 10.2.1 (Ideal associated with C). We will associate with C an ideal that is a sum
of two binomial ideals

IC = 〈Xg(c) −Xg(c′) : c− c′ ∈ C〉 ∪ 〈xpi − 1 : 1 ≤ i ≤ n〉

The condition c − c′ ∈ C is equivalent to stating that Hc = Hc′ (mod q). Hence, theorem
shows that IC = IA,p for some matrix A over Z such that H = A⊗Z IdFp where H is a parity
check matrix for C over Fp. This shows that we can write IC as the sum of a toric ideal and
a non-prime ideal.

Proposition 10.2.2. Let C be an [n, k] code over Fq and G = (gij) its generator matrix, and
let {b1, . . . , bl} be a basis for Fq as an Fp-vector space. The ideal IC is generated by

IC = 〈Xbigj − 1 : 1 ≤ i ≤ l, 1 ≤ j ≤ k〉 ∪ 〈xpij − 1 : 1 ≤ i ≤ n, 1 ≤ j ≤ l〉

Computing a Gröbner basis, as we have seen, normally is a very costly operation. However,
the ideal thus defined has a reduced Gröbner basis that can easily be constructed by looking
at the entries of the generator matrix over the prime field. To this end, let G be the k × n
generator matrix for C

G =

g1

g2
...
gk

 =

g11 g12 . . . g1n

g21 g22 . . . g2n
...

...
...

gk1 gk2 . . . gkn

Since C is assumed to be systematic, G is in row reduced echelon form. Recall that we have a
basis B = {b1, . . . , bl} for Fq as an Fp vector space. We construct a new matrix Gext ∈ Fkl×nlp

derived from G in the following way:

Gext =

ψ(b1g11) ψ(b1g12) . . . ψ(b1g1n)
...

...
...

ψ(brg11) ψ(brg12) . . . ψ(brg1n)
ψ(b1g21) ψ(b1g22) . . . ψ(b1g2n)

...
...

...
ψ(brgk1) ψ(brgk2) . . . ψ(brgkn)

Clearly, Gext is in row reduced echelon form as well, i.e., Gext = (eij −mij). In the following,
we will index the rows of Gext with the set {11, . . . , 1r, 21, . . . 2r, . . . , k1, . . . , kr} in the obvious
way.

109

Theorem 10.2.3. Let > be the lexicographic order with x1 > · · · > xn. Then the reduced
Gröbner basis (relative to >) for IC has the shape

G = {xij −Xmij : 1 ≤ i ≤ k, 1 ≤ j ≤ l} ∪ {xpij − 1 : k + 1 ≤ i ≤ n, 1 ≤ j ≤ l}

Proof. Observe that the leading terms of the generators are relatively prime. By Buchberger’s
first criterion 〈G〉 is a Gröbner basis. Hence, we need only to show that 〈G〉 = IC . By
inspection, we have that 〈G〉 ⊆ IC . Conversely, we need to show that IC ⊆ 〈G〉. It suffices to
show that any binomial in the generating set of IC can be written in terms of G. Consider
the binomial Xbigj − 1 for some 1 ≤ i ≤ l, 1 ≤ j ≤ k. Write m = gi − ei and J = 〈xpij − 1 :
k + 1 ≤ i ≤ n, 1 ≤ j ≤ l〉. Since G is in standard form, the first k positions of m are zero.
Now, the claim is that

Xbjm(xij −Xmij) = xbjgi − 1 (mod J)

Indeed,

Xbjmxij = XbjmX
bj
i = Xbjm−bjei = Xbjgi

. Moreover, Xψ(bjm)Xmij = Xψ(bjgi)+ψ(bjei)+eij−ψ(bjgi) = Xeij−ψ(bjei) = 1 mod J . The claim
follows. Next, consider the binomial xpij − 1 for some 1 ≤ i ≤ n, 1 ≤ j ≤ l. The claim is that

xpij − 1 =

(
p−1∑
i=0

xp−1−i
ij Ximij

)
(xij −Xmij) mod J

All terms cancel out, except for xpij and Xpmij , but Xpmij = 1 mod J and thus the claim
follows. This proves the statement.

Example 10.2.4. Consider the code ternary C with parameters [7, 2, 5] and generator matrix(
1 0 1 2 1 1 1
0 1 2 2 1 0 2

)
> P<[X]> := PolynomialRing(GF(3), 7);

> I := [X[1]-X[3]^2*X[4]*X[5]^2*X[6]^2*X[7]^2, X[2]-X[3]*X[4]*X[5]^2*X[7]] cat\

[X[i]^3-1 : i in [3..7]];

> I;

[

2*X[3]^2*X[4]*X[5]^2*X[6]^2*X[7]^2 + X[1],

2*X[3]*X[4]*X[5]^2*X[7] + X[2],

X[3]^3 + 2,

X[4]^3 + 2,

X[5]^3 + 2,

X[6]^3 + 2,

X[7]^3 + 2

]

> GroebnerBasis(I);

[

X[1] + 2*X[3]^2*X[4]*X[5]^2*X[6]^2*X[7]^2,

X[2] + 2*X[3]*X[4]*X[5]^2*X[7],

X[3]^3 + 2,

110

X[4]^3 + 2,

X[5]^3 + 2,

X[6]^3 + 2,

X[7]^3 + 2

]

Corollary 10.2.5. Let J = {j1, . . . , jk} be an information set and let the generator matrix
G for C be in row reduced echelon form with respect to the columns indexed by J , and let >
be any term order with x1 > · · · > xn. Then the reduced Gröbner basis (relative to >) for IC
has the shape

G = {xij −Xmij : i ∈ J, 1 ≤ j ≤ r} ∪ {xpij − 1 : i ∈ {1, . . . , n} \ J, 1 ≤ j ≤ r}

10.3 A heuristic for decoding general linear codes

Now, suppose that C has error-correcting capability τ .

Proposition 10.3.1. The standard monomials yield a transversal of the quotient space Fnq /C.

Proof. Every standard monomial corresponds to a unique coset in a one-to-one way. Indeed,
suppose there existed standard monomials Xu and Xu′ such that u + C = u′ + C. Then
u − u′ ∈ C and therefore Xu − Xu′ ∈ IC = 〈G〉. Without loss of generality, assume that
lt(Xu − Xv) = Xu. It follows that Xu ∈ lt(I), which contradicts the assumption Xu is
standard.

Proposition 10.3.2. Let C be an [n, k, d] code over Fq with error-correcting capability τ =
bd−1

2 c, and let G be the reduced Gröbner basis relative to a degree compatible order for the

ideal IC . Let r ∈ Fnq be a received word. If the normal form of Xg(r) with respect to G is a

monomial Xg(e) such that wt(e) ≤ τ , then r − e is the unique closest codeword to r.

Proof. Let r = c+e for a codeword c and error e with wt(e) ≤ τ . Let Xg(r) remG = Xg(f) for
some f . Hence, Xg(r) −Xg(f) ∈ IC . It follows that r− f ∈ C. By assumption, wt(f) ≤ τ , so
d(r, r − f) = wt(f) ≤ τ . Since there exists a unique codeword in the ball of radius τ around
r it follows that r − f = c. Hence e = f and r − e is the unique closest codeword to r.

From the proposition, a decoding algorithm can be deduced: convert the received word to
a monomial and compute the remainder with respect to the Gröbner basis. However, this
remainder will often not correspond to the error vector. The following proposition classifies
the monomials for which the algorithm will fail to produce the correct error vector.

Proposition 10.3.3. Let r = c + e be the received word such that the weight of the error
vector is at most e. Algorithm 20 will fail to find the correct error vector if and only if Xe is
a non-standard monomial.

Proof. Suppose that Xe is a standard monomial. We will show that the algorithm correctly
finds the codeword. Compute Xr remG. This will be standard monomial. Conversely,
suppose that the algorithms succeeds in finding the codeword. We will show that Xe is
a standard monomial.

111

Fortunately, there is a way to improve the algorithm which is based on the following observa-
tion: if we multiply r by any non-zero scalar a, then the minimum weight word in the coset
ar + C is equal to ae. Hence, finding e is equivalent to finding ae. However, Xae might be a
standard monomial.
These ideas are collected in the following heuristic:

input : A received word r ∈ Fnq , a reduced Gröbner basis G relative to > for IC , the
error-correcting capability τ

output: Either c or fail
begin

A = [a1, . . . , aq−1], the non-zero elements of Fq ;
for i := 1 to q − 1 do

r := A[i] ∗ r ;
// create vector ;
Xe := NormalForm(Xr, G) ;
if wt(e) ≤ τ then

c := r − e ;

c := A[i](−1) ∗ c ;
return c

end

end
return fail

end
Algorithm 20: Heuristic for decoding a general code

Compared to syndrome decoding, where we need to store O(pn−k) elements, we only need to
store the Gröbner basis, consisting of O(n) elements.

Example 10.3.4. Consider the code ternary C with parameters [7, 2, 5] and generator matrix(
1 0 1 2 1 1 1
0 1 2 2 1 0 2

)
Now, suppose the codeword c = (1, 2, 2, 0, 0, 1, 2) has been transmitted and the word r =
(0, 1, 2, 0, 0, 1, 2) has been received. So two errors have been introduced.

> P<[X]> := PolynomialRing(GF(3), 7, "grevlex");

> I := [X[1]-X[3]^2*X[4]*X[5]^2*X[6]^2*X[7]^2, X[2]-X[3]*X[4]*X[5]^2*X[7]] cat\

[X[i]^3-1 : i in [3..7]];

> I;

[

2*X[3]^2*X[4]*X[5]^2*X[6]^2*X[7]^2 + X[1],

2*X[3]*X[4]*X[5]^2*X[7] + X[2],

X[3]^3 + 2,

X[4]^3 + 2,

X[5]^3 + 2,

X[6]^3 + 2,

X[7]^3 + 2

112

]

> G := GroebnerBasis(I);

> r := VectorSpace(GF(3), 7) ! [0,1,2,0,0,1,2];

> t := 2;

> HeuristicDecode(P, G, t, r);

Trying with a = 1

Found the wrong error vector: (0 0 0 1 2 1 0)

Trying with a = 2

Found the right error vector: (1 1 0 0 0 0 0)

The codeword is:

(1 2 2 0 0 1 2)

>

113

Chapter 11

Experimental results

This chapter contains a number of experiments related to the decoding method based on
quadratic equations. In particular, we do not compare this method to any of the other meth-
ods, as this has already been considered by Bulygin in [Bul09], but we want to figure out
more about the running time of the decoding algorithm. The bottleneck in the algorithm
is, of course, the computation of a Gröbner basis for the system. What is the maximum
degree reached during a Gröbner basis computation? This number basically determines the
complexity of most contemporary Gröbner basis algorithms. In particular, it is the size of
the largest matrix appearing in any linear algebra-based Gröbner basis algorithm.

Magma has functions for returning codes with the best known parameters. In particular,
fixing any two among the parameters length, dimension, and minimum distance it returns
the code with the best known value for the third. Here best means shortest length, or largest
minimum distance, or largest dimension.

The following table considers binary codes. It shows the time it takes to compute a Gröbner
basis for the system J(1, r) when we keep the information rate R = k

n fixed at the constant
1
2 while increasing both k and n and asking Magma for the code with the largest minimum
distance among all [n, k]-codes.

Parameters Time (s)

[8, 4, 4] 0.000

[16, 8, 5] 0.000

[32, 16, 8] 0.010

[64, 32, 12] 0.010

[128, 64, 22] 0.240

[256, 128, 38] 3.570

The following table considers binary codes. It shows the time it takes to compute a Gröbner
basis for the system J(1, r) when we keep the relative distance δ = d

n fixed at the constant 1
2

(it cannot be more) while increasing both d and n and asking Magma for the code with the
largest dimension among all [n,−, d]-codes.

114

Parameters Time (s)

[8, 4, 4] 0.000

[16, 5, 8] 0.000

[32, 6, 16] 0.000

[64, 7, 32] 0.010

[128, 8, 64] 0.220

[256, 9, 128] 3.380

The only thing that we are able to gather from the tables above is that the length of the code
plays a big role in the running time of the algorithm. This is to be expected, as it determines
the size of the largest matrix appearing in the computation of a Gröbner basis.

This experiment shows the maximum degree reached in a computation of the Gröbner basis
for the homogenized version of J(t, r). We see what happens for an increasing number of
errors which occur at randomly selected positions in a randomly generated codeword. A bar
denotes that we aborted the computation because it took too much time.

dreg
Parameters t = 1 t = 2 t = 3 t = 4

[32, 4, 9] 2 2 2 2

[32, 4, 10] 2 2 2 2

[32, 4, 11] 2 2 2 2

[32, 4, 12] 2 2 2 2

[32, 4, 13] 2 2 2 2

[32, 8, 6] 2 2 - -

[32, 8, 7] 2 2 3 2

[32, 8, 8] 2 2 3 2

[32, 8, 9] 2 2 3 3

[32, 8, 10] 2 2 3 3

[32, 16, 4] 3 3 - -

[32, 16, 5] 3 3 - -

[32, 24, 3] 3 - - -

[64, 32, 8] 3 3 4 -

[64, 32, 9] 3 3 4 5

[64, 48, 3] 3 - - -

[128, 16, 40] 2 2 2 2

[128, 16, 41] 2 2 2 2

[128, 64, 14] 3 3 4 -

[128, 64, 15] 3 3 4 -

[128, 64, 16] 3 3 4 -

[128, 96, 7] 3 3 4 -

The first thing we notice is that the degree of regularity does not seem to depend on where
the errors occur. The second thing we notice is that it does seem to depend on the rate R.
Clearly when R increases the degree of regularity increases as well.

115

Recall that J(t, r) is a system of n + (n − k) = n + r polynomials, r of which are linear
and n of which are quadratic, in n + t variables. The ratio between linear polynomials and
quadratic polynomials is given by n−k

n = 1− R. As the rate of the code increases, this ratio
becomes smaller and the performance becomes worse. One could conjecture that increasing
the number of linear polynomials in the system positively influences the complexity. This
might be explained by the fact that Magma’s Gröbner basis algorithm proceeds by degree.

By performing Gaussian elimination on the r linear polynomials it is possible to express the
first r variables in terms of the other k and then substitute them into the quadratic part to
obtain a system of n quadratic polynomials in k + t variables. This system is affine bilinear,
so it seems possible (see corollary 3 in [FSEDS11]) to use the bound in theorem 4.11.10 to
bound the complexity by

O
(
n

(
k + t+ min{k + 1, t+ 1}

min{k + 1, t+ 1}

)ω)
.

Finally, we mention that we had conjectured that the polynomials in J(t, r) always form a
semi-regular sequence. This turned out to be false, as Matrix-F5 performs zero reductions be-
fore dreg + 1 during the computation of a Gröbner basis for the system derived from ternary
Golay code with received word (0, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1) (here t = 1 error has been intro-
duced). We do note that this is based on our notion of degree of regularity. Clearly this topic
needs to be explored more.

116

Bibliography

[ABF09] Daniel Augot, Magali Bardet, and Jean-Charles Faugère. On the decoding
of binary cyclic codes with the Newton’s identities. Journal of Symbolic
Computation, 44(12):1608–1625, December 2009.

[Alb10] Martin Albrecht. Algorithmic Algebraic Techniques and their Application
to Block Cipher Cryptanalysis. PhD thesis, Royal Holloway, University of
London, 2010.

[AM69] Michael Atiyah and Ian Grant Macdonald. Introduction to commutative
algebra, 1969.

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. Theses, Université Pierre et
Marie Curie - Paris VI, December 2004.

[Ber84] E. R. Berlekamp. Algebraic coding theory. Aegean Park Press, Laguna Hills,
CA, USA, 1984.

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complex-
ity of the F5 Gröbner basis algorithm. J. Symb. Comput., 70(C):49–70,
September 2015.

[BFSY05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang.
Asymptotic behaviour of the degree of regularity of semi-regular polyno-
mial systems. In In MEGA05, 2005. Eighth International Symposium on
Effective Methods in Algebraic Geometry, pages 1–14, 2005.

[BMvT06] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractabil-
ity of certain coding problems. IEEE Trans. Inf. Theor., 24(3):384–386,
September 2006.

[BP09] Stanislav Bulygin and Ruud Pellikaan. Bounded distance decoding of linear
error-correcting codes with Gröbner bases. J. Symb. Comput., 44(12):1626–
1643, December 2009.

[BQBTFMM08] M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick, and E. Mart́ınez-
Moro. Gröbner bases and combinatorics for binary codes. Applicable Algebra
in Engineering, Communication and Computing, 19(5):393–411, 2008.

[BRC60] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Information and Control, 3(1):68 – 79, 1960.

117

[Bul09] Stanislav Bulygin. Polynomial system solving for decoding linear codes and
algebraic cryptanalysis. PhD thesis, University of Kaiserslautern, 2009.

[BWK93] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases: A
Computational Approach to Commutative Algebra. Springer-Verlag, London,
UK, UK, 1993.

[CCS99] Arjeh M. Cohen, Hans Cuypers, and Hans Sterk. Some tapas of computer
algebra. Algorithms and computation in mathematics. Springer Verlag, New
York, Berlin, Heidelberg, 1999.

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Al-
gorithms: An Introduction to Computational Algebraic Geometry and Com-
mutative Algebra. Springer Publishing Company, Incorporated, 4th edition,
2015.

[DS13] Jintai Ding and Dieter Schmidt. Solving Degree and Degree of Regularity
for Polynomial Systems over a Finite Fields, pages 34–49. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[Dub90] Thomas W. Dubé. The structure of polynomial ideals and gröbner bases.
SIAM Journal on Computing, 19(4):750–775, August 1990.

[Ede13] Christian Eder. An analysis of inhomogeneous signature-based Gröbner basis
computations. J. Symb. Comput., 59:21–35, December 2013.

[EF15] Christian Eder and Jean-Charles Faugère. A survey on signature-based
Gröbner basis computations. ACM Commun. Comput. Algebra, 49(2):61–61,
August 2015.

[Eis95] David Eisenbud. Commutative algebra: with a view toward algebraic geome-
try. Graduate texts in mathematics. Springer, New York, Berlin, Heildelberg,
1995. Rimpr. corr. en 1996. Autres tirages : 1999, 2004.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Grb̈ner bases
(F4). Journal of Pure and Applied Algebra, 139(13):61 – 88, 1999.

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). In Proceedings of the 2002 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’02,
pages 75–83, New York, NY, USA, 2002. ACM.

[FMLG89] Jean-Charles Faugère, Teo Mora, Daniel Lazard, and P. Gianni. Efficient
computation of zero-dimensional Gröbner bases by change of ordering. Tech-
nical Report 89-52, Universit Denis Diderot (Paris), 1989.

[FSEDS11] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer.
Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree
(1,1): Algorithms and complexity. J. Symb. Comput., 46(4):406–437, April
2011.

[Ful] William Fulton. Algebraic curves: An introduction to algebraic geometry.

118

[Gal12] François Le Gall. Faster algorithms for rectangular matrix multiplication.
CoRR, abs/1204.1111, 2012.

[Giu84] M. Giusti. Some effectivity problems in polynomial ideal theory. EUROSAM
84, 174:159–171, 1984.

[GMN+91] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and
Carlo Traverso. “One sugar cube, please”; or selection strategies in the
buchberger algorithm. In Proceedings of the 1991 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’91, pages 49–54, New York,
NY, USA, 1991. ACM.

[GVIW16] Shuhong Gao, Frank Volny IV, and Mingsheng Wang. A new framework for
computing Gröbner bases. Mathematics of computation, 85(297):449–465,
January 2016.

[GZ61] D.C. Gorenstein and N. Zierler. A class of error-correcting codes in pm

symbols. SIAM, 9:207 – 214, 1961.

[Hoc59] A. Hocquenghem. Codes Correcteurs d’Erreurs. Chiffres (Paris), 2:147–156,
September 1959.

[Huo13] Louise Huot. Polynomial systems solving and elliptic curve cryptography.
Theses, Université Pierre et Marie Curie - Paris VI, December 2013.

[KR05] Martin Kreuzer and Lorenzo Robbiano. Computational commutative algebra.
2. Springer-Verlag, Berlin, 2005.

[KR08] Martin Kreuzer and Lorenzo Robbiano. Computational Commutative Alge-
bra 1. Springer Publishing Company, Incorporated, 2008.

[Laz83] Daniel Lazard. Gröbner-bases, Gaussian elimination and resolution of sys-
tems of algebraic equations. In Proceedings of the European Computer Alge-
bra Conference on Computer Algebra, EUROCAL ’83, pages 146–156, Lon-
don, UK, UK, 1983. Springer-Verlag.

[Mac94] F.S. Macaulay. The Algebraic theory of modular systems. Cambridge math-
ematical library. Cambridge University Press, Cambridge, New York, Mel-
bourne, 1994.

[MC13] Irene Márquez-Corbella. Combinatorial Commutative Algebra Approach to
Complete Decoding. PhD thesis, Institute of Mathematics, University of
Valladolid, 2013.

[Mce78] Robert J. Mceliece. A public-key cryptosystem based on algebraic coding
theory. Technical report, Jet Propulsion Lab Deep Space Network Progress
report, 1978.

[MS77] Florence Jessie MacWilliams and N. J. A. Neil James Alexander Sloane.
The theory of error correcting codes. North-Holland mathematical library.
North-Holland Pub. Co. New York, Amsterdam, New York, 1977. Includes
index.

119

[OS05] Emmanuela Orsini and Massimiliano Sala. Correcting errors and erasures
via the syndrome variety. Journal of Pure and Applied Algebra, 200(12):191
– 226, 2005.

[Pet60] W.W. Peterson. Encoding and error-correction procedures for the Bose-
Chaudhuri codes. IRE Trans. Inform. Theory, IT-6:459 – 470, 1960.

[RS12] Bjarke Hammersholt Roune and Michael Stillman. Practical Gröbner basis
computation. In Proceedings of the 37th International Symposium on Sym-
bolic and Algebraic Computation, ISSAC ’12, pages 203–210, New York, NY,
USA, 2012. ACM.

[Sch14] Natalia Schmidt. Gröbner Bases in Coding Theory. PhD thesis, Hamburg
University of Technology, 2014.

[SHWL16] Yao Sun, Zhenyu Huang, Dingkang Wang, and Dongdai Lin. An improve-
ment over the GVW algorithm for inhomogeneous polynomial systems. Fi-
nite Fields and Their Applications, 41:174–192, June 2016.

[SKHN75] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method for
solving the key equation for decoding goppa codes. Information and Control,
27:287–99, 1975.

[Spa12] Pierre-Jean Spaenlehauer. Solving multi-homogeneous and determinantal
systems: algorithms, complexity, applications. Theses, Université Pierre et
Marie Curie (Univ. Paris 6), October 2012.

[Sto00] Arne Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH
Zürich, 2000.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math.,
13(4):354–356, August 1969.

[Sud] Madhu Sudan. 6.S897 Algebra and Computation the complexity of the
ideal membership problem. http://people.csail.mit.edu/madhu/ST15/

scribe/lect21.pdf. Accessed: 2017-01-24.

[Sva14] Jules Svartz. Solving zero-dimensional structured polynomial systems. The-
ses, Université Pierre et Marie Curie - Paris VI, October 2014.

[Vac15] Tristan Vaccon. Matrix-F5 algorithms and tropical Gröbner bases compu-
tation. In Proceedings of the 2015 ACM on International Symposium on
Symbolic and Algebraic Computation, ISSAC ’15, pages 355–362, New York,
NY, USA, 2015. ACM.

[Var97] Alexander Vardy. Algorithmic complexity in coding theory and the mini-
mum distance problem. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages 92–109, New York,
NY, USA, 1997. ACM.

120

http://people.csail.mit.edu/madhu/ST15/scribe/lect21.pdf
http://people.csail.mit.edu/madhu/ST15/scribe/lect21.pdf

[Ver16] Thibaut Verron. Regularisation of Gröbner basis computations for weighted
and determinantal systems, and an application to medical imagery. Theses,
Université Pierre et Marie Curie, September 2016.

[Vol11] Frank Volny. New algorithms for computing Groebner bases. PhD thesis,
Clemson University, 2011.

121

Appendix A

Implementations in Magma

A.1 The Matrix-F5 algorithm

Listing A.1: The Macaulay matrix data type

1 de c l a r e type MtrxMcly ;
2 de c l a r e a t t r i b u t e s MtrxMcly : S ignature s ;
3 de c l a r e a t t r i b u t e s MtrxMcly : Polynomials ;
4 de c l a r e a t t r i b u t e s MtrxMcly : Ring ;
5

6 i n t r i n s i c MacaulayMatrix (P : : RngMPol , d : : RngIntElt : F := []) −> MacaulayMatrix
7 { Constructor }
8 M := New(MtrxMcly) ;
9

10 M‘ S ignature s := [] ;
11 f o r k := 1 to #F do
12 Append(˜M‘ Signatures , <k , P ! 1 , k>) ;
13 end f o r ;
14 M‘ Polynomials := F ;
15

16 M‘ Ring := P;
17

18 re turn M;
19 end i n t r i n s i c ;
20

21 i n t r i n s i c Coe f f i c i en tMat r i x (M: : MtrxMcly) −> Mtrx , ModTupRngElt
22 { re turn the c o e f f i c i e n t matrix a s s o c i a t ed with the polynomia l s }
23 P := M‘ Ring ;
24 c o e f f i c i e n t s := [] ;
25 monomials := [] ;
26

27 f o r f in M‘ Polynomials do
28 c , m := Coef f ic ientsAndMonomials (f) ;
29 Append(˜ c o e f f i c i e n t s , c) ;
30 Append(˜monomials , m) ;
31 end f o r ;
32

33 sortedMonomials := Reverse (Sort (Setseq (Seqset (&cat monomials)))) ;
34

35 d i c t := Assoc ia t iveArray (sortedMonomials) ;
36 c o l := 1 ;
37 f o r mon in sortedMonomials do

122

38 d i c t [mon] := co l ;
39 c o l +:= 1 ;
40 end f o r ;
41

42 A := ZeroMatrix (P, #M‘ Polynomials , #sortedMonomials) ;
43 f o r i := 1 to #M‘ Polynomials do
44 f o r j := 1 to #c o e f f i c i e n t s [i] do
45 A[i , d i c t [monomials [i , j]]] := c o e f f i c i e n t s [i , j] ;
46 end f o r ;
47 end f o r ;
48

49 re turn A, Vector (P, sortedMonomials) ;
50 end i n t r i n s i c ;
51

52 i n t r i n s i c Pr int (M: : MtrxMcly)
53 {Print X}
54 pr in t Coe f f i c i en tMat r i x (M) ;
55 end i n t r i n s i c ;
56

57 i n t r i n s i c NumberOfRows(M: : MtrxMcly) −> RngIntElt
58 { r e tu rn s the number o f rows o f M }
59 re turn #M‘ Polynomials ;
60 end i n t r i n s i c ;
61

62 i n t r i n s i c AddPolynomial (˜M: : MtrxMcly , f : : RngMPolElt , s : : Tup)
63 { Add the row r ep r e s en t a t i on o f f to M }
64 Append(˜M‘ Signatures , s) ;
65 Append(˜M‘ Polynomials , f) ;
66 end i n t r i n s i c ;
67

68 i n t r i n s i c ExtractPolynomial (M: : MtrxMcly , i : : RngIntElt) −> RngMPolElt
69 { Returns the polynomial r ep re s ented by the i ’ th row o f M }
70 re turn M‘ Polynomials [i] ;
71 end i n t r i n s i c ;
72

73 i n t r i n s i c ExtractS ignature (M: : MtrxMcly , i : : RngIntElt) −> Tup
74 { Returns the s i gna tu r e o f row i }
75 re turn M‘ S ignature s [i] ;
76 end i n t r i n s i c ;
77

78 i n t r i n s i c Copy(M: : MtrxMcly) −> MtrxMcly
79 { Returns a copy o f t h i s }
80

81 N := New(MtrxMcly) ;
82 N‘ Polynomials := M‘ Polynomials ;
83 N‘ S ignature s := M‘ S ignature s ;
84 N‘ Ring := M‘ Ring ;
85

86 re turn N;
87 end i n t r i n s i c ;
88

89 i n t r i n s i c Reduce (˜M: : MtrxMcly)
90 { Compute the row eche lon form o f M without permuting any rows }
91 A, v := Coe f f i c i en tMat r i x (M) ;
92

93 m := NumberOfRows(A) ;
94 n := NumberOfColumns (A) ;

123

95

96 f o r j := 1 to n do
97 f o r i := 1 to m do
98 i f A[i , j] ne 0 then
99 b := f a l s e ;

100 f o r k := 1 to j−1 do
101 i f A[i , k] ne 0 then
102 b := true ;
103 end i f ;
104 end f o r ;
105

106 i f b then
107 cont inue ;
108 end i f ;
109

110 A := MultiplyRow (A, 1/A[i , j] , i) ;
111 f o r k := i+1 to m do
112 i f A[k , j] ne 0 then
113 A := AddRow(A, −A[k , j] , i , k) ;
114 end i f ;
115 end f o r ;
116

117 break ;
118 end i f ;
119 end f o r ;
120 end f o r ;
121

122 M‘ Polynomials := ElementToSequence (v∗Transpose (A)) ;
123 end i n t r i n s i c ;

Listing A.2: The Matrix-F5 algorithm

1 MatrixF5 := func t i on (F , D)
2 R := Parent (F [1]) ;
3 vars := MonomialsOfDegree (R, 1) ;
4

5 G := F;
6 H := [] ;
7 M := Assoc ia t iveArray () ;
8 f o r d := 1 to D do
9 M[d] := MacaulayMatrix (R, d) ;

10 f o r i := 1 to #F do
11 i f Degree (F [i]) eq d then
12 AddPolynomial (˜M[d] , F [i] , <i , R ! 1 , NumberOfRows(M[d])+1>) ;
13 e l i f Degree (F [i]) l t d then
14 f o r s in [s : s in M[d−1] ‘ S i gnature s | s [1] eq i] do
15 index := s [1] ;
16 mon := s [2] ;
17 row := s [3] ;
18

19 max := 1 ;
20 f o r var in vars do
21 i f Degree (mon, var) ne 0 then
22 max := var ;
23 break ;
24 end i f ;
25 end f o r ;
26

124

27 f o r var in Reverse (Setseq (vars)) do
28 i f var l t max then
29 cont inue ;
30 end i f ;
31

32 found := f a l s e ;
33

34 f o r h in H do
35 i f h [1] eq i and I sD iv i s i b l eBy (var∗mon, h [2]) then
36 found := true ;
37 break ;
38 end i f ;
39 end f o r ;
40

41 i f not found then
42 f o r t in [t : t in M[d−Degree (F [i])] ‘ S i gnature s | t

[1] l t i] do
43 index2 := t [1] ;
44 mon2 := t [2] ;
45 row2 := t [3] ;
46

47 i f LeadingMonomial (ExtractPolynomial (M[d−Degree
(F [i])] , row2)) eq var∗mon then

48 found := true ;
49 break ;
50 end i f ;
51 end f o r ;
52 end i f ;
53

54 i f not found then
55 AddPolynomial (˜M[d] , var∗ExtractPolynomial (M[d−1] ,

row) , <index , var∗mon, NumberOfRows(M[d])+1>) ;
56 end i f ;
57 end f o r ;
58 end f o r ;
59 end i f ;
60 end f o r ;
61

62 T := Copy(M[d]) ;
63 Reduce (˜M[d]) ;
64

65 po l s := [] ;
66 s i g s := [] ;
67 k := 1 ;
68

69 f o r row := 1 to NumberOfRows(M[d]) do
70 f := ExtractPolynomial (M[d] , row) ;
71 s := ExtractS ignature (M[d] , row) ;
72 i f f eq 0 then // found a syzygy
73 Append(˜H, <s [1] , s [2]>) ;
74 pr in t ”Row with s i gna tu r e ” , s , ” reduced to zero . ” ;
75 e l s e
76 Append(˜ pols , f) ;
77 Append(˜ s i g s , <s [1] , s [2] , k>) ;
78 k +:= 1 ;
79

80 i f LeadingMonomial (ExtractPolynomial (T, row)) ne

125

LeadingMonomial (ExtractPolynomial (M[d] , row)) then
81 Append(˜G, f) ;
82 end i f ;
83 end i f ;
84 end f o r ;
85

86 M[d] ‘ Polynomials := po l s ;
87 M[d] ‘ S i gnature s := s i g s ;
88

89 de l e t e T;
90 end f o r ;
91

92 re turn Reduce (G) ;
93 end func t i on ;
94

95 Preproces s := func t i on (F , n)
96 R := Parent (F [1]) ;
97

98 S := [] ; // s y zyg i e s found
99 m := Rank(R)−n ; // number o f v a r i a b l e s o f second block

100

101 i f #F gt (n−1) + (m−1) then
102 e r r o r ”Runtime e r r o r ’ Preprocess ’ : too many polynomia l s on input . ” ;
103 end i f ;
104

105 f o r i := 2 to #F do
106 i f i gt m then
107 M := MacaulayMatrix (R, m : F := Minors (Submatrix (JacobianMatrix (F

[1 . . i −1]) , [1 . . i −1] , [n+1. .n+m]) , m)) ;
108 Reduce (˜M) ;
109

110 f o r row := 1 to NumberOfRows(M) do
111 h := ExtractPolynomial (M, row) ;
112 i f h ne 0 then
113 Inc lude (˜S , <i , LeadingMonomial (h)>) ;
114 end i f ;
115 end f o r ;
116 end i f ;
117

118 i f i gt n then
119 M := MacaulayMatrix (R, n : F := Minors (Submatrix (JacobianMatrix (F

[1 . . i −1]) , [1 . . i −1] , [1 . . n]) , n)) ;
120

121 Reduce (˜M) ;
122

123 f o r row := 1 to NumberOfRows(M) do
124 h := ExtractPolynomial (M, row) ;
125 i f h ne 0 then
126 Inc lude (˜S , <i , LeadingMonomial (h)>) ;
127 end i f ;
128 end f o r ;
129 end i f ;
130 end f o r ;
131

132 re turn S ;
133 end func t i on ;
134

126

135 // MatrixF5 f o r b i l i n e a r system
136 Matr ixF5Bi l inear := func t i on (F , D, n)
137 R := Parent (F [1]) ;
138 vars := MonomialsOfDegree (R, 1) ;
139

140 G := F;
141 H := Preproces s (F , n) ;
142 M := Assoc ia t iveArray () ;
143 f o r d := 1 to D do
144 M[d] := MacaulayMatrix (R, d) ;
145 f o r i := 1 to #F do
146 i f Degree (F [i]) eq d then
147 AddPolynomial (˜M[d] , F [i] , <i , R ! 1 , NumberOfRows(M[d])+1>) ;
148 e l i f Degree (F [i]) l t d then
149 f o r s in [s : s in M[d−1] ‘ S i gnature s | s [1] eq i] do
150 index := s [1] ;
151 mon := s [2] ;
152 row := s [3] ;
153

154 max := 1 ;
155 f o r var in vars do
156 i f Degree (mon, var) ne 0 then
157 max := var ;
158 break ;
159 end i f ;
160 end f o r ;
161

162 f o r var in Reverse (Setseq (vars)) do
163 i f var l t max then
164 cont inue ;
165 end i f ;
166

167 found := f a l s e ;
168

169 f o r h in H do
170 i f h [1] eq i and I sD iv i s i b l eBy (var∗mon, h [2]) then
171 found := true ;
172 break ;
173 end i f ;
174 end f o r ;
175

176 i f not found then
177 f o r t in [t : t in M[d−Degree (F [i])] ‘ S i gnature s | t

[1] l t i] do
178 index2 := t [1] ;
179 mon2 := t [2] ;
180 row2 := t [3] ;
181

182 i f LeadingMonomial (ExtractPolynomial (M[d−Degree
(F [i])] , row2)) eq var∗mon then

183 found := true ;
184 break ;
185 end i f ;
186 end f o r ;
187 end i f ;
188

189 i f not found then

127

190 AddPolynomial (˜M[d] , var∗ExtractPolynomial (M[d−1] ,
row) , <index , var∗mon, NumberOfRows(M[d])+1>) ;

191 end i f ;
192 end f o r ;
193 end f o r ;
194 end i f ;
195 end f o r ;
196

197 T := Copy(M[d]) ;
198 Reduce (˜M[d]) ;
199

200 po l s := [] ;
201 s i g s := [] ;
202 k := 1 ;
203

204 f o r row := 1 to NumberOfRows(M[d]) do
205 f := ExtractPolynomial (M[d] , row) ;
206 s := ExtractS ignature (M[d] , row) ;
207 i f f eq 0 then // found a syzygy
208 Append(˜H, <s [1] , s [2]>) ;
209 pr in t ”Row with s i gna tu r e ” , s , ” reduced to zero . ” ;
210 e l s e
211 Append(˜ pols , f) ;
212 Append(˜ s i g s , <s [1] , s [2] , k>) ;
213 k +:= 1 ;
214

215 i f LeadingMonomial (ExtractPolynomial (T, row)) ne
LeadingMonomial (ExtractPolynomial (M[d] , row)) then

216 Append(˜G, f) ;
217 end i f ;
218 end i f ;
219 end f o r ;
220

221 M[d] ‘ Polynomials := po l s ;
222 M[d] ‘ S i gnature s := s i g s ;
223

224 de l e t e T;
225 end f o r ;
226

227 re turn Reduce (G) ;
228 end func t i on ;
229

230 // MatrixF5 f o r zero−dimens iona l systems
231 MatrixF5ZeroDimensional := func t i on (F)
232 R := Parent (F [1]) ;
233 vars := MonomialsOfDegree (R, 1) ;
234

235 G := F;
236 H := [] ;
237 M := Assoc ia t iveArray () ;
238

239 d := 1 ;
240 repeat
241 M[d] := MacaulayMatrix (R, d) ;
242 f o r i := 1 to #F do
243 i f Degree (F [i]) eq d then
244 AddPolynomial (˜M[d] , F [i] , <i , R ! 1 , NumberOfRows(M[d])+1>) ;

128

245 e l i f Degree (F [i]) l t d then
246 f o r s in [s : s in M[d−1] ‘ S i gnature s | s [1] eq i] do
247 index := s [1] ;
248 mon := s [2] ;
249 row := s [3] ;
250

251 max := 1 ;
252 f o r var in vars do
253 i f Degree (mon, var) ne 0 then
254 max := var ;
255 break ;
256 end i f ;
257 end f o r ;
258

259 f o r var in Reverse (Setseq (vars)) do
260 i f var l t max then
261 cont inue ;
262 end i f ;
263

264 found := f a l s e ;
265

266 f o r h in H do
267 i f h [1] eq i and I sD iv i s i b l eBy (var∗mon, h [2]) then
268 found := true ;
269 break ;
270 end i f ;
271 end f o r ;
272

273 i f not found then
274 f o r t in [t : t in M[d−Degree (F [i])] ‘ S i gnature s | t

[1] l t i] do
275 index2 := t [1] ;
276 mon2 := t [2] ;
277 row2 := t [3] ;
278

279 i f LeadingMonomial (ExtractPolynomial (M[d−Degree
(F [i])] , row2)) eq var∗mon then

280 found := true ;
281 break ;
282 end i f ;
283 end f o r ;
284 end i f ;
285

286 i f not found then
287 AddPolynomial (˜M[d] , var∗ExtractPolynomial (M[d−1] ,

row) , <index , var∗mon, NumberOfRows(M[d])+1>) ;
288 end i f ;
289 end f o r ;
290 end f o r ;
291 end i f ;
292 end f o r ;
293

294 T := Copy(M[d]) ;
295 Reduce (˜M[d]) ;
296

297 po l s := [] ;
298 s i g s := [] ;

129

299 k := 1 ;
300

301 f o r row := 1 to NumberOfRows(M[d]) do
302 f := ExtractPolynomial (M[d] , row) ;
303 s := ExtractS ignature (M[d] , row) ;
304 i f f eq 0 then // found a syzygy
305 Append(˜H, <s [1] , s [2]>) ;
306 pr in t ”Row with s i gna tu r e ” , s , ” reduced to zero . ” ;
307 e l s e
308 Append(˜ pols , f) ;
309 Append(˜ s i g s , <s [1] , s [2] , k>) ;
310 k +:= 1 ;
311

312 i f LeadingMonomial (ExtractPolynomial (T, row)) ne
LeadingMonomial (ExtractPolynomial (M[d] , row)) then

313 Append(˜G, f) ;
314 end i f ;
315 end i f ;
316 end f o r ;
317

318 M[d] ‘ Polynomials := po l s ;
319 M[d] ‘ S i gnature s := s i g s ;
320

321 de l e t e T;
322

323 G := Reduce (G) ;
324

325 d +:= 1 ;
326 un t i l f o r a l l {m : m in MonomialsOfDegree (R, d) | e x i s t s {g : g in G |

I sD i v i s i b l eBy (m, LeadingMonomial (g)) } } ;
327

328 re turn G;
329 end func t i on ;

A.2 The GVW algorithms

Listing A.3: The G2V algorithm

1 MyLeadingMonomial := func t i on (f)
2 i f f eq 0 then
3 re turn 0 ;
4 e l s e
5 re turn LeadingMonomial (f) ;
6 end i f ;
7 end func t i on ;
8

9 MyLeadingCoef f i c ient := func t i on (f)
10 i f f eq 0 then
11 re turn 0 ;
12 e l s e
13 re turn Lead ingCoe f f i c i en t (f) ;
14 end i f ;
15 end func t i on ;
16

17 Swap := procedure (˜a , ˜b)
18 t := a ;
19 a := b ;

130

20 b := t ;
21 end procedure ;
22

23 HeapParent := func t i on (i)
24 re turn Floor (i /2) ;
25 end func t i on ;
26

27 HeapLeft := func t i on (i)
28 re turn 2∗ i ;
29 end func t i on ;
30

31 HeapRight := func t i on (i)
32 re turn 2∗ i + 1 ;
33 end func t i on ;
34

35 MinHeapify := procedure (˜A, i)
36 l := HeapLeft (i) ;
37 r := HeapRight (i) ;
38

39 i f l l e #A and A[l] [1] l t A[i] [1] then
40 sma l l e s t := l ;
41 e l s e
42 sma l l e s t := i ;
43 end i f ;
44

45 i f r l e #A and A[r] [1] l t A[sma l l e s t] [1] then
46 sma l l e s t := r ;
47 end i f ;
48

49 i f sma l l e s t ne i then
50 Swap(˜A[i] , ˜A[sma l l e s t]) ;
51 $$ (˜A, sma l l e s t) ;
52 end i f ;
53 end procedure ;
54

55 BuildMinHeap := procedure (˜A)
56 f o r i := Floor(#A/2) to 1 by −1 do
57 MinHeapify (˜A, i) ;
58 end f o r ;
59 end procedure ;
60

61 HeapExtractMin := func t i on (A)
62 min := A[1] ;
63 A[1] := A[#A] ;
64 Undefine (˜A, #A) ;
65 MinHeapify (˜A, 1) ;
66

67 re turn A, min ;
68 end func t i on ;
69

70 HeapDecreaseKey := procedure (˜A, i , key)
71 A[i] := key ;
72 whi le i gt 1 and A[HeapParent (i)] [1] gt A[i] [1] do
73 Swap(˜A[i] , ˜A[HeapParent (i)]) ;
74 i := HeapParent (i) ;
75 end whi l e ;
76 end procedure ;

131

77

78 MinHeapInsert := procedure (˜A, key)
79 HeapDecreaseKey (˜A, #A+1, key) ;
80 end procedure ;
81

82 MinHeapDelete := procedure (˜A, i)
83 A[i] := A[#A] ;
84 Undefine (˜A, #A) ;
85 MinHeapify (˜A, i) ;
86 end procedure ;
87

88 IsSuperTopReducible := func t i on (U, V, p)
89 f o r i := 1 to #V do
90 i f V[i] eq 0 and p [1] ne 0 and U[i] ne 0 and I sD iv i s i b l eBy (

MyLeadingMonomial (p [1]) , MyLeadingMonomial (U[i])) then
91 re turn true ;
92 e l i f p [2] ne 0 and I sD iv i s i b l eBy (MyLeadingMonomial (p [2]) ,

MyLeadingMonomial (V[i])) then
93 t := MyLeadingMonomial (p [2]) div MyLeadingMonomial (V[i]) ;
94 i f MyLeadingMonomial (t ∗U[i]) eq MyLeadingMonomial (p [1]) and

MyLeadingCoef f i c ient (p [1]) /MyLeadingCoef f i c ient (U[i]) eq
MyLeadingCoef f i c ient (p [2]) /MyLeadingCoef f i c ient (V[i]) then

95 re turn true ;
96 end i f ;
97 end i f ;
98 end f o r ;
99

100 re turn f a l s e ;
101 end func t i on ;
102

103 FindReductor := func t i on (U, V, p)
104 f o r i := 1 to #V do
105 i f V[i] eq 0 and p [1] ne 0 and U[i] ne 0 and I sD iv i s i b l eBy (

MyLeadingMonomial (p [1]) , MyLeadingMonomial (U[i])) then
106 // super top r edu c i b l e
107 cont inue ;
108 e l i f p [2] ne 0 and I sD iv i s i b l eBy (MyLeadingMonomial (p [2]) ,

MyLeadingMonomial (V[i])) then
109 t := MyLeadingMonomial (p [2]) div MyLeadingMonomial (V[i]) ;
110 c := MyLeadingCoef f i c ient (p [2]) /MyLeadingCoef f i c ient (V[i]) ;
111 i f MyLeadingMonomial (p [1]− c∗ t ∗U[i]) eq MyLeadingMonomial (p [1]) then
112 re turn i ;
113 end i f ;
114 end i f ;
115 end f o r ;
116

117 re turn 0 ;
118 end func t i on ;
119

120 TopReduce := func t i on (G, U, V, p)
121 i := FindReductor (U, V, p) ;
122 whi le i ne 0 do // 0 means p i s not r e gu l a r top r edu c i b l e
123 // reduce p
124 t := MyLeadingMonomial (p [2]) div MyLeadingMonomial (V[i]) ;
125 c := MyLeadingCoef f i c ient (p [2]) /MyLeadingCoef f i c ient (V[i]) ;
126

127 u := p[1]− c∗ t ∗U[i] ;

132

128 v := p[2]− c∗ t ∗V[i] ;
129

130 i f MyLeadingMonomial (p [1]) eq t ∗MyLeadingMonomial (U[i]) then
131 u := u/(1−c) ;
132 v := v/(1−c) ;
133 end i f ;
134

135 v := NormalForm(v , G) ;
136

137 p := <u , v>;
138

139 i := FindReductor (U, V, p) ;
140 end whi l e ;
141

142 re turn p ;
143 end func t i on ;
144

145 JPair := func t i on (U, V, i , j)
146 t := LCM(MyLeadingMonomial (V[i]) , MyLeadingMonomial (V[j])) ;
147 t i := t div MyLeadingMonomial (V[i]) ;
148 t j := t div MyLeadingMonomial (V[j]) ;
149

150 i f t i ∗MyLeadingMonomial (U[i]) gt t j ∗MyLeadingMonomial (U[j]) then
151 re turn t i ∗MyLeadingMonomial (U[i]) , i ;
152 e l s e
153 re turn t j ∗MyLeadingMonomial (U[j]) , j ;
154 end i f ;
155 end func t i on ;
156

157 IncrementBas is := func t i on (G, g)
158 U := [Parent (g) ! 0 : i in [1 . .#G]] ;
159 V := G;
160 H := G;
161

162 v := NormalForm(g , G) ;
163 i f v eq 0 then
164 Append(˜H, Parent (g) ! 1) ;
165 re turn V, H;
166 e l s e
167 Append(˜U, 1) ;
168 Append(˜V, v) ;
169 end i f ;
170

171 JP := [] ;
172 f o r i := 1 to #G do
173 t , j := JPair (U, V, i , #G+1) ;
174 i f NormalForm(t , H) ne 0 then
175 found := f a l s e ;
176 f o r k := 1 to #JP do
177 i f JP [k] [1] eq t then
178 i f V[JP [k] [2]] gt V[j] then
179 JP [k] := <t , j >;
180 end i f ;
181 found := true ;
182 end i f ;
183 end f o r ;
184

133

185 i f not found then
186 Append(˜JP , <t , j>) ;
187 end i f ;
188 end i f ;
189 end f o r ;
190

191 BuildMinHeap (˜JP) ;
192

193 whi le not IsEmpty (JP) do
194 JP , p := HeapExtractMin (JP) ;
195 // whi l e p equa l s min , do extractmin
196 t := p [1] ;
197 i := p [2] ;
198 p := TopReduce (G, U, V, <(t div MyLeadingMonomial (U[i])) ∗U[i] , (t div

MyLeadingMonomial (U[i])) ∗V[i]>) ;
199

200 i f p [2] eq 0 then
201 Append(˜H, p [1]) ;
202 L := [q : q in JP | I sD i v i s i b l eBy (q [1] , MyLeadingMonomial (p [1]))] ;
203 whi le not IsEmpty (L) do
204 q := L[#L] ;
205 Prune (˜L) ;
206 MinHeapDelete (˜JP , Index (JP , q)) ;
207 end whi l e ;
208 e l i f p [2] ne 0 and IsSuperTopReducible (U, V, p) then
209 cont inue ;
210 e l s e
211 Append(˜U, p [1]) ;
212 Append(˜V, p [2]) ;
213 f o r i := 1 to #U−1 do
214 t , j := JPair (U, V, #U, i) ;
215 i f NormalForm(t , H) ne 0 then
216 // f o r loop , i f j i s sma l l e r than current , then update
217 // otherwise , i n s e r t
218

219 found := f a l s e ;
220 f o r k := 1 to #JP do
221 i f JP [k] [1] eq t then
222 i f V[JP [k] [2]] gt V[j] then
223 JP [k] := <t , j >;
224 end i f ;
225 found := true ;
226 end i f ;
227 end f o r ;
228

229 i f not found then
230 MinHeapInsert (˜JP , <t , j>) ;
231 end i f ;
232 end i f ;
233 end f o r ;
234 end i f ;
235 end whi l e ;
236

237 re turn V, H;
238 end func t i on ;
239

240 MyGroebnerBasis := func t i on (F)

134

241 G := [F [1]] ;
242 f o r i := 2 to #F do
243 G := ReduceGroebnerBasis (IncrementBas is (G, F [i])) ;
244 end f o r ;
245

246 re turn G;
247 end func t i on ;

Listing A.4: The GVW algorithm

1 MaxTerm := func t i on (u , v)
2 i f u gt v then
3 re turn u ;
4 e l s e
5 re turn v ;
6 end i f ;
7 end func t i on ;
8

9 Mylt := func t i on (p , q)
10 i f Column(p) l t Column(q) then
11 re turn true ;
12 e l i f Column(p) eq Column(q) and p [Column(p)] l t q [Column(q)] then
13 re turn true ;
14 end i f ;
15

16 re turn f a l s e ;
17 end func t i on ;
18

19 Mygt := func t i on (p , q)
20 i f Column(p) gt Column(q) then
21 re turn true ;
22 e l i f Column(p) eq Column(q) and p [Column(p)] gt q [Column(q)] then
23 re turn true ;
24 end i f ;
25

26 re turn f a l s e ;
27 end func t i on ;
28

29 Myeq := func t i on (p , q)
30 i f Column(p) eq Column(q) and p [Column(p)] eq q [Column(q)] then
31 re turn true ;
32 end i f ;
33

34 re turn f a l s e ;
35 end func t i on ;
36

37 MyLeadingMonomial := func t i on (f)
38 i f f eq 0 then
39 re turn 0 ;
40 e l s e
41 re turn LeadingMonomial (f) ;
42 end i f ;
43 end func t i on ;
44

45 MyLeadingCoef f i c ient := func t i on (f)
46 i f f eq 0 then
47 re turn 0 ;
48 e l s e

135

49 re turn Lead ingCoe f f i c i en t (f) ;
50 end i f ;
51 end func t i on ;
52

53 Swap := procedure (˜a , ˜b)
54 t := a ;
55 a := b ;
56 b := t ;
57 end procedure ;
58

59 HeapParent := func t i on (i)
60 re turn Floor (i /2) ;
61 end func t i on ;
62

63 HeapLeft := func t i on (i)
64 re turn 2∗ i ;
65 end func t i on ;
66

67 HeapRight := func t i on (i)
68 re turn 2∗ i + 1 ;
69 end func t i on ;
70

71 MinHeapify := procedure (˜A, i)
72 l := HeapLeft (i) ;
73 r := HeapRight (i) ;
74

75 i f l l e #A and A[l] [1] l t A[i] [1] then
76 sma l l e s t := l ;
77 e l s e
78 sma l l e s t := i ;
79 end i f ;
80

81 i f r l e #A and A[r] [1] l t A[sma l l e s t] [1] then
82 sma l l e s t := r ;
83 end i f ;
84

85 i f sma l l e s t ne i then
86 Swap(˜A[i] , ˜A[sma l l e s t]) ;
87 $$ (˜A, sma l l e s t) ;
88 end i f ;
89 end procedure ;
90

91 BuildMinHeap := procedure (˜A)
92 f o r i := Floor(#A/2) to 1 by −1 do
93 MinHeapify (˜A, i) ;
94 end f o r ;
95 end procedure ;
96

97 HeapExtractMin := func t i on (A)
98 min := A[1] ;
99 A[1] := A[#A] ;

100 Undefine (˜A, #A) ;
101 MinHeapify (˜A, 1) ;
102

103 re turn A, min ;
104 end func t i on ;
105

136

106 HeapDecreaseKey := procedure (˜A, i , key)
107 A[i] := key ;
108 whi le i gt 1 and A[HeapParent (i)] [1] gt A[i] [1] do
109 Swap(˜A[i] , ˜A[HeapParent (i)]) ;
110 i := HeapParent (i) ;
111 end whi l e ;
112 end procedure ;
113

114 MinHeapInsert := procedure (˜A, key)
115 HeapDecreaseKey (˜A, #A+1, key) ;
116 end procedure ;
117

118 MinHeapDelete := procedure (˜A, i)
119 A[i] := A[#A] ;
120 Undefine (˜A, #A) ;
121 MinHeapify (˜A, i) ;
122 end procedure ;
123

124 ModuleDiv := func t i on (p , q)
125 re turn p [Column(p)] div q [Column(q)] ;
126 end func t i on ;
127

128 FindReductor := func t i on (U, V, p)
129 f o r i := 1 to #V do
130 i f V[i] ne 0 and p [2] ne 0 and I sD iv i s i b l eBy (MyLeadingMonomial (p [2]) ,

MyLeadingMonomial (V[i])) then
131 t := MyLeadingMonomial (p [2]) div MyLeadingMonomial (V[i]) ;
132 c := MyLeadingCoef f i c ient (p [2]) / MyLeadingCoef f i c ient (V[i]) ;
133 i f Mylt (t ∗U[i] , p [1]) or (Myeq(p [1] , t ∗U[i]) and c ne 1) then
134 re turn i ;
135 end i f ;
136 end i f ;
137 end f o r ;
138

139 re turn 0 ;
140 end func t i on ;
141

142 TopReduce := func t i on (U, V, p)
143 i := FindReductor (U, V, p) ;
144 whi le i ne 0 do
145 c := MyLeadingCoef f i c ient (p [2]) / MyLeadingCoef f i c ient (V[i]) ;
146 t := MyLeadingMonomial (p [2]) div MyLeadingMonomial (V[i]) ;
147 v := p[2]− c∗ t ∗V[i] ;
148

149 i f Myeq(p [1] , t ∗U[i]) then
150 v := v/(1−c) ;
151 end i f ;
152

153 p := <p [1] , v>;
154 i := FindReductor (U, V, p) ;
155 end whi l e ;
156

157 re turn p ;
158 end func t i on ;
159

160 IsCoveredBy := func t i on (p , U, V)
161 f o r i := 1 to #U do

137

162 i f I sD i v i s i b l eBy (p [1] , U[i]) then
163 i f ModuleDiv (p [1] , U[i]) ∗MyLeadingMonomial (V[i]) l t

MyLeadingMonomial (p [2]) then
164 re turn true ;
165 end i f ;
166 end i f ;
167 end f o r ;
168

169 re turn f a l s e ;
170 end func t i on ;
171

172 I sDiv i s ib l eBySyzygy := func t i on (p , H)
173 f o r h in H do
174 i f I sD i v i s i b l eBy (p [1] , h) then
175 re turn true ;
176 end i f ;
177 end f o r ;
178

179 re turn f a l s e ;
180 end func t i on ;
181

182 JPair := func t i on (U, V, i , j)
183 t := LCM(MyLeadingMonomial (V[i]) , MyLeadingMonomial (V[j])) ;
184 t i := t div MyLeadingMonomial (V[i]) ;
185 t j := t div MyLeadingMonomial (V[j]) ;
186

187 a s s e r t t i ∗U[i] ne t j ∗U[j] ;
188

189 i f Mygt(t i ∗U[i] , t j ∗U[j]) then
190 re turn t i ∗U[i] , i ;
191 e l s e
192 re turn t j ∗U[j] , j ;
193 end i f ;
194 end func t i on ;
195

196 MyGroebnerBasis := func t i on (F)
197 M := EModule (Parent (F [1]) , #F) ;
198 U := [UnitVector (M, i) : i in [1 . . Degree (M)]] ;
199 V := F;
200 H := Setseq (Seqset ([LeadingMonomial (F [j]∗ UnitVector (M, i)−F[i]∗ UnitVector (M

, j)) : i , j in [1 . .#F] | i ne j])) ;
201

202 JP := [] ;
203 f o r i := 1 to #V do
204 f o r j := 1 to i−1 do
205 t , k := JPair (U, V, i , j) ;
206 Inc lude (˜JP , <t , k>) ;
207 end f o r ;
208 end f o r ;
209

210 BuildMinHeap (˜JP) ;
211

212 whi le not IsEmpty (JP) do
213 JP , p := HeapExtractMin (JP) ;
214

215 t := p [1] ;
216 i := p [2] ;

138

217 p := <t , ModuleDiv (t , U[i]) ∗V[i]> ;
218

219 i f I sD iv i s ib l eBySyzygy (p , H) or IsCoveredBy (p , U, V) then
220 cont inue ;
221 end i f ;
222

223 p := TopReduce (U, V, p) ;
224

225 i f p [2] eq 0 then
226 i f not I sDiv i s ib l eBySyzygy (p , H) then
227 Inc lude (˜H, p [1]) ;
228 end i f ;
229 e l s e
230 Append(˜U, p [1]) ;
231 Append(˜V, p [2]) ;
232

233 f o r i := 1 to #U−1 do
234 i f MyLeadingMonomial (V[i]) ∗p [1] ne MyLeadingMonomial (p [2]) ∗U[i]

then
235 Inc lude (˜H, MaxTerm(MyLeadingMonomial (V[i]) ∗p [1] ,

MyLeadingMonomial (p [2]) ∗U[i])) ;
236 t , j := JPair (U, V, i , #U) ;
237 MinHeapInsert (˜JP , <t , j>) ;
238 end i f ;
239 end f o r ;
240 end i f ;
241 end whi l e ;
242

243 re turn ReduceGroebnerBasis (V) ;
244 end func t i on ;

A.3 The quadratic systems method

Listing A.5: Functions related to the quadratic systems method

1 StarProduct := func t i on (v , w)
2 re turn Parent (v) ! [v [i]∗w[i] : i in [1 . . NumberOfColumns (v)]] ;
3 end func t i on ;
4

5 Decode := func t i on (C, y)
6 i f Length (C) ge #Fie ld (C) then
7 FE, := ext<Fie ld (C) | Ce i l i n g (Log(#Fie ld (C) , Length (C)))+1>;
8 // There ’ s a bug in Magma’ s ExtendField method
9 C, := ExtendFieldCode (C, FE) ;

10 end i f ;
11

12 a := [Primit iveElement (F i e ld (C)) ˆ(i −1) : i in [1 . . Length (C)]] ;
13

14 B := Matrix (F i e ld (C) , Length (C) , Length (C) , [< i , j , a [j] ˆ (i −1)> : i , j in
[1 . . Length (C)]]) ;

15 Binv := Bˆ(−1) ;
16 mu := [[StarProduct (B[i] , B[j]) ∗Binv : j in [1 . . Length (C)]] : i in [1 . .

Length (C)]] ;
17

18 A := ParityCheckMatrix (C) ∗Bˆ(−1) ;
19 s := y∗Transpose (ParityCheckMatrix (C)) ;
20

139

21 G := [] ;
22 t := 1 ;
23 whi le t rue do
24 P<[X]> := PolynomialRing (F i e ld (C) , Length (C)+t , ” g r ev l ex ”) ;
25 J := [&+[A[j , l]∗X[l] : l in [1 . . Length (C)]] − s [j] : j in [1 . . Length (C

)−Dimension (C)]] ;
26 I := [&+[&+[mu[i , j , l]∗X[l] : l in [1 . . Length (C)]] ∗X[Length (C)+j] : j in

[1 . . t]]−&+[mu[i , t+1, l]∗X[l] : l in [1 . . Length (C)]] : i in [1 . . Length (C)]] ;
27 sysQE := J cat I ;
28

29 G := GroebnerBasis (sysQE) ;
30 i f not 1 in G then
31 break ;
32 end i f ;
33

34 t := t + 1 ;
35 end whi l e ;
36

37 t ry
38 u := VectorSpace (F i e ld (C) , Length (C)) ! [−Monomia lCoef f i c i ent (G[i] , 1)

: i in [1 . . Length (C)]] ;
39 catch
40 e r r o r ”Too many e r r o r s : ” , e ‘ Object ;
41 end try ;
42

43 e := u∗Transpose (Bˆ(−1)) ;
44

45 re turn y−e ;
46 end func t i on ;
47

48 MyMinimumDistance := func t i on (C)
49 y := C ! 0 ;
50

51 i f Length (C) ge #Fie ld (C) then
52 FE, := ext<Fie ld (C) | Ce i l i n g (Log(#Fie ld (C) , Length (C)))+1>;
53 // There ’ s a bug in Magma’ s ExtendField method
54 C, := ExtendFieldCode (C, FE) ;
55 end i f ;
56

57 a := [Primit iveElement (F i e ld (C)) ˆ(i −1) : i in [1 . . Length (C)]] ;
58

59 B := Matrix (F i e ld (C) , Length (C) , Length (C) , [< i , j , a [j] ˆ (i −1)> : i , j in
[1 . . Length (C)]]) ;

60 Binv := Bˆ(−1) ;
61 mu := [[StarProduct (B[i] , B[j]) ∗Binv : j in [1 . . Length (C)]] : i in [1 . .

Length (C)]] ;
62

63 A := ParityCheckMatrix (C) ∗Bˆ(−1) ;
64 s := y∗Transpose (ParityCheckMatrix (C)) ;
65

66 G := [] ;
67 t := 1 ;
68 whi le t rue do
69 P<[X]> := PolynomialRing (F i e ld (C) , Length (C)+t , ” g r ev l ex ”) ;
70 J := [&+[A[j , l]∗X[l] : l in [1 . . Length (C)]] − s [j] : j in [1 . . Length (C

)−Dimension (C)]] ;
71 I := [&+[&+[mu[i , j , l]∗X[l] : l in [1 . . Length (C)]] ∗X[Length (C)+j] : j in

140

[1 . . t]]−&+[mu[i , t+1, l]∗X[l] : l in [1 . . Length (C)]] : i in [1 . . Length (C)]] ;
72 sysQE := J cat I ;
73

74 G := GroebnerBasis (sysQE) ;
75 u := [X[i] : i in [1 . . Length (C)]] ;
76 i f not IsSubsequence (u , G) then
77 break ;
78 end i f ;
79

80 t := t + 1 ;
81 end whi l e ;
82

83 re turn t ;
84 end func t i on ;

A.4 A decoding heuristic

Listing A.6: A decoding heuristic

1 Heur i s t i cDecode := func t i on (P, G, t , r)
2 R<[X]> := P;
3 F := Fie ld (Parent (r)) ;
4 n := Degree (Parent (r)) ;
5 a := Primit iveElement (F) ;
6 A := [aˆ i : i in [0 . .#F−2]] ;
7

8 f o r i := 1 to #F−1 do
9 pr in t ”Trying with a = ” , A[i] ;

10 w := A[i]∗ r ;
11 w := &cat [E l t s eq (b) : b in El t seq (w)] ;
12

13 f := &∗[X[i] ˆ (I n t e g e r s () ! w[i]) : i in [1 . .#w]] ;
14

15 f := NormalForm(f , G) ;
16 e := Exponents (f) ;
17 i f Weight (VectorSpace (F , n) ! e) l e t then
18 pr in t ”Found the r i g h t e r r o r vec to r : ” , VectorSpace (F , n) ! e ;
19 c := [w[i]−e [i] mod Cha r a c t e r i s t i c (F) : i in [1 . .#w]] ;
20 c := Pa r t i t i on (c , Degree (F)) ;
21 c := [Seqe l t (b , F) : b in c] ;
22 c := VectorSpace (F , n) ! c ;
23 c := A[i]ˆ(−1)∗c ;
24 pr in t ”The codeword i s : ” ;
25 re turn c ;
26 e l s e
27 pr in t ”Found the wrong e r r o r vec to r : ” , VectorSpace (F , n) ! e ;
28 end i f ;
29 end f o r ;
30

31 re turn ” f a i l ” ;
32 end func t i on ;

A.5 Auxiliary functions

Listing A.7: Some auxiliary functions

1 MyDist inctDegreeFactor i zat ion := func t i on (f)

141

2 P<x> := Parent (f) ;
3 q := #BaseRing (P) ;
4 h := x mod f ;
5 G := [] ;
6

7 whi le f ne 1 do
8 h := Modexp(h , q , f) ;
9 g := GCD(h−x , f) ;

10 Append(˜G, g) ;
11 f := f div g ;
12 h := h mod f ;
13 end whi l e ;
14

15 re turn G;
16 end func t i on ;
17

18 // Input : A squa r e f r e e monic polynomial f over F q o f degree n > 0 where q i s
an odd

19 // prime power , and a d i v i s o r d < n o f n , so that a l l i r e d u c i b l e f a c t o r s o f f
have

20 // degree d
21 // Output : A proper monic f a c t o r g over F q o f f , or ” f a i l u r e ”
22 MyEqualDegreeSpl itt ing := func t i on (f , d)
23 n := Degree (f) ;
24

25 i f n l t 1 then
26 e r r o r ”Runtime e r r o r ’ MyEqualDegreeSpl itt ing ’ : f i r s t argument has

degree l e s s than 1” ;
27 e l i f L ead ingCoe f f i c i en t (f) ne 1 then
28 e r r o r ”Runtime e r r o r ’ MyEqualDegreeSpl itt ing ’ : f i r s t argument not monic

” ;
29 e l i f not I s Squa r e f r e e (f) then
30 e r r o r ”Runtime e r r o r ’ MyEqualDegreeSpl itt ing ’ : f i r s t argument not

s qua r e f r e e ” ;
31 e l i f not I sD iv i s i b l eBy (n , d) then
32 e r r o r ”Runtime e r r o r ’ MyEqualDegreeSpl itt ing ’ : second argument not a

d i v i s o r o f n” ;
33 end i f ;
34

35 P := Parent (f) ;
36 F := BaseRing (P) ;
37 q := #F;
38

39 // pick a random polynomial o f deg < n
40 a := P ! [Random(F) : i in [1 . . n]] ;
41

42 // a i s the constant polynomial
43 i f a eq Cons tan tCoe f f i c i en t (a) then
44 re turn ” f a i l u r e ” ;
45 end i f ;
46

47 g1 := GCD(a , f) ;
48 // we ’ re lucky and found a f a c t o r !
49 i f g1 ne 1 then
50 re turn g1 ;
51 end i f ;
52

142

53 b := Modexp(a , (qˆd−1) div 2 , f) ;
54

55 g2 := GCD(b−1, f) ;
56 i f g2 ne 1 and g2 ne f then
57 re turn g2 ;
58 e l s e
59 re turn ” f a i l u r e ” ;
60 end i f ;
61 end func t i on ;
62

63 // Input : A squa r e f r e e monic polynomial f over F q o f degree n > 0 , f o r ann odd
prime

64 // power q , and a d i v i s o r d o f n , so that a l l i r r e d u c i b l e f a c t o r s o f f have
degree d .

65 // Output : The monic i r r e d u c i b l e f a c t o r s o f f in F q [x]
66 MyEqualDegreeFactorization := func t i on (f , d)
67 n := Degree (f) ;
68

69 i f n l t 1 then
70 e r r o r ”Runtime e r r o r ’ MyEqualDegreeFactorization ’ : f i r s t argument has

degree l e s s than 1” ;
71 e l i f L ead ingCoe f f i c i en t (f) ne 1 then
72 e r r o r ”Runtime e r r o r ’ MyEqualDegreeFactorization ’ : f i r s t argument not

monic” ;
73 e l i f not I s Squa r e f r e e (f) then
74 e r r o r ”Runtime e r r o r ’ MyEqualDegreeFactorization ’ : f i r s t argument not

s qua r e f r e e ” ;
75 e l i f not I sD iv i s i b l eBy (n , d) then
76 e r r o r ”Runtime e r r o r ’ MyEqualDegreeFactorization ’ : second argument not

a d i v i s o r o f n” ;
77 end i f ;
78

79 // base case
80 i f n eq d then
81 re turn [f] ;
82 end i f ;
83

84 // f i nd a proper f a c t o r g o f f
85 repeat
86 g := MyEqualDegreeSpl itt ing (f , d) ;
87 un t i l Type (g) ne MonStgElt ;
88

89 // combine the r e s u l t s o f the two r e c u r s i v e c a l l s
90 re turn $$ (g , d) cat $$ (f div g , d) ;
91 end func t i on ;
92

93 // Input : A nonconstant polynomial f in F q [x] , where q i s an odd prime power .
94 // Output : The monic i r r e d u c i b l e f a c t o r s o f f and t h e i r m u l t i p l i c i t i e s .
95 MyFactorizationF := func t i on (f)
96 i f f eq Cons tan tCoe f f i c i en t (f) then
97 e r r o r ”Runtime e r r o r ’ MyFactorizationF ’ : argument i s constant ” ;
98 end i f ;
99

100 P<x> := Parent (f) ;
101 q := #BaseRing (P) ;
102 h := x mod f ;
103 v := f / Lead ingCoe f f i c i en t (f) ;

143

104 i := 0 ;
105 U := [] ;
106

107 whi le v ne 1 do
108 i := i +1;
109 h := Modexp(h , q , f) ;
110 g := GCD(h−x , v) ;
111

112 i f g ne 1 then
113 G := MyEqualDegreeFactorization (g , i) ;
114

115 f o r j := 1 to #G do
116 e := 0 ;
117 whi le I sD i v i s i b l eBy (v , G[j]) do
118 v := v div G[j] ;
119 e := e + 1 ;
120 end whi l e ;
121 Append(˜U, <G[j] , e>) ;
122 end f o r ;
123 end i f ;
124 end whi l e ;
125

126 re turn U;
127 end func t i on ;
128

129 // Input : Nonzero polynomia l s f , g1 , . . . , gs in F [x1 , . . . , xn] , where F i s a f i e l d
130 // (and imp l i c i t l y a monomial order on F) .
131 // Output : Q = [q1 , . . . , qs] and r such that f = q1g1 + . . . + qsgs + r and no

monomial in
132 // r i s d i v i s i b l e by any o f l t (g1) , . . . , l t (gs) .
133 Mul t i v a r i a t eD iv i s i on := func t i on (f , G)
134 r := 0 ;
135 p := f ;
136 s := #G;
137 Q := [Parent (f) ! 0 : i in [1 . . s]] ;
138

139 whi le p ne 0 do
140 l t p := LeadingTerm (p) ;
141 f o r i := 1 to s do
142 l t g := LeadingTerm (G[i]) ;
143 i f I sD i v i s i b l eBy (l tp , l t g) then
144 Q[i] := Q[i] + (l t p div l t g) ;
145 p := p − (l t p div l t g) ∗G[i] ;
146 break ;
147 end i f ;
148

149 i f i eq s then
150 r := r + l tp ;
151 p := p − l t p ;
152 end i f ;
153 end f o r ;
154 end whi l e ;
155

156 re turn Q, r ;
157 end func t i on ;
158

159 A f f i n eH i l b e r t S e r i e s := func t i on (I)

144

160 P<t> := PolynomialRing (I n t e g e r s ()) ;
161 n := Rank(I) ;
162

163 G := GroebnerBasis (I) ;
164 LG := [LeadingMonomial (g) : g in G | g ne 0] ;
165

166 i f #LG eq 0 then
167 re turn 1/(1− t) ˆ(n+1) ;
168 end i f ;
169

170 i f #LG eq 1 then
171 re turn (1− t ˆDegree (LG[1])) /(1− t) ˆ(n+1) ;
172 end i f ;
173

174 J := Idea l ([g : g in LG[2 . .#G]]) ;
175 Jbar := Idea l ([LCM(LG[1] , g) : g in LG[2 . .#G]]) ;
176

177 re turn (1− t ˆDegree (LG[1])) /(1− t) ˆ(n+1) + $$ (J) − $$ (Jbar) ;
178 end func t i on ;
179

180 Af f ineHi lbe r tPo lynomia l := func t i on (I)
181 P<x> := PolynomialRing (Rat iona l s ()) ;
182

183 s := A f f i n eH i l b e r t S e r i e s (I) ;
184

185 k := Degree (Numerator (s))−Degree (Denominator (s))+1;
186

187 n := Degree (Denominator (s))−1;
188 a := Co e f f i c i e n t s (Numerator (s)) ;
189

190 j := Degree (Numerator (s)) ;
191 i f n eq 0 then
192 re turn −&+[a [i +1] : i in [0 . . j]] , k ;
193 end i f ;
194

195 p := &+[a [i +1]∗(&∗ [(x+n−i+1− l) / l : l in [1 . . n]]) : i in [0 . . j]] ;
196

197 re turn p , k ;
198 end func t i on ;

145

	Preliminaries
	I Gröbner basis theory
	Classical Gröbner basis theory
	Order theory
	Multivariate division
	The notion of a Gröbner basis
	Buchberger's algorithm
	The algebra of solving equations
	The finite field case

	Some projective geometry
	Some algebraic tools
	Projective Hilbert series
	Affine Hilbert Series
	Regular sequences

	Signature-based Gröbner basis theory
	The module perspective
	Relations between the generators: syzygies
	Monomial orders and Gröbner bases for modules

	Buchberger's algorithm using signatures

	Linearization and the Matrix-F5 algorithm
	The homogeneous case
	Using known linear dependencies
	Predicting zero reductions
	A modification: the syzygy criterion
	Regular sequences in the context of Matrix-F5
	Semi-regular sequences: a generalization of regular sequences
	The inhomogeneous case
	Homogenization
	Sugar degree
	Degree fall

	Complexity
	Choosing D
	An improvement for sequences over F2
	An improvement for sequences of bilinear forms
	A further decomposition

	State of the art: the GVW algorithm
	Theoretical foundations
	The algorithm
	Complexity

	Experimental results

	II Algebraic coding theory
	Basic concepts of linear codes
	Introduction
	The Golay codes
	Syndrome decoding

	Cyclic codes
	Introduction
	BCH codes
	Decoding beyond the BCH error-correcting capability
	Cooper's method
	On- and offline decoding
	Newton identities based method

	Decoding general linear codes
	The method of unknown syndromes
	Applications
	The McEliece cryptosystem
	Finding the minimum distance

	Linear codes as binomial ideals
	Toric ideals
	The code ideal
	A heuristic for decoding general linear codes

	Experimental results
	Bibliography
	Implementations in Magma
	The Matrix-F5 algorithm
	The GVW algorithms
	The quadratic systems method
	A decoding heuristic
	Auxiliary functions

