233 research outputs found

    Families of locally separated Hamilton paths

    Get PDF
    We improve by an exponential factor the lower bound of K¨orner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound was obtained by a greedy algorithm. We solve a similar problem for permutations up to an exponential factor

    Families of locally separated Hamilton paths

    Get PDF
    We improve by an exponential factor the lower bound of K¨orner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound was obtained by a greedy algorithm. We solve a similar problem for permutations up to an exponential factor

    Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound

    Get PDF
    A major problem in coding theory is the question of whether the class of cyclic codes is asymptotically good. In this correspondence-as a generalization of cyclic codes-the notion of transitive codes is introduced (see Definition 1.4 in Section I), and it is shown that the class of transitive codes is asymptotically good. Even more, transitive codes attain the Tsfasman-Vladut-Zink bound over F-q, for all squares q = l(2). It is also shown that self-orthogonal and self-dual codes attain the Tsfasman-Vladut-Zink bound, thus improving previous results about self-dual codes attaining the Gilbert-Varshamov bound. The main tool is a new asymptotically optimal tower E-0 subset of E-1 subset of E-2 subset of center dot center dot center dot of function fields over F-q (with q = l(2)), where all extensions E-n/E-0 are Galois

    Construction of Almost Disjunct Matrices for Group Testing

    Full text link
    In a \emph{group testing} scheme, a set of tests is designed to identify a small number tt of defective items among a large set (of size NN) of items. In the non-adaptive scenario the set of tests has to be designed in one-shot. In this setting, designing a testing scheme is equivalent to the construction of a \emph{disjunct matrix}, an M×NM \times N matrix where the union of supports of any tt columns does not contain the support of any other column. In principle, one wants to have such a matrix with minimum possible number MM of rows (tests). One of the main ways of constructing disjunct matrices relies on \emph{constant weight error-correcting codes} and their \emph{minimum distance}. In this paper, we consider a relaxed definition of a disjunct matrix known as \emph{almost disjunct matrix}. This concept is also studied under the name of \emph{weakly separated design} in the literature. The relaxed definition allows one to come up with group testing schemes where a close-to-one fraction of all possible sets of defective items are identifiable. Our main contribution is twofold. First, we go beyond the minimum distance analysis and connect the \emph{average distance} of a constant weight code to the parameters of an almost disjunct matrix constructed from it. Our second contribution is to explicitly construct almost disjunct matrices based on our average distance analysis, that have much smaller number of rows than any previous explicit construction of disjunct matrices. The parameters of our construction can be varied to cover a large range of relations for tt and NN.Comment: 15 Page
    corecore