1,549 research outputs found

    Design of near allpass strictly stable minimal phase real valued rational IIR filters

    Get PDF
    In this brief, a near-allpass strictly stable minimal-phase real-valued rational infinite-impulse response filter is designed so that the maximum absolute phase error is minimized subject to a specification on the maximum absolute allpass error. This problem is actually a minimax nonsmooth optimization problem subject to both linear and quadratic functional inequality constraints. To solve this problem, the nonsmooth cost function is first approximated by a smooth function, and then our previous proposed method is employed for solving the problem. Computer numerical simulation result shows that the designed filter satisfies all functional inequality constraints and achieves a small maximum absolute phase error

    A new method for designing causal stable IIR variable fractional delay digital filters

    Get PDF
    This paper studies the design of causal stable Farrow-based infinite-impulse response (IIR) variable fractional delay digital filters (VFDDFs), whose subfilters have a common denominator. This structure has the advantages of reduced implementation complexity and avoiding undesirable transient response when tuning the spectral parameter in the Farrow structure. The design of such IIR VFDDFs is based on a new model reduction technique which is able to incorporate prescribed flatness and peak error constraints to the IIR VFDDF under the second order cone programming framework. Design example is given to demonstrate the effectiveness of the proposed approach. © 2007 IEEE.published_or_final_versio

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Optimal design of all-pass variable fractional-delay digital filters

    Get PDF
    This paper presents a computational method for the optimal design of all-pass variable fractional-delay (VFD) filters aiming to minimize the squared error of the fractional group delay subject to a low level of squared error in the phase response. The constrained optimization problem thus formulated is converted to an unconstrained least-squares (LS) optimization problem which is highly nonlinear. However, it can be approximated by a linear LS optimization problem which in turn simply requires the solution of a linear system. The proposed method can efficiently minimize the total error energy of the fractional group delay while maintaining constraints on the level of the error energy of the phase response. To make the error distribution as flat as possible, a weighted LS (WLS) design method is also developed. An error weighting function is obtained according to the solution of the previous constrained LS design. The maximum peak error is then further reduced by an iterative updating of the error weighting function. Numerical examples are included in order to compare the performance of the filters designed using the proposed methods with those designed by several existing methods

    On the minimax design of passband linear-phase variable digital filters using semidefinite programming

    Get PDF
    Variable digital filters (VDFs) are useful to the implementation of digital receivers because its frequency characteristics such as fractional delays and cutoff frequencies can be varied online. In this letter, it is shown that the optimal minimax design of VDFs with passband linear-phase can be formulated and solved as a semi-definite programming (SDP) problem, which is a powerful convex optimization method. In addition, other objective functions, such as least squares, and linear and convex quadratic inequality constraints can readily be incorporated. Design examples using a variable fractional delay (VFD) and a variable cutoff frequency (VCF) FIR filters are given to demonstrate the effectiveness of the proposed approach. © 2004 IEEE.published_or_final_versio

    Fractional Delay Digital Filters

    Get PDF
    • …
    corecore