22,583 research outputs found

    Advances in Joint CTC-Attention based End-to-End Speech Recognition with a Deep CNN Encoder and RNN-LM

    Full text link
    We present a state-of-the-art end-to-end Automatic Speech Recognition (ASR) model. We learn to listen and write characters with a joint Connectionist Temporal Classification (CTC) and attention-based encoder-decoder network. The encoder is a deep Convolutional Neural Network (CNN) based on the VGG network. The CTC network sits on top of the encoder and is jointly trained with the attention-based decoder. During the beam search process, we combine the CTC predictions, the attention-based decoder predictions and a separately trained LSTM language model. We achieve a 5-10\% error reduction compared to prior systems on spontaneous Japanese and Chinese speech, and our end-to-end model beats out traditional hybrid ASR systems.Comment: Accepted for INTERSPEECH 201

    Text segmentation with character-level text embeddings

    Get PDF
    Learning word representations has recently seen much success in computational linguistics. However, assuming sequences of word tokens as input to linguistic analysis is often unjustified. For many languages word segmentation is a non-trivial task and naturally occurring text is sometimes a mixture of natural language strings and other character data. We propose to learn text representations directly from raw character sequences by training a Simple recurrent Network to predict the next character in text. The network uses its hidden layer to evolve abstract representations of the character sequences it sees. To demonstrate the usefulness of the learned text embeddings, we use them as features in a supervised character level text segmentation and labeling task: recognizing spans of text containing programming language code. By using the embeddings as features we are able to substantially improve over a baseline which uses only surface character n-grams.Comment: Workshop on Deep Learning for Audio, Speech and Language Processing, ICML 201
    • …
    corecore