138,082 research outputs found

    A Monte Carlo Template based analysis for Air-Cherenkov Arrays

    Get PDF
    We present a high-performance event reconstruction algorithm: an Image Pixel-wise fit for Atmospheric Cherenkov Telescopes (ImPACT). The reconstruction algorithm is based around the likelihood fitting of camera pixel amplitudes to an expected image template. A maximum likelihood fit is performed to find the best-fit shower parameters. A related reconstruction algorithm has already been shown to provide significant improvements over traditional reconstruction for both the CAT and H.E.S.S. experiments. We demonstrate a significant improvement to the template generation step of the procedure, by the use of a full Monte Carlo air shower simulation in combination with a ray-tracing optics simulation to more accurately model the expected camera images. This reconstruction step is combined with an MVA-based background rejection. Examples are shown of the performance of the ImPACT analysis on both simulated and measured (from a strong VHE source) gamma-ray data from the H.E.S.S. array, demonstrating an improvement in sensitivity of more than a factor two in observation time over traditional image moments-fitting methods, with comparable performance to previous likelihood fitting analyses. ImPACT is a particularly promising approach for future large arrays such as the Cherenkov Telescope Array (CTA) due to its improved high-energy performance and suitability for arrays of mixed telescope types.Comment: 13 pages, 10 figure

    An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Get PDF
    FDK algorithm is a well-known 3D (three-dimensional) approximate algorithm for CT (computed tomography) image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional) approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction

    Blind Deblurring Reconstruction Technique with Applications in PET Imaging

    Get PDF
    We developed an empirical PET model taking into account system blurring and a blind iterative reconstruction scheme that estimates both the actual image and the point spread function of the system. Reconstruction images of high quality can be acquired by using the proposed reconstruction technique for both synthetic and experimental data. In the synthetic data study, the algorithm reduces image blurring and preserves the edges without introducing extra artifacts. The localized measurement shows that the performance of the reconstruction image improved by up to 100%. In experimental data studies, the contrast and quality of reconstruction is substantially improved. The proposed method shows promise in tumor localization and quantification

    Application of Blind Deblurring Reconstruction Technique to SPECT Imaging

    Get PDF
    An SPECT image can be approximated as the convolution of the ground truth spatial radioactivity with the system point spread function (PSF). The PSF of an SPECT system is determined by the combined effect of several factors, including the gamma camera PSF, scattering, attenuation, and collimator response. It is hard to determine the SPECT system PSF analytically, although it may be measured experimentally. We formulated a blind deblurring reconstruction algorithm to estimate both the spatial radioactivity distribution and the system PSF from the set of blurred projection images. The algorithm imposes certain spatial-frequency domain constraints on the reconstruction volume and the PSF and does not otherwise assume knowledge of the PSF. The algorithm alternates between two iterative update sequences that correspond to the PSF and radioactivity estimations, respectively. In simulations and a small-animal study, the algorithm reduced image blurring and preserved the edges without introducing extra artifacts. The localized measurement shows that the reconstruction efficiency of SPECT images improved more than 50% compared to conventional expectation maximization (EM) reconstruction. In experimental studies, the contrast and quality of reconstruction was substantially improved with the blind deblurring reconstruction algorithm
    corecore