23 research outputs found

    Optimal Resurfacing Decisions for Road Maintenance : A POMDP Perspective

    Get PDF
    International audienceWe develop an optimal maintenance policy for a road section to minimize the total maintenance cost over the infinite horizon when some deterioration and decision parameters are not observable. Both perfect and imperfect maintenance actions are possible through the application of various thicknesses of resurfacing layers. We use a two-phase deterioration process based on two parameters: the longitudinal cracking percentage and the deterioration growth rate. Our deterioration model is a state-based model based on the state-dependent Gamma process for the longitudinal cracking percentage and the Bilateral Gamma process for the deterioration growth rate. Moreover the maintenance decision is constrained by a maximum road thickness that makes the maintenance decisions more complex as it becomes how much surface layer to add as well as to remove. Because only one of the two deterioration parameters is observable, we formulate the problem as a partially observed Markov decision process and solve it using a grid-based value iteration algorithm. Numerical examples have shown that our model provides a preventive maintenance policy that slows down the initiation as well as the propagation of longitudinal cracks and that may ameliorate the road state to a better than as-good-as-new one by altering its composition through additive resurfacing layers

    Perseus: Randomized Point-based Value Iteration for POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems

    Les POMDP: une solution pour modéliser des problèmes de gestion adaptative en biologie de la conservation

    Get PDF
    National audienceEn biologie de la conservation, la gestion adaptative est un processus itératif d'amélioration de la gestion par la réduction de l'incertitude à travers une surveillance. La gestion adaptative est l'outil principal pour la conservation d'espèces menacées par les changements planétaires, toutefois les problèmes de gestion adaptative souffrent d'un ensemble pauvre de méthodes de résolution. L'approche courante employée pour résoudre un problème de gestion adaptative est de faire l'hypothèse que l'état du système est connu et que sa dynamique est dans un ensemble de modèles pré-définis. La méthode de résolution utilisée n'est pas satisfaisante parce qu'elle emploie l'algorithme d'itération sur la valeur sur un belief MDP discrétisé qui restreint l'étude à de très petits problèmes. Nous montrons comment dépasser cette limitation en modélisant un problème de gestion adaptative par un type particulier de processus de décision markovien partiellement observable (POMDP) appelé MDP à observabilité mixte (MOMDP). Nous montrons comment simplifier la fonction de valeur, l'opérateur de mise à jour de la fonction de valeur et le calcul de mise à jour de l'état de croyance. Ceci ouvre la voie à des améliorations des algorithmes de résolution des POMDP. Nous illustrons l'utilisation de notre MOMDP "adaptatif" à la gestion d'une population de pinsons diamants de Gould, une espèce d'oiseaux endémique de l'Australie du nord. Notre approche de modélisation simple est une grande avancée pour la résolution de problèmes de gestion adaptative pour la conservation en utilisant des méthodes efficaces pour les POMDP

    Purpose Restrictions on Information Use

    Full text link

    Anytime Point-Based Approximations for Large POMDPs

    Full text link
    The Partially Observable Markov Decision Process has long been recognized as a rich framework for real-world planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A well-known technique for speeding up POMDP solving involves performing value backups at specific belief points, rather than over the entire belief simplex. The efficiency of this approach, however, depends greatly on the selection of points. This paper presents a set of novel techniques for selecting informative belief points which work well in practice. The point selection procedure is combined with point-based value backups to form an effective anytime POMDP algorithm called Point-Based Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and present a theoretical analysis justifying the choice of belief selection technique. The second aim of this paper is to provide a thorough empirical comparison between PBVI and other state-of-the-art POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and differences. Evaluation is performed using both standard POMDP domains and realistic robotic tasks
    corecore