2,761 research outputs found

    A System for Induction of Oblique Decision Trees

    Full text link
    This article describes a new system for induction of oblique decision trees. This system, OC1, combines deterministic hill-climbing with two forms of randomization to find a good oblique split (in the form of a hyperplane) at each node of a decision tree. Oblique decision tree methods are tuned especially for domains in which the attributes are numeric, although they can be adapted to symbolic or mixed symbolic/numeric attributes. We present extensive empirical studies, using both real and artificial data, that analyze OC1's ability to construct oblique trees that are smaller and more accurate than their axis-parallel counterparts. We also examine the benefits of randomization for the construction of oblique decision trees.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Tree-based Intelligent Intrusion Detection System in Internet of Vehicles

    Full text link
    The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks such as denial of service, spoofing, and sniffing attacks. In this paper, an intelligent intrusion detection system (IDS) is proposed based on tree-structure machine learning models. The results from the implementation of the proposed intrusion detection system on standard data sets indicate that the system has the ability to identify various cyber-attacks in the AV networks. Furthermore, the proposed ensemble learning and feature selection approaches enable the proposed system to achieve high detection rate and low computational cost simultaneously.Comment: Accepted in IEEE Global Communications Conference (GLOBECOM) 201

    Improved customer choice predictions using ensemble methods

    Get PDF
    In this paper various ensemble learning methods from machinelearning and statistics are considered and applied to the customerchoice modeling problem. The application of ensemble learningusually improves the prediction quality of flexible models likedecision trees and thus leads to improved predictions. We giveexperimental results for two real-life marketing datasets usingdecision trees, ensemble versions of decision trees and thelogistic regression model, which is a standard approach for thisproblem. The ensemble models are found to improve upon individualdecision trees and outperform logistic regression.Next, an additive decomposition of the prediction error of amodel, the bias/variance decomposition, is considered. A modelwith a high bias lacks the flexibility to fit the data well. Ahigh variance indicates that a model is instable with respect todifferent datasets. Decision trees have a high variance componentand a low bias component in the prediction error, whereas logisticregression has a high bias component and a low variance component.It is shown that ensemble methods aim at minimizing the variancecomponent in the prediction error while leaving the bias componentunaltered. Bias/variance decompositions for all models for bothcustomer choice datasets are given to illustrate these concepts.brand choice;data mining;boosting;choice models;Bias/Variance decomposition;Bagging;CART;ensembles

    Improving Floating Search Feature Selection using Genetic Algorithm

    Get PDF
    Classification, a process for predicting the class of a given input data, is one of the most fundamental tasks in data mining. Classification performance is negatively affected by noisy data and therefore selecting features relevant to the problem is a critical step in classification, especially when applied to large datasets. In this article, a novel filter-based floating search technique for feature selection to select an optimal set of features for classification purposes is proposed. A genetic algorithm is employed to improve the quality of the features selected by the floating search method in each iteration. A criterion function is applied to select relevant and high-quality features that can improve classification accuracy. The proposed method was evaluated using 20 standard machine learning datasets of various size and complexity. The results show that the proposed method is effective in general across different classifiers and performs well in comparison with recently reported techniques. In addition, the application of the proposed method with support vector machine provides the best performance among the classifiers studied and outperformed previous researches with the majority of data sets

    Decision tree rule-based feature selection for imbalanced data

    Get PDF
    A class imbalance problem appears in many real world applications, e.g., fault diagnosis, text categorization and fraud detection. When dealing with an imbalanced dataset, feature selection becomes an important issue. To address it, this work proposes a feature selection method that is based on a decision tree rule and weighted Gini index. The effectiveness of the proposed methods is verified by classifying a dataset from Santander Bank and two datasets from UCI machine learning repository. The results show that our methods can achieve higher Area Under the Curve (AUC) and F-measure. We also compare them with filter-based feature selection approaches, i.e., Chi-Square and F-statistic. The results show that they outperform them but need slightly more computational efforts

    Rule-based Machine Learning Methods for Functional Prediction

    Full text link
    We describe a machine learning method for predicting the value of a real-valued function, given the values of multiple input variables. The method induces solutions from samples in the form of ordered disjunctive normal form (DNF) decision rules. A central objective of the method and representation is the induction of compact, easily interpretable solutions. This rule-based decision model can be extended to search efficiently for similar cases prior to approximating function values. Experimental results on real-world data demonstrate that the new techniques are competitive with existing machine learning and statistical methods and can sometimes yield superior regression performance.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore