8,132 research outputs found

    Efficient Authenticated Encryption Schemes with Public Verifiability

    Full text link
    An authenticated encryption scheme allows messages to be encrypted and authenticated simultaneously. In 2003, Ma and Chen proposed such a scheme with public verifiability. That is, in their scheme the receiver can efficiently prove to a third party that a message is indeed originated from a specific sender. In this paper, we first identify two security weaknesses in the Ma-Chen authenticated encryption scheme. Then, based on the Schnorr signature, we proposed an efficient and secure improved scheme such that all the desired security requirements are satisfied.Comment: Early version appears in the Proc. of The 60th IEEE Vehicular Technology Conference (VTC 2004-Fall) - Wireless Technologies for Global Security. IEEE, 200

    THE HARDWARE PERFORMANCE OF AUTHENTICATED ENCRYPTION MODES

    Get PDF
    Abstract Authenticated encryption has long been a vital operation in cryptography by its ability to provide confidentiality, integrity and authenticity at the same time. Its use has progressed in parallel with the worldwide use of Internet Protocol (IP), which has led to development of several new schemes as well as improved versions of existing ones. There have already been studies investigating software performance of various schemes. However, performance of authenticated encryption schemes on hardware has been left as an open question. We study the comprehensive evaluation of hardware performance of the most commonly used authenticated encryption modes CCM, GCM, OCB3 and EAX. These modes are block cipher based with additional authentication data (AAD). In order to make our evaluation fair, we have implemented each scheme with AES block cipher algorithm. In our evaluation, we targeted ASIC platforms and used 45 nm generic NANGATE Open Cell Library for syntheses. In each design, we have targeted minimizing the time-area product while maximizing the throughput. In the results, area, speed, time-area product, throughput, and power figures are presented for each scheme. Finally, we provide an unbiased discussion on the impact of the structure and complexity of each scheme on hardware implementation, together with recommendations on hardware-friendly authenticated encryption scheme design

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table

    On the Relations Between Diffie-Hellman and ID-Based Key Agreement from Pairings

    Get PDF
    This paper studies the relationships between the traditional Diffie-Hellman key agreement protocol and the identity-based (ID-based) key agreement protocol from pairings. For the Sakai-Ohgishi-Kasahara (SOK) ID-based key construction, we show that identical to the Diffie-Hellman protocol, the SOK key agreement protocol also has three variants, namely \emph{ephemeral}, \emph{semi-static} and \emph{static} versions. Upon this, we build solid relations between authenticated Diffie-Hellman (Auth-DH) protocols and ID-based authenticated key agreement (IB-AK) protocols, whereby we present two \emph{substitution rules} for this two types of protocols. The rules enable a conversion between the two types of protocols. In particular, we obtain the \emph{real} ID-based version of the well-known MQV (and HMQV) protocol. Similarly, for the Sakai-Kasahara (SK) key construction, we show that the key transport protocol underlining the SK ID-based encryption scheme (which we call the "SK protocol") has its non-ID counterpart, namely the Hughes protocol. Based on this observation, we establish relations between corresponding ID-based and non-ID-based protocols. In particular, we propose a highly enhanced version of the McCullagh-Barreto protocol

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure
    • …
    corecore