2,677 research outputs found

    A Global Workspace perspective on mental disorders

    Get PDF
    Recent developments in Global Workspace theory suggest that human consciousness can suffer interpenetrating dysfunctions of mutual and reciprocal interaction with embedding environments which will have early onset and often insidiously staged developmental progression, possibly according to a cancer model. A simple rate distortion argument implies that, if an external information source is pathogenic, then sufficient exposure to it is sure to write a sufficiently accurate image of it on mind and body in a punctuated manner so as to initiate or promote simililarly progressively punctuated developmental disorder. There can, thus, be no simple, reductionist brain chemical 'bug in the program' whose 'fix' can fully correct the problem. On the contrary, the growth of an individual over the life course, and the inevitable contact with a toxic physical, social, or cultural environment, can be expected to initiate developmental problems which will become more intrusive over time, most obviously according to some damage accumulation model, but likely according to far more subtle, highly punctuated, schemes analogous to tumorigenesis. The key intervention, at the population level, is clearly to limit such exposures, a question of proper environmental sanitation, in a large sense, a matter of social justice which has long been understood to be determined almost entirely by the interactions of cultural trajectory, group power relations, and economic structure, with public policy. Intervention at the individual level appears limited to triggering or extending periods of remission, as is the case with most cancers

    Entering the blackboard jungle: canonical dysfunction in conscious machines

    Get PDF
    The central paradigm of Artificial Intelligence is rapidly shifting toward biological models for both robotic devices and systems performing such critical tasks as network management and process control. Here we apply recent mathematical analysis of the necessary conditions for consciousness in humans in an attempt to gain some understanding of the likely canonical failure modes inherent to a broad class of global workspace/blackboard machines designed to emulate biological functions. Similar problems are likely to confront other possible architectures, although their mathematical description may be far less straightforward

    The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms

    Get PDF
    Chaotic maps play an important role in improving evolutionary algorithms (EAs) for avoiding the local optima and speeding up the convergence. However, different chaotic maps in different phases have different effects on EAs. This paper focuses on exploring the effects of chaotic maps and giving comprehensive guidance for improving multiobjective evolutionary algorithms (MOEAs) by series of experiments. NSGA-II algorithm, a representative of MOEAs using the nondominated sorting and elitist strategy, is taken as the framework to study the effect of chaotic maps. Ten chaotic maps are applied in MOEAs in three phases, that is, initial population, crossover, and mutation operator. Multiobjective problems (MOPs) adopted are ZDT series problems to show the generality. Since the scale of some sequences generated by chaotic maps is changed to fit for MOPs, the correctness of scaling transformation of chaotic sequences is proved by measuring the largest Lyapunov exponent. The convergence metric γ and diversity metric Δ are chosen to evaluate the performance of new algorithms with chaos. The results of experiments demonstrate that chaotic maps can improve the performance of MOEAs, especially in solving problems with convex and piecewise Pareto front. In addition, cat map has the best performance in solving problems with local optima

    Red Queen Coevolution on Fitness Landscapes

    Full text link
    Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve ex- ploring their fitness landscapes. Coevolution involves the coupling of species fit- ness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution com- menting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.). Springer Series in Emergence, Complexity, and Computation, 201
    • …
    corecore