14,343 research outputs found

    Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

    Full text link
    One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.Comment: Pre-peer reviewed version of the article accepted in Journal of Field Robotic

    Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    Get PDF
    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. The metrology camera system of PFS serves as the optical encoder of the COBRA fiber motors for the configuring of fibers. The 380mm diameter aperture metrology camera will locate at the Cassegrain focus of Subaru telescope to cover the whole focal plane with one 50M pixel Canon CMOS sensor. The metrology camera is designed to provide the fiber position information within 5{\mu}m error over the 45cm focal plane. The positions of all fibers can be obtained within 1s after the exposure is finished. This enables the overall fiber configuration to be less than 2 minutes.Comment: 10 pages, 12 figures, SPIE Astronomical Telescopes and Instrumentation 201

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness

    Robust Legged Robot State Estimation Using Factor Graph Optimization

    Full text link
    Legged robots, specifically quadrupeds, are becoming increasingly attractive for industrial applications such as inspection. However, to leave the laboratory and to become useful to an end user requires reliability in harsh conditions. From the perspective of state estimation, it is essential to be able to accurately estimate the robot's state despite challenges such as uneven or slippery terrain, textureless and reflective scenes, as well as dynamic camera occlusions. We are motivated to reduce the dependency on foot contact classifications, which fail when slipping, and to reduce position drift during dynamic motions such as trotting. To this end, we present a factor graph optimization method for state estimation which tightly fuses and smooths inertial navigation, leg odometry and visual odometry. The effectiveness of the approach is demonstrated using the ANYmal quadruped robot navigating in a realistic outdoor industrial environment. This experiment included trotting, walking, crossing obstacles and ascending a staircase. The proposed approach decreased the relative position error by up to 55% and absolute position error by 76% compared to kinematic-inertial odometry.Comment: 8 pages, 12 figures. Accepted to RA-L + IROS 2019, July 201

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing
    • …
    corecore