3,949 research outputs found

    Electrical Capacitance Volume Tomography Of High Contrast Dielectrics Using A Cuboid Geometry

    Get PDF
    An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm

    An image reconstruction algorithm based on the semiparametric model for electrical capacitance tomography

    Get PDF
    AbstractElectrical capacitance tomography (ECT) is considered as a promising tomography technology, and exactly reconstructing the original objects is highly desirable in real applications. In this paper, a generalized image reconstruction model that simultaneously considers the inaccurate property in the measured capacitance data and the linearization approximation error is presented. A generalized objective function, which has been developed using a combinational M-estimation and an extended stabilizing item, is proposed. The objective function unifies six estimation methods into a concise formula, where different estimation methods can be easily obtained by selecting different parameters. The homotopy method that integrates the beneficial advantages of the alternant iteration scheme is employed to solve the proposed objective function. Numerical simulations are implemented to evaluate the numerical performances and effectiveness of the proposed algorithm, and the numerical results reveal that the proposed algorithm is efficient and overcomes the numerical instability in the process of ECT image reconstruction. For the reconstructed objects in this paper, a dramatic improvement in accuracy and spatial resolution can be achieved, which indicates that the proposed algorithm is a promising candidate for solving ECT inverse problems

    Design and application of a multi-modal process tomography system

    Get PDF
    This paper presents a design and application study of an integrated multi-modal system designed to support a range of common modalities: electrical resistance, electrical capacitance and ultrasonic tomography. Such a system is designed for use with complex processes that exhibit behaviour changes over time and space, and thus demand equally diverse sensing modalities. A multi-modal process tomography system able to exploit multiple sensor modes must permit the integration of their data, probably centred upon a composite process model. The paper presents an overview of this approach followed by an overview of the systems engineering and integrated design constraints. These include a range of hardware oriented challenges: the complexity and specificity of the front end electronics for each modality; the need for front end data pre-processing and packing; the need to integrate the data to facilitate data fusion; and finally the features to enable successful fusion and interpretation. A range of software aspects are also reviewed: the need to support differing front-end sensors for each modality in a generic fashion; the need to communicate with front end data pre-processing and packing systems; the need to integrate the data to allow data fusion; and finally to enable successful interpretation. The review of the system concepts is illustrated with an application to the study of a complex multi-component process

    Image reconstruction using iterative transpose algorithm for optical tomography

    Get PDF
    This paper describes a transpose algorithm for use with an optical tomography system. The measurement system consisted of two orthogonal arrays, each having ten parallel views, resulting in a total of twenty sensors. The measurement section is divided into hundred equi-sized pixels. The forward problem is modelled by allocating an optical attenuation coefficient to each pixel. The attenuation of incident collimated light beams is then modelled using the Lambert-Beer law. The inverse problem is defined and the transpose of the sensitivity matrix is used to obtain an estimate of the attenuation coefficients in each pixel. The iterative method is investigated as a means of improving reconstructed image qualit

    EIT Reconstruction Algorithms: Pitfalls, Challenges and Recent Developments

    Full text link
    We review developments, issues and challenges in Electrical Impedance Tomography (EIT), for the 4th Workshop on Biomedical Applications of EIT, Manchester 2003. We focus on the necessity for three dimensional data collection and reconstruction, efficient solution of the forward problem and present and future reconstruction algorithms. We also suggest common pitfalls or ``inverse crimes'' to avoid.Comment: A review paper for the 4th Workshop on Biomedical Applications of EIT, Manchester, UK, 200
    corecore