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a b s t r a c t

Electrical capacitance tomography (ECT) is considered as a promising tomography
technology, and exactly reconstructing the original objects is highly desirable in real
applications. In this paper, a generalized image reconstruction model that simultaneously
considers the inaccurate property in the measured capacitance data and the linearization
approximation error is presented. A generalized objective function, which has been
developed using a combinational M-estimation and an extended stabilizing item, is
proposed. The objective function unifies six estimation methods into a concise formula,
where different estimation methods can be easily obtained by selecting different
parameters. The homotopy method that integrates the beneficial advantages of the
alternant iteration scheme is employed to solve the proposed objective function. Numerical
simulations are implemented to evaluate the numerical performances and effectiveness
of the proposed algorithm, and the numerical results reveal that the proposed algorithm
is efficient and overcomes the numerical instability in the process of ECT image
reconstruction. For the reconstructed objects in this paper, a dramatic improvement
in accuracy and spatial resolution can be achieved, which indicates that the proposed
algorithm is a promising candidate for solving ECT inverse problems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Applying the process tomography (PT) techniques to investigate the dynamic behaviors of multiphase systems in
industrial processes to reduce pollutant emission, improve efficiency and save energy has attracted widespread attention
in the past few years. Successful applications of the PT techniques depend mainly on the selection of the sensor system
deployed for the specified applications and the image reconstruction algorithms. ECT technology attempts to reconstruct
the cross-sectional permittivity distribution of a dielectric object from a set of the measured capacitance data. Owing to
the distinct advantages such as non-intrusive sensing, high speed, low cost, easy implementation and high safety, ECT is
regarded as a promising PT technology. In recent years, ECT technology has been accepted as a potent laboratory tool for
the investigation of the dynamic behaviors of multiphase systems or processes, and the identification of two-phase flow
patterns [1–10]. Furthermore, the application areas are being exploited.

Image reconstruction algorithms play a vital role in the successful application of ECT technology. Unfortunately, solutions
to the ECT inverse problem have to cope with a fundamental difficulty derived from the ill-posed nature, i.e., small
perturbations in the measured data or the forward solution will bring about unacceptably large errors in the inverse
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solutions. At present, the most crucial problems that still challenge the applications of ECT may be the relatively low
spatial resolution and accuracy in the reconstructed images. In ECT applications, it is exceedingly desirable to reconstruct
images with high accuracy. As a result, finding ways to improve ECT reconstruction quality has attracted widespread
attention in the past few years, and various algorithms had been proposed for ECT image reconstruction, such as the
linear back-projection (LBP) method [11], the Tikhonov regularization method [12], the Landweber iteration algorithm
[13–17], the truncated singular value decomposition (TSVD) method [13,17], the algebraic reconstruction technique (ART)
method [17], the simultaneous iterative reconstruction technique (SIRT) [18], the genetic algorithm [19], the generalized
vector sampled pattern matching method [20], the generalized Tikhonov regularization method [21–23], the simulated
annealing algorithm [24], the neural network algorithm [25,26], the OIOR algorithm [27], the Helmholtz-type regularization
method [28] and the four-dimensional reconstruction method [29]. It is worth mentioning that the Tikhonov regularization
method, the Landweber iteration algorithm and the TSVD method are three kinds of typical regularization techniques. The
distinct advantages of the LBP method are the numerical simplicity, and computational efficiency resulting from it only
involving a single matrix–vector multiplication; in particular the method can achieve online reconstruction. Unfortunately,
the quality of the images reconstructed by the LBP method is relatively low for complicated reconstruction tasks. As a
result, the LBP method is often applied in the qualitative analysis. The Landweber iteration algorithm has seen widespread
application in the past few years. The remarkable benefits of this algorithm include the easy implementation and low
computational complexity and cost. In most cases, the method is often effective. From the viewpoint of numerical
optimization, however, it is only a steepest descent algorithm, the rate of convergence is relatively low and the search
process often falls into the attractive domain of a local optimal solution. As a result, the accuracy of the images reconstructed
by the Landweber iteration algorithm is limited. The standard Tikhonov regularization (STR)method is an efficient approach
for solving inverse problems and has been successfully applied in various fields, with favorable numerical performances.
In essence, a Tikhonov regularization solution is a result of balancing the accuracy and stability of a solution. When the
STR method is applied in ECT image reconstruction, however, the quality of the images reconstructed by the algorithm
is far from perfect owing to the excessive smoothness effect. A distinct property of the STR method is achieving online
reconstruction, which is very important for some special applications. Additionally, it is worth mentioning that selecting
a suitable regularization parameter is a challenging task for successful application of the STR method. The TSVD method
achieves numerical stability of a solution by truncating the small singular values of the coefficient matrix [17]. The
advantages for themethod involve the easy implementation and low computational complexity; unfortunately, determining
the truncated singular values is challenging, particularly when the singular values of the coefficient matrix are continuously
descendent. In addition, when a large scale problem is considered, the computational burden in implementing the SVD is
heavy. As a result, the TSVD method is seldom adopted in the field of ECT image reconstruction. The ART algorithm and
the SIRT algorithm are commonly used for image reconstruction in X-ray computerized tomography. They are simple and
effective, especially when the systemmatrix is very large. Unfortunately, the quality of the images reconstructed by the ART
algorithm and the SIRT algorithm are not satisfactory in ECT applications. The four-dimensional reconstruction method can
achieve four-dimensional dielectric permittivity imaging usingmulti-frame ECT data, which provides a promising approach
for improving the spatial resolution of the reconstructed images [29].

In the past few years, these algorithms have played a positive role in promoting the development of ECT technology
and expanding the ranges of application. However, applications reveal that each algorithm has its pros and cons, and may
show different numerical performances for different reconstruction tasks. As a result, in real applications the selection of a
suitable algorithmdepends greatly on themeasurement requirements and the prior information for a specific reconstruction
objective. By and large, ECT reconstruction algorithms are far from perfect, and finding an efficient algorithm for achieving
a dramatic improvement in the reconstruction quality is highly desirable.

On the basis of the semiparametric method, this paper presents a generalized reconstruction model that simultaneously
considers the errors in the measured capacitance data and the linearization approximation error. A generalized objective
function, which has been developed using a combinational M-estimation and an extended stabilizing item, is proposed.
The objective function unifies six estimation methods into a concise formula, where different estimation methods can
be easily obtained by choosing different parameters. The homotopy method that integrates the desirable advantages of
the alternant iteration scheme is introduced for solving the proposed objective function. Numerical simulations were
implemented to evaluate the numerical performances and the effectiveness of the proposed algorithm, and satisfactory
numerical performances and encouraging results are observed.

The rest of this paper is organized as follows. Section 2 introduces the semiparametric model and a concise comparison
between the linearization model and the semiparametric model is presented. In Section 3, a generalized objective function,
which has been developed using combinational M-estimation and an extended stabilizing item, is described in detail. In
Section 4, the homotopymethod that integrates the beneficial advantage of the alternant iteration scheme is introduced, for
solving the proposed objective function problem. Thenumerical simulation results are presented in Section 5, for illustration.
Finally, Section 6 provides a summary and conclusion.

2. Representation of the ECT model

Roughly speaking, two problems, the forward problem and the inverse problem, arise in the process of ECT image
reconstruction. The main task of ECT forward problem solving is to compute the inter-electrode capacitances from the
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known permittivity distribution; in this phase the numerical implementation is relatively easy. The inverse problem aims
to estimate the permittivity distribution from the known capacitance data. In real applications, taking the measurement
noises and the linearization approximation into account, the ECT image reconstruction model can be simplified to [17]

SG = C + d (1)

where: C is an m × 1-dimensional vector indicating the normalized capacitance values; G is an n × 1-dimensional vector
standing for the normalized permittivity distribution, which denotes the gray level values in the reconstructed image; S
represents a matrix of dimensionm × n; d stands for anm × 1-dimensional vector indicating the noises in the capacitance
data.

It can be found from Eq. (1) that in the traditional linear model the higher order items are omitted in the process of
linearization. Applications indicate that the linearization model is feasible when the contrast between the low permittivity
and high permittivity in the reconstructed region is small, and has seen many successful applications. However, the
linearization model may yield a large approximation error when the difference between the low permittivity and high
permittivity in the reconstructed region is large. At present, the nonlinear reconstruction algorithms have been developed
for ECT image reconstruction [21,23]. Unfortunately, the computational burden and complexity is relatively high. Therefore,
developing an efficient algorithmwith low computational cost and complexity for simultaneously treating the inaccuracies
in the capacitance data and the image reconstruction model is highly desirable for real applications. The semiparametric
model simultaneously considers the noises in the measured capacitance data and the linearization approximation errors,
which can be formulated as [30]

SG + B = C + r (2)

where B is an m × 1-dimensional vector indicating the linearization error and r stands for an m × 1-dimensional vector
indicating the noises in the capacitance data. In this work, Eq. (2) is employed to serve as the image reconstruction model.

Comparing Eqs. (1) and (2), it can be seen that Eq. (2) is equivalent to Eq. (1) when B = 0. It is obvious that Eq. (1)
is a special case of Eq. (2). In Eq. (2), the major task of ECT inverse problem solving is obtaining G and B from the known
S and C parameters. It is worth noting that as compared to those for direct nonlinear image reconstruction algorithms,
the computational cost and complexity of the semiparametric model are relatively low, when simultaneously considering
the noise in the capacitance data and the linearization approximation error; furthermore, the numerical implementation is
comparatively easy, which will facilitate real engineering applications.

3. Algorithm analysis

Eq. (2) introduces an alternativemodel for ECT image reconstruction. It is obvious that finding an efficient computational
method is essential for the successful application of Eq. (2). It is well known that the process of ECT image reconstruction is a
typical ill-posed problem. In order to obtain a physicallymeaningful solution, as a consequence,methods that ensure a stable
numerical solution while increasing the quality of the reconstructed images should be employed. Applications indicate that
the ECT image reconstruction process is often reformulated into an optimization problem. As a result, a key issue, that of how
to design an efficient objective function, arises. In this section, a generalized objective function which has been developed
using a combinational M-estimation and an extended stabilizing item is described in detail.

3.1. The regularized semiparametric method

Directly solving Eq. (2) is challenging because two unknown variables G and B need to be obtained. An efficient
approach is to reformulate the solving of Eq. (2) into an optimization problem. In [31], the authors proposed the regularized
semiparametric method, which can be described as follows:

min
G,B

J = ‖E (SG + B − C)‖2
+ α1 ‖QB‖2

+ α2 ‖RG‖
2 (3)

where: α1 and α2 are the regularization parameters; ‖·‖ defines the 2-norm; and E, Q and R are weightedmatrices. It can be
seen that Eq. (3) is a special case of the Tikhonov regularization method, and the approximate solution obtained is a result
of balancing the accuracy and stability of a solution.

3.2. Extension of the objective function

Design of a favorable Tikhonov regularization objective function includes two key issues: the choice of the measure
function of accuracy of a solution and the design of the stabilizing item [12,32,33]. In general, a Tikhonov regularization
solution is a result of balancing the accuracy and stability of a solution. According to the basic elements of the Tikhonov
regularization method [32], as a consequence, Eq. (3) can be reformulated into a generalized form:

min
G,B

J = ϕ (G, B)+ α1Ω1 (B)+ α2Ω2 (G) (4)

where ϕ (G, B)measures the accuracy of a solution;Ω1 (B) andΩ2 (G) can be referred to as the stabilizing functions.
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Fig. 1. Function graphs for the absolute value function, the Welsch function and the Fair function.

It can be seen from the first item of the right hand side of Eq. (3) that a function of the sum of squares is used to measure
the fidelity of the capacitance data. Unfortunately, the least squares (LS) estimation is sensitive to outliers in the data. In
particular, the LS estimation is strongly influenced by the small cluster of outliers [34]. As a consequence, this approach
is therefore not directly suitable for the problems of estimations with outliers. Applications indicate that a robustness
estimation method, which can achieve a dramatic improvement in the reconstruction quality, will be highly desirable for
successful applications of ECT. Consequently, seeking a robust method is crucial for improving the robustness of the LS
estimation. In [30], on the basis of the M-estimation, a robust semiparametric estimation had been proposed, which can be
expressed as follows:

min
G,B

J =

m−
j=1

ρ

SjG + Bj − Cj


(5)

where: ρ(·) stands for an M-estimation function; Sj is the jth row of matrix S; and Bj and Cj represent the jth elements of
vectors B and C , respectively. Popular M-estimation functions include the absolute value function, the Huber function, the
Talvar function, theWelsch function and the Fair function. Fig. 1 presents the function graphs for the absolute value function,
theWelsch function and the Fair function when the value of the scale parameter is 1, and more details on the M-estimation
functions can be found in [34,35].

In real applications, the distribution patterns and level of the noises in the measured capacitance data are highly
complicated. Consequently, deciding how to select a suitable M-estimation function is challenging in real applications. In
the field of linear regression, a combinational estimation that integrates the beneficial advantages of the least absolute
deviations estimation and the M-estimation had been proposed for improving the robustness of the LS method [36]. In
order to improve the adaptability of the estimation, on the basis of the semiparametric model, a combinational estimation
that integrates the beneficial advantages of the different M-estimation functions is proposed, which can be expressed as
follows:

min
G,B

J = (1 − δ)

m−
j=1

ρ1

SjG + Bj − Cj


+ δ

m−
j=1

ρ2

SjG + Bj − Cj


(6)

where 0 ≤ δ ≤ 1; ρ1(·) and ρ2(·) represent M-estimation functions. It is clear that Eq. (6) integrates the beneficial
advantages of two M-estimation functions, which may improve the robustness and adaptability of estimation in real
applications. Additionally, it can be seen that in Eq. (6) different estimation methods can be conveniently obtained by
selecting different parameters, which is a desirable property for real ECT applications. Taking the ill-posed nature into
account, as a result, applying the Tikhonov regularization technique to Eq. (6) yields

min
G,B

J = (1 − δ)

m−
j=1

ρ1

SjG + Bj − Cj


+ δ

m−
j=1

ρ2

SjG + Bj − Cj


+ α1Ω1 (B)+ α2Ω2 (G) . (7)

The following conclusions can be obtained from Eq. (7):
① Eq. (7) is a regularized robust semiparametric method when δ = 1 and B ≠ 0, which can be described as follows:

min
G,B

J =

m−
j=1

ρ2

SjG + Bj − Cj


+ α1Ω1 (B)+ α2Ω2 (G) . (8)
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② Eq. (7) is a regularized robust semiparametric method when δ = 0 and B ≠ 0, which can be expressed as follows:

min
G,B

J =

m−
j=1

ρ1

SjG + Bj − Cj


+ α1Ω1 (B)+ α2Ω2 (G) . (9)

③ Eq. (7) is a regularized combinational robust semiparametric method when 0 < δ < 1 and B ≠ 0, which can be depicted
as follows:

min
G,B

J = (1 − δ)

m−
j=1

ρ1

SjG + Bj − Cj


+ δ

m−
j=1

ρ2

SjG + Bj − Cj


+ α1Ω1 (B)+ α2Ω2 (G) . (10)

④ Eq. (7) is a regularized ordinary M-estimation when δ = 1 and B = 0, which can be described as follows:

min
G

J =

m−
j=1

ρ2

SjG − Cj


+ α2Ω2 (G) . (11)

⑤ Eq. (7) is a regularized ordinary M-estimation when δ = 0 and B = 0, which can be expressed as follows:

min
G

J =

m−
j=1

ρ1

SjG − Cj


+ α2Ω2 (G) . (12)

⑥ Eq. (7) is a regularized ordinary combinational M-estimation when 0 < δ < 1 and B = 0, which can be depicted as
follows:

min
G

J = (1 − δ)

m−
j=1

ρ1

SjG − Cj


+ δ

m−
j=1

ρ2

SjG − Cj


+ α2Ω2 (G) . (13)

Eq. (7) unifies six regularized estimation methods into a concise formula, where different estimation methods can be easily
obtained by selecting different parameters. These properties will be highly desirable for real applications.

The design of the stabilizing item that will strongly influence the quality of the reconstructed images plays an important
role in successful applications of Eq. (7). As a consequence, devising an efficient stabilizing item is highly desirable for real
applications. Practical experience indicates that the design of the stabilizing item depends mainly on the properties and
prior information of a specific reconstruction task. In the past years, various stabilizing items have been developed for ECT
image reconstruction. A distinct dissimilarity between different stabilizing items is that different penalties are imposed on
the unknown variables to accomplish the numerical stability of a solution from the viewpoint of the penalty function. It
is clear that different reconstruction results will be obtained when different stabilizing items are employed. In [37], the
following stabilizing function had been proposed for ensuring a stable numerical solution:

Ω (G) =

n−
i=1

G2
i

u + G2
i

(14)

where u > 0 is a predetermined parameter.
When Eq. (14) is applied in ECT image reconstruction, unfortunately, the quality of the reconstructed images is far from

satisfactory owing to the characteristics in the process of ECT image reconstruction. Taking complicated reconstruction
objects such as multiphase flows in ECT applications into account, Eq. (14) is generalized to increase the adaptability for
complicated reconstruction objects, which can be expressed as follows:

Ω2 (G) =

n−
i=1

ln

1 + ln


1 + |Gi|

pi


u + ln

1 + ln


1 + |Gi|

pi
 (15)

where 0 < pi < 2. It can be seen from Eqs. (14) and (15) that the two equations are essentially consistent, and the prominent
dissimilarity is that different penalties are imposed on the unknown variables to achieve the numerical stability of a solution.

Since the absolute value function is not differentiable at the point when its value is zero. The following formula is
employed for approximate computation [38]:

|x| ≈

x2 + ξ

1/2
(16)

where ξ > 0 is a predetermined parameter. As a result, Eq. (15) can be approximated as follows:

Ω2 (G) ≈

n−
i=1

ln

1 + ln


1 +


G2
i + ξ

pi/2
u + ln


1 + ln


1 +


G2
i + ξ

pi/2 . (17)
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In this work, the selectedM-estimation functions are theWelsch function and the Fair function [34,35], which are presented
in Eqs. (18) and (19), respectively:

fWelsch(x) =
β2
1

2


1 − exp


−


x
β1

2


(18)

fFair(x) = β2
2


|x|
β2

− ln

1 +

|x|
β2


(19)

where β1 > 0 and β2 > 0 are the predetermined parameters.
Additionally, in this paper itemΩ(B) is defined as the ℓq norm, which can be formulated as follows:

Ω1(B) =

m−
j=1

Bj
qj (20)

where 0 < q ≤ 2. According to Eq. (16), for easy computation, Eq. (20) can be approximated as follows:

Ω1(B) ≈

m−
j=1


B2
j + ξ

qj/2
. (21)

According to the above discussion, as a result, a generalized objective function can be obtained for ECT image reconstruction:

min
G,B

J = δ

m−
j=1

β2
1

2


1 − exp


−


SjG + Bj − Cj

β1

2


+ (1 − δ)

m−
j=1

β2
2

SjG + Bj − Cj


β2
− ln


1 +

SjG + Bj − Cj


β2



+α1

m−
j=1

Bj
qj + α2

n−
i=1

ln

1 + ln


1 +


G2
i + ξ

pi/2
u + ln


1 + ln


1 +


G2
i + ξ

pi/2 . (22)

According to Eq. (16), for easy computation, Eq. (22) can be approximated as follows:

min
G,B

J = δ

m−
j=1

β2
1

2


1 − exp


−


rj
β1

2


+ (1 − δ)

m−
j=1

β2
2


r2j + ξ

1/2
β2

− ln


1 +


r2j + ξ

1/2
β2


+ α1

m−
j=1


B2
j + ξ

qj/2

+α2

n−
i=1

ln

1 + ln


1 +


G2
i + ξ

pi/2
u + ln


1 + ln


1 +


G2
i + ξ

pi/2 (23)

where rj = SjG + Bj − Cj.
Eqs. (23) and (3) are essentially consistent from the viewpoint of the Tikhonov regularizationmethod, that is, the solution

obtained is a result of balancing the accuracy and stability of a solution [32]. The remarkable dissimilarities are that the
proposed objective function considers the robustness of estimation and a new stabilizing item is designed to achieve the
numerical stability of a solution.

4. Solving the objective function

Eq. (23) is an unconstrained optimization problem. Compared to solving the traditional linearization model, the solving
of Eq. (23) is challenging. As a result, finding an efficient numerical method with low computational complexity and cost
is essential to successful applications of Eq. (23). In this section, the alternant iteration scheme and homotopy method are
introduced, and an efficient algorithm that integrates the beneficial advantages of the both methods is described in detail.

Directly solving Eq. (23) is challenging because two unknown variables, G and B, need to be obtained. For ease of
calculation, the alternant iteration schemehadbeenproposed in [30]. The key element behind the alternant iteration scheme
is that variablesG and B are obtained alternately, that is, in the kth step, if the value of variable G is given, then the estimation
of variable B can be obtained by solving Eq. (23), and variable G can be recalculated using a suitable algorithm when B is
fixed. Finally, repeating the above process, the estimation of the variables G and B can be achieved.
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In this section, for conciseness of expression, the homotopymethod is introduced according to variable G. The solving for
variable B using the homotopy method is similar to that for variable G. According to the alternant iteration scheme, when
the estimation of variable B is obtained in the kth step, minimizing Eq. (23) is equivalent to the solving of the following
system of nonlinear equations [39]:

F (G) = 0 (24)

where F (G) is the gradient vector of Eq. (23) when variable B is known.
For the algorithms for solving a system of nonlinear equations, such as the Newton algorithm and the quasi-Newton

methods, the iterative series

Gk

may converge to the real solution G∗ only when the initial values are sufficiently close to

G∗. Unfortunately, providing a good initial value is still challenging in real ECT applications. As a result, finding an efficient
algorithm where the numerical performances are not sensitive to the choice of the initial value will be highly desirable for
real applications. In the past few years, a lot of effort has been devoted to developing such numerical methods and great
advances have been made. One of the successes is the homotopy method, which has found wide application with excellent
numerical performances. The homotopymethod permits rather general initial values, not only those sufficiently close to the
real solution G∗. In fact, the homotopy method can be applied to complicated systems where nothing is known about the
solutions and where solutions are required to exist even if the coefficients in the equations are perturbed or the coefficients
are inaccurate. More details on the homotopy method can be found in [40–42].

The general homotopy paradigm involves embedding the equations to be solved, F (G) = 0, in a system of equations
of one higher dimension, H (G, λ) = 0, with the introduction of one more variable λ, called the homotopy parameter or
continuation parameter. Typically, λ is restricted to the range [0, 1], and the embedding is done such that the augmented
system H (G, 0) = 0 is easy to solve and reduces to the original system when λ = 1, i.e., H (G, 1) = F (G). More details on
the design of the homotopy equation can be found in [41,42]. In order to efficiently solve the homotopy equation, λ ∈ [0, 1]
can be divided into [40,42]

0 = λ0 < λ1 < · · · < λN = 1. (25)

At each point λi, solve the following discrete homotopy equation using a suitable algorithm:

H (G, λi) = 0, i = 1, 2, . . . ,N. (26)

Setting the solution G (λi) as the initial value of the homotopy equation H (G, λi+1) = 0, repeat this process until λi = 1;
the solution obtained is the final solution.

In this paper, the fixed point homotopy is employed for simplification of the computation, which can be expressed as
follows:

(1 − λi) (G − G0)+ λiF (G) = 0. (27)

For notational simplicity, Eq. (27) can be concisely reformulated as

G = ψ (G, λi) (28)

where ψ(·) is a function of variables G and λ.
It is obvious that Eq. (28) is a system of nonlinear equations. In this work, the fixed point iterative algorithm is used to

solve Eq. (28), which can be described as follows [41]:

Gk+1
= ψ


Gk, λi


. (29)

It can be seen that the range of the solution is from 0 to 1. According to the prior information, consequently, the iterative
scheme is slightly modified. As a result, a projected operator is introduced into this iterative scheme:

Gk+1
= Project


ψ

Gk, λi


(30)

where

Project [g(x)] =

0, if g(x) < 0
g(x), if 0 ≤ g(x) ≤ 1
1 if g(x) > 1.

(31)

5. Numerical simulations and discussion

According to the above discussion, the proposed image reconstruction method involves solving Eq. (23) using the
homotopy method with the alternant iteration scheme, which can be referred to as the semiparametric reconstruction (SR)
method. In this paper, numerical simulations are implemented to evaluate the numerical performances and effectiveness
of the SR algorithm, and the quality of the reconstructed images is compared to those for the projected Landweber iteration
(PLI) algorithm and the ART algorithm. All algorithms were performed using the MATLAB software.
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a b c d

Fig. 2. Tested objects.

a b c d

Fig. 3. Images reconstructed by the PLI algorithm.

a b c d

Fig. 4. Images reconstructed by the ART algorithm.

In the numerical simulations, a 12-electrode square sensor was employed and an image was presented using 32 × 32
pixels. Four permittivity distributions, which are shown in Fig. 2, were chosen for image reconstruction. The black color
stands for the high permittivity materials with a value of 2.6, and the white color represents the low permittivity materials
with a value of 1.0.

Initial images for the PLI algorithm, the ART algorithm and the SR algorithm were computed by the STR method, which
can be defined as follows: G = (ST S + αI)−1STC . The images reconstructed by the PLI algorithm and the ART algorithm
are shown in Figs. 3 and 4, respectively. Tables 1 and 2 present the algorithmic parameters for the PLI algorithm and the
ART algorithm, respectively. In the SR algorithm, we set pi = p, qj = q (i = 1, 2, . . . , n), q = 1, λ = 1, β1 = 1, β2 = 1,
δ = 0.5, and u = 0.001, and the values of p are selected according to a specific reconstruction task. The number of iterations
is 6 for all cases. The rest of the algorithmic parameters for the SR algorithm are shown in Table 3. Fig. 5 shows the images
reconstructed by the SR algorithm. The image error [17], which is presented in Table 4, is used to evaluate the quality of the
reconstructed images.

Fig. 3 shows the images reconstructed by the PLI algorithm. It can be seen that the main advantages for the PLI algorithm
involve the easy implementation and low computational complexity and cost. Unfortunately, the quality of the images
reconstructed by the PLI algorithm is not satisfactory. The artifacts in the reconstructed images are not removed effectively
and the distortions are relatively serious. These results also reveal that it is hard for the PLI algorithm to exactly reconstruct
the original objects.

The images reconstructed by theART algorithmare shown in Fig. 4. It can be seen that the advantages of theART algorithm
involve the easy implementation and the low computational complexity; however, the quality of the reconstructed images
is far from perfect and the distortion of the reconstructed images is relatively large. These results indicate that it is hard for
the ART method to ensure detailed information in the reconstructed images.

Fig. 5 shows the images reconstructed by the SR algorithm. As could have been expected, in all cases considered
in this work, the SR algorithm shows excellent numerical performances. A dramatic improvement in the accuracy and
spatial resolution in the reconstructed images is achieved, and the artifacts in the reconstructed images can be effectively
eliminated. The reconstruction results also indicate that the SR algorithm is successful in solving ECT image reconstruction
problems.
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a b c d

Fig. 5. Images reconstructed by the SR algorithm.

Table 1
Algorithmic parameters for the PLI algorithm.

Algorithmic parameters Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)

Relaxation factor 1 1 1 1
Number of iterations 500 500 530 680

Table 2
Algorithmic parameters for the ART algorithm.

Algorithmic parameters Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)

Relaxation factor 1 1 1 1
Number of iterations 400 400 405 360

Table 3
Algorithmic parameters for the SR algorithm.

Algorithmic parameters Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)

p 0.5 0.5 0.5 0.4
α1 0.2 0.2 0.2 0.2
α2 0.01 0.01 0.01 0.01

Table 4
Image error (%).

Algorithms Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)

PLI 18.98 17.64 18.84 17.57
ART 20.32 18.54 20.45 18.12
SR 0.15 0.26 0.80 3.64

Tables 1–3 present the algorithmic parameters for the PLI algorithm, the ART algorithm and the SR algorithm,
respectively. It can be seen that the algorithmic parameters for the PLI algorithm and the ART algorithm are simpler than
those for the SR algorithm, which indicates that the computational complexities of the PLI algorithm and the ART algorithm
are lower than that of the SR algorithm. It is worth mentioning that the objective function in the SR algorithm can be
simplified by selecting different parameters in real applications.

The image errors are shown in Table 4. The second and third rows give the image errors for the PLI algorithm and
the ART algorithm, respectively. It can be observed that for the cases considered in this paper the accuracy of the images
reconstructed by the PLI algorithm is slightly higher than that of the images reconstructed by the ART algorithm. The fourth
row in Table 4 presents the image errors for the SR algorithm. It can be seen that for the reconstructed cases in this paper
the SR algorithm gives the smallest image errors and a dramatic improvement in the accuracy is achieved, which indicates
that the SR algorithm is successful in solving ECT image reconstruction problems.

6. Conclusions

Exactly reconstructing the original objects is highly desirable in ECT applications. In theory, ECT image reconstruction
processes are discrete inverse problems with a finite number of parameters; methods that ensure the numerical stability
of a solution while increasing the quality of the images reconstructed should be adopted. In this paper, a generalized
image reconstruction model that simultaneously considers the inaccurate property in the measured capacitance data
and the linearization approximation error is presented. A generalized objective function, which has been developed
using a combinational M-estimation and an extended stabilizing item, is proposed. The objective function unifies six
estimationmethods into a concise formula, where different estimationmethods can be easily obtained by selecting different
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parameters. A homotopy method that integrates the beneficial advantages of the alternant iteration scheme is employed
to solve the proposed objective function. Numerical simulations are implemented to evaluate the numerical performances
and effectiveness of the proposed algorithm, and the numerical results reveal that the proposed algorithm is efficient and
overcomes the problem of numerical instability in the process of ECT image reconstruction. For the reconstruction objects
considered in this paper, a dramatic improvement in accuracy and spatial resolution can be achieved, which indicates that
the proposed algorithm is a promising candidate for solving the ECT inverse problem.

Applications indicate that each algorithm has its pros and cons, and may show different numerical performances for
different reconstruction objects owing to the ill-posed nature of the ECT image reconstruction problem. In real applications,
the selection of an algorithm depends mainly on the prior information for a specific reconstruction problem and the
measurement requirements. Our work provides an alternative approach for ECT image reconstruction, which should be
further investigated in the future.
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