29 research outputs found

    Transistor scaled HPC application performance

    Full text link
    We propose a radically new, biologically inspired, model of extreme scale computer on which ap- plication performance automatically scales with the transistor count even in the face of component failures. Today high performance computers are massively parallel systems composed of potentially hundreds of thousands of traditional processor cores, formed from trillions of transistors, consuming megawatts of power. Unfortunately, increasing the number of cores in a system, unlike increasing clock frequencies, does not automatically translate to application level improvements. No general auto-parallelization techniques or tools exist for HPC systems. To obtain application improvements, HPC application programmers must manually cope with the challenge of multicore programming and the significant drop in reliability associated with the sheer number of transistors. Drawing on biological inspiration, the basic premise behind this work is that computation can be dramatically accelerated by integrating a very large-scale, system-wide, predictive associative memory into the operation of the computer. The memory effectively turns computation into a form of pattern recognition and prediction whose result can be used to avoid significant fractions of computation. To be effective the expectation is that the memory will require billions of concurrent devices akin to biological cortical systems, where each device implements a small amount of storage, computation and localized communication. As typified by the recent announcement of the Lyric GP5 Probability Processor, very efficient scalable hardware for pattern recognition and prediction are on the horizon. One class of such devices, called neuromorphic, was pioneered by Carver Mead in the 80’s to provide a path for breaking the power, scaling, and reliability barriers associated with standard digital VLSI tech- nology. Recent neuromorphic research examples include work at Stanford, MIT, and the DARPA Sponsored SyNAPSE Project. These devices operate transistors as unclocked analog devices orga- nized to implement pattern recognition and prediction several orders of magnitude more efficiently than functionally equivalent digital counterparts. Abstractly, the devices can be used to implement modern machine learning or statistical inference. When exposed to data as a time-varying signal, the devices learn and store patterns in the data at multiple time scales and constantly provide predictions about what the signal will do in the future. This kind of function can be seen as a form of predictive associative memory. In this paper we describe our model and initial plans for exploring it.Department of Energy Office of Science (DE-SC0005365), National Science Foundation (1012798

    2009- 2010 UNLV McNair Journal

    Full text link
    Journal articles based on research conducted by undergraduate students in the McNair Scholars Program Table of Contents Biography of Dr. Ronald E. McNair Statements: Dr. Neal J. Smatresk, UNLV President Dr. Juanita P. Fain, Vice President of Student Affairs Dr. William W. Sullivan, Associate Vice President for Retention and Outreach Mr. Keith Rogers, Deputy Executive Director of the Center for Academic Enrichment and Outreach McNair Scholars Institute Staf

    The Morbid Health Implications of Living in the Interior Built Environment

    Get PDF
    There is an alarming quantity of chemicals being incorporated into common building materials. These materials significantly increase the toxicity of indoor environments, with their toxicity inherent across most stages of the materials life cycle, negatively impacting humans and the broader environment, from production through to construction, occupation, demolition and waste disposal. This research aims to make explicit the prevalence and effect of these toxins, intending to influence a reduction of poor design and construction practices

    Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments

    Get PDF
    This book presents the collection of fifty two papers which were presented on the First International Conference on BUSINESS SUSTAINABILITY ’08 - Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments, held in Ofir, Portugal, from 25th to 27th of June, 2008. The main motive of the meeting was the growing awareness of the importance of the sustainability issue. This importance had emerged from the growing uncertainty of the market behaviour that leads to the characterization of the market, i.e. environment, as turbulent. Actually, the characterization of the environment as uncertain and turbulent reflects the fact that the traditional technocratic and/or socio-technical approaches cannot effectively and efficiently lead with the present situation. In other words, the rise of the sustainability issue means the quest for new instruments to deal with uncertainty and/or turbulence. The sustainability issue has a complex nature and solutions are sought in a wide range of domains and instruments to achieve and manage it. The domains range from environmental sustainability (referring to natural environment) through organisational and business sustainability towards social sustainability. Concerning the instruments for sustainability, they range from traditional engineering and management methodologies towards “soft” instruments such as knowledge, learning, creativity. The papers in this book address virtually whole sustainability problems space in a greater or lesser extent. However, although the uncertainty and/or turbulence, or in other words the dynamic properties, come from coupling of management, technology, learning, individuals, organisations and society, meaning that everything is at the same time effect and cause, we wanted to put the emphasis on business with the intention to address primarily the companies and their businesses. From this reason, the main title of the book is “Business Sustainability” but with the approach of coupling Management, Technology and Learning for individuals, organisations and society in Turbulent Environments. Concerning the First International Conference on BUSINESS SUSTAINABILITY, its particularity was that it had served primarily as a learning environment in which the papers published in this book were the ground for further individual and collective growth in understanding and perception of sustainability and capacity for building new instruments for business sustainability. In that respect, the methodology of the conference work was basically dialogical, meaning promoting dialog on the papers, but also including formal paper presentations. In this way, the conference presented a rich space for satisfying different authors’ and participants’ needs. Additionally, promoting the widest and global learning environment and participativeness, the Conference Organisation provided the broadcasting over Internet of the Conference sessions, dialogical and formal presentations, for all authors’ and participants’ institutions, as an innovative Conference feature. In these terms, this book could also be understood as a complementary instrument to the Conference authors’ and participants’, but also to the wider readerships’ interested in the sustainability issues. The book brought together 97 authors from 10 countries, namely from Australia, Finland, France, Germany, Ireland, Portugal, Russia, Serbia, Sweden and United Kingdom. The authors “ranged” from senior and renowned scientists to young researchers providing a rich and learning environment. At the end, the editors hope and would like that this book will be useful, meeting the expectation of the authors and wider readership and serving for enhancing the individual and collective learning, and to incentive further scientific development and creation of new papers. Also, the editors would use this opportunity to announce the intention to continue with new editions of the conference and subsequent editions of accompanying books on the subject of BUSINESS SUSTAINABILITY, the second of which is planned for year 2011.info:eu-repo/semantics/publishedVersio

    Learning styles and neuro-linguistic programming representational systems in nurse education

    Get PDF
    The main aim of this study was to investigate student nurses' learning experiences. The study had two main aims: 1. To investigate the relationship between Learning Styles and Neuro-Linguistic Programming (NLP) representational systems in Pre-Registration Nurse Education. 2. To explore NLP representational systems as a means of enhancing teaching and learning in Preregistration Nurse Education Learning Style theory is well recognised in education, although there are some criticisms related to its validity and reliability. NLP is making a major impact on communications, learning and development in the commercial, health and sports sectors. Cognitive Psychology and the concepts of information processing and learning strategies encompass both learning style theory and NLP and is therefore utilised as a theoretical framework in this study. The study was conducted in two parts: Firstly, a questionnaire was delivered to student nurses to ascertain their learning style and internal representational preferences. From this a correlational approach was established to highlight important relationships. Secondly, some of the students were video interviewed to determine how they structured their learning experiences internally and how this was demonstrated in their body positions. The findings showed that Honey and Mumfords' Theorist learning style was most strongly preferred amongst this sample population. The Visual internal representational system was preferred over the Kinaesthetic and Auditory modalities. The Theorist learning style and Visual modality also showed a positive correlation, as did Activist and the Smell modality. It is recognised that learning style preferences should be used for students to gain awareness of ways to enhance their learning, and that rich, multi-sensory learning environments should also be encouraged. In. the light of the findings in this study it is suggested that the visual modality be utilised, via the use of visual tools and metaphor, and that approaches such as problem based learning (PBL) should be considered in order to benefit students of all learning style preferences.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mathematical analysis for tumor growth model of ordinary differential equations

    Get PDF
    Special functions occur quite frequently in mathematical analysis and lend itself rather frequently in physical and engineering applications. Among the special functions, gamma function seemed to be widely used. The purpose of this thesis is to analyse the various properties of gamma function and use these properties and its definition to derive and tackle some integration problem which occur quite frequently in applications. It should be noted that if elementary techniques such as substitution and integration by parts were used to tackle most of the integration problems, then we will end up with frustration. Due to this, importance of gamma function cannot be denied

    AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)

    Get PDF
    This book is a collection of the accepted papers presented at the Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) in conjunction with the 36th AAAI Conference on Artificial Intelligence 2022. During AIBSD 2022, the attendees addressed the existing issues of data bias and scarcity in Artificial Intelligence and discussed potential solutions in real-world scenarios. A set of papers presented at AIBSD 2022 is selected for further publication and included in this book
    corecore