125 research outputs found

    Support infrastructures for multimedia services with guaranteed continuity and QoS

    Get PDF
    Advances in wireless networking and content delivery systems are enabling new challenging provisioning scenarios where a growing number of users access multimedia services, e.g., audio/video streaming, while moving among different points of attachment to the Internet, possibly with different connectivity technologies, e.g., Wi-Fi, Bluetooth, and cellular 3G. That calls for novel middlewares capable of dynamically personalizing service provisioning to the characteristics of client environments, in particular to discontinuities in wireless resource availability due to handoffs. This dissertation proposes a novel middleware solution, called MUM, that performs effective and context-aware handoff management to transparently avoid service interruptions during both horizontal and vertical handoffs. To achieve the goal, MUM exploits the full visibility of wireless connections available in client localities and their handoff implementations (handoff awareness), of service quality requirements and handoff-related quality degradations (QoS awareness), and of network topology and resources available in current/future localities (location awareness). The design and implementation of the all main MUM components along with extensive on the field trials of the realized middleware architecture confirmed the validity of the proposed full context-aware handoff management approach. In particular, the reported experimental results demonstrate that MUM can effectively maintain service continuity for a wide range of different multimedia services by exploiting handoff prediction mechanisms, adaptive buffering and pre-fetching techniques, and proactive re-addressing/re-binding

    Multimedia session continuity in the IP multimedia subsystem : investigation and testbed implementation

    Get PDF
    Includes bibliographical references (leaves 91-94).The advent of Internet Protocol (IP) based rich multimedia services and applications has seen rapid growth and adoption in recent years, with an equally increasing user base. Voice over IP (VoIP) and IP Television (IPTV) are key examples of services that are blurring the lines between traditional stove-pipe approach network infrastructures. In these, each service required a different network technology to be provisioned, and could only be accessed through a specific end user equipment (UE) technology. The move towards an all-IP core network infrastructure and the proliferation of multi-capability multi-interface user devices has spurred a convergence trend characterized by access to services and applications through any network, any device and anywhere

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Handover based IMS registration scheme for next generation mobile networks

    Get PDF
    Next generation mobile networks aim to provide faster speed and more capacity along with energy efficiency to support video streaming and massive data sharing in social and communication networks. In these networks, user equipment has to register with IPMultimedia Subsystem (IMS) which promises quality of service to the mobile users that frequently move across different access networks. After each handover caused due to mobility, IMS provides IPSec Security Association establishment and authentication phases. The main issue is that unnecessary reregistration after every handover results in latency and communication overhead. To tackle these issues, this paper presents a lightweight Fast IMS Mobility (FIM) registration scheme that avoids unnecessary conventional registration phases such as security associations, authentication, and authorization. FIM maintains a flag to avoid deregistration and sends a subsequent message to provide necessary parameters to IMS servers after mobility. It also handles the change of IP address for user equipment and transferring the security associations from old to new servers.We have validated the performance of FIM by developing a testbed consisting of IMS servers and user equipment. The experimental results demonstrate the performance supremacy of FIM. It reduces media disruption time, number of messages, and packet loss up to 67%, 100%, and 61%, respectively, as compared to preliminaries. © 2017 Shireen Tahira et al

    Handover based IMS registration scheme for next generation mobile networks

    Full text link
    Next generation mobile networks aim to provide faster speed and more capacity along with energy efficiency to support video streaming and massive data sharing in social and communication networks. In these networks, user equipment has to register with IPMultimedia Subsystem (IMS) which promises quality of service to the mobile users that frequently move across different access networks. After each handover caused due to mobility, IMS provides IPSec Security Association establishment and authentication phases. The main issue is that unnecessary reregistration after every handover results in latency and communication overhead. To tackle these issues, this paper presents a lightweight Fast IMS Mobility (FIM) registration scheme that avoids unnecessary conventional registration phases such as security associations, authentication, and authorization. FIM maintains a flag to avoid deregistration and sends a subsequent message to provide necessary parameters to IMS servers after mobility. It also handles the change of IP address for user equipment and transferring the security associations from old to new servers.We have validated the performance of FIM by developing a testbed consisting of IMS servers and user equipment. The experimental results demonstrate the performance supremacy of FIM. It reduces media disruption time, number of messages, and packet loss up to 67%, 100%, and 61%, respectively, as compared to preliminaries

    A cross-layer mobility management framework for next-generation wireless roaming

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 62-64).This thesis proposes a mobility management framework that aims to provide a framework for advanced mobility algorithms that allows the challenges of next-generation roaming to be met. The framework features tools that gather context and content information, guarantee low-level QoS, provide security, and offer link and handoff management. The framework aims to be scalable and reliable for all-IP heterogeneous wireless networks whilst conforming to 4G service requirements

    Service Continuity in 3GPP Mobile Networks

    Get PDF
    The mobile wireless communication network or cellular network landscape is changing gradually from homogeneous to heterogeneous. Future generation networks are envisioned to be a combination of diverse but complimentary access technologies, like GPRS, WCDMA/HSPA, LTE and WLAN. These technologies came up due to the need to increase capacity in cellular networks and recently driven by the proliferation of smart devices which require a lot of bandwidth. The traditional mechanisms to increase capacity in cellular networks have been to upgrade the networks by, e.g. adding small cells solutions or introducing new radio access technologies to regions requiring lots of capacity, but this has not eradicated the problem entirely. The integration of heterogeneous networks poses some challenges such as allocating resources efficiently and enabling seamless handovers between heterogeneous technologies. One issue which has become apparent recently with the proliferation of different link layer technologies is how service providers can offer a consistent service across heterogeneous networks. Service continuity between different radio access technologies systems is identified as one key research item.  The knowledge of the service offering in current and future networks, and supporting interworking technologies is paramount to understand how service continuity will be realized across different radio access technologies. We investigate the handover procedure and performance in current deployed 3GPP heterogeneous mobile networks (2G, 3G and 4G networks). We perform measurements in the field and the lab and measure the handover latency for User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) applications. The results show that intersystem handover latencies in and across 2G and 3G radio access technologies are too long and have an impact on real time packet switched (PS) real-time services. We also investigate the current proposed interworking and handover schemes in 2G, 3G and 4G networks and present their limitations. We further highlight some open issues that still need to be addressed in order to improve handover performance and provide service continuity across heterogeneous mobile wireless networks such as selection of optimal radio access technology and adaptation of multimedia transmission over heterogeneous technologies. We present the enhancements required to enable service continuity and provide a better quality of user experience. 
    • …
    corecore