312 research outputs found

    Energy-based comparison between the Fourier--Galerkin method and the finite element method

    Full text link
    The Fourier-Galerkin method (in short FFTH) has gained popularity in numerical homogenisation because it can treat problems with a huge number of degrees of freedom. Because the method incorporates the fast Fourier transform (FFT) in the linear solver, it is believed to provide an improvement in computational and memory requirements compared to the conventional finite element method (FEM). Here, we systematically compare these two methods using the energetic norm of local fields, which has the clear physical interpretation as being the error in the homogenised properties. This enables the comparison of memory and computational requirements at the same level of approximation accuracy. We show that the methods' effectiveness relies on the smoothness (regularity) of the solution and thus on the material coefficients. Thanks to its approximation properties, FEM outperforms FFTH for problems with jumps in material coefficients, while ambivalent results are observed for the case that the material coefficients vary continuously in space. FFTH profits from a good conditioning of the linear system, independent of the number of degrees of freedom, but generally needs more degrees of freedom to reach the same approximation accuracy. More studies are needed for other FFT-based schemes, non-linear problems, and dual problems (which require special treatment in FEM but not in FFTH).Comment: 24 pages, 10 figures, 2 table

    Approximation of Periodic PDE Solutions with Anisotropic Translation Invariant Spaces

    Full text link
    We approximate the quasi-static equation of linear elasticity in translation invariant spaces on the torus. This unifies different FFT-based discretisation methods into a common framework and extends them to anisotropic lattices. We analyse the connection between the discrete solution spaces and demonstrate the numerical benefits. Finite element methods arise as a special case of periodised Box spline translates

    On the effectiveness of the Moulinec–Suquet discretization for composite materials

    Get PDF
    Moulinec and Suquet introduced a method for computational homogenization based on the fast Fourier transform which turned out to be rather computationally efficient. The underlying discretization scheme was subsequently identified as an approach based on trigonometric polynomials, coupled to the trapezoidal rule to substitute full integration. For problems with smooth solutions, the power of spectral methods is well-known. However, for heterogeneous microstructures, there are jumps in the coefficients, and the solution fields are not smooth enough due to discontinuities across material interfaces. Previous convergence results only provided convergence of the discretization per se, that is, without explicit rates, and could not explain the effectiveness of the discretization observed in practice. In this work, we provide such explicit convergence rates for the local strain as well as the stress field and the effective stresses based on more refined techniques. More precisely, we consider a class of industrially relevant, discontinuous elastic moduli separated by sufficiently smooth interfaces and show rates which are known to be sharp from numerical experiments. The applied techniques are of independent interest, that is, we employ a local smoothing strategy, utilize Féjer means as well as Bernstein estimates and rely upon recently established superconvergence results for the effective elastic energy in the Galerkin setting. The presented results shed theoretical light on the effectiveness of the Moulinec–Suquet discretization in practice. Indeed, the obtained convergence rates coincide with those obtained for voxel finite element methods, which typically require higher computational effort
    • …
    corecore