238 research outputs found

    Optical fibre local area networks

    Get PDF

    Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    Get PDF
    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined

    MSFC institutional area network and ATM technology

    Get PDF
    The New Institutional Area Network (NEWIAN) at Marshall supports over 5000 end users with access to 26 file servers providing work presentation services. It is comprised of some 150 Ethernet LAN's interconnected by bridges/routers which are in turn connected to servers over two dual FDDI rings. The network supports various higher level protocols such as IP, IPX, AppleTalk (AT), and DECNet. At present IPX and AT protocols packets are routed, and IP protocol packets are bridged; however, work is in progress to route all IP packets. The impact of routing IP packets on network operation is examined. Broadband Integrated Services Data Network (BISDN), presently at various stages of development, is intended to provide voice, video, and data transfer services over a single network. BISDN will use asynchronous transfer mode (ATM) as a data transfer technique which provides for transmission, multiplexing, switching, and relaying of small size data units called cells. Limited ATM Wide Area Network (WAN) services are offered by Wiltel, AT&T, Sprint, and others. NASA is testing a pilot ATM WAN with a view to provide Program Support Communication Network services using ATM. ATM supports wide range of data rates and quality of service requirements. It is expected that ATM switches will penetrate campus networks as well. However, presently products in these areas are at various stages of development and standards are not yet complete. We examine development of ATM to help assess its role in the evolution of NEWIAN

    Spacelab system analysis: A study of communications systems for advanced launch systems

    Get PDF
    An analysis of the required performance of internal avionics data bases for future launch vehicles is presented. Suitable local area networks that can service these requirements are determined

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Design and implementation of high speed multimedia network.

    Get PDF
    by Yeung Chung Toa.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 63-[65]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Bandwidth required by multimedia applications --- p.1Chapter 1.2 --- Real-time requirement --- p.2Chapter 1.3 --- Multicasting --- p.2Chapter 1.4 --- Other networks --- p.3Chapter 1.5 --- Overview of CUM LAUDE NET --- p.5Chapter 1.5.1 --- Protocols --- p.7Chapter 1.5.2 --- Network Services --- p.8Chapter 1.6 --- Scope of the Thesis --- p.9Chapter 2 --- Network Architecture --- p.11Chapter 2.1 --- CUM LAUDE NET Architectural Overview --- p.11Chapter 2.2 --- Level One Network Architecture --- p.12Chapter 2.3 --- Level-One Router --- p.14Chapter 2.3.1 --- packet forwarding --- p.14Chapter 2.3.2 --- packet insertion --- p.15Chapter 2.3.3 --- packet removal --- p.15Chapter 2.3.4 --- fault protection --- p.15Chapter 2.4 --- Hub --- p.16Chapter 2.5 --- Host & Network Interface Card --- p.17Chapter 3 --- Protocol --- p.19Chapter 3.1 --- Design Overview --- p.19Chapter 3.2 --- Layering --- p.20Chapter 3.3 --- "Segment, Datagram, and Packet Format" --- p.21Chapter 3.3.1 --- IP/VCI field --- p.23Chapter 3.4 --- Data Link --- p.23Chapter 3.4.1 --- byte format and data link synchronization --- p.23Chapter 3.4.2 --- access control byte --- p.24Chapter 3.4.3 --- packet/frame boundary --- p.26Chapter 3.5 --- Fast Packet Routing Protocol --- p.26Chapter 3.5.1 --- Level-2/Level-l Bridge/Router --- p.27Chapter 3.5.2 --- Level-1 Hub --- p.29Chapter 3.5.3 --- Local Host NIC --- p.29Chapter 3.6 --- Media Access Control Protocol I : ACTA --- p.30Chapter 3.7 --- Media Access Control Protocol II: Hub Polling --- p.34Chapter 3.8 --- Protocol Implementation on CUM LAUDE NET --- p.36Chapter 4 --- Hardware Implementation & Performance of Routers and NIC --- p.40Chapter 4.1 --- Functionality of Router --- p.40Chapter 4.2 --- Important Components Used in the Router Design --- p.43Chapter 4.2.1 --- TAXI Transmitter and Receiver --- p.43Chapter 4.2.2 --- First-In-First-Out Memory (FIFO) --- p.44Chapter 4.3 --- Design of Router --- p.45Chapter 4.3.1 --- Version 1 --- p.45Chapter 4.3.2 --- Version 2 --- p.47Chapter 4.3.3 --- Version 3 --- p.50Chapter 4.4 --- Lessons Learned from the High Speed Router Design --- p.57Chapter 5 --- Conclusion --- p.61Bibliography --- p.6

    Application of Asynchronous Transfer Mode (Atm) technology to Picture Archiving and Communication Systems (Pacs): A survey

    Full text link
    Broadband Integrated Services Digital Network (R-ISDN) provides a range of narrowband and broad-band services for voice, video, and multimedia. Asynchronous Transfer Mode (ATM) has been selected by the standards bodies as the transfer mode for implementing B-ISDN; The ability to digitize images has lead to the prospect of reducing the physical space requirements, material costs, and manual labor of traditional film handling tasks in hospitals. The system which handles the acquisition, storage, and transmission of medical images is called a Picture Archiving and Communication System (PACS). The transmission system will directly impact the speed of image transfer. Today the most common transmission means used by acquisition and display station products is Ethernet. However, when considering network media, it is important to consider what the long term needs will be. Although ATM is a new standard, it is showing signs of becoming the next logical step to meet the needs of high speed networks; This thesis is a survey on ATM, and PACS. All the concepts involved in developing a PACS are presented in an orderly manner. It presents the recent developments in ATM, its applicability to PACS and the issues to be resolved for realising an ATM-based complete PACS. This work will be useful in providing the latest information, for any future research on ATM-based networks, and PACS

    Data communication network at the ASRM facility

    Get PDF
    This three-year project (February 1991 to February 1994) has involved analyzing and helping to design the communication network for the Advanced Solid Rocket Motor (ASRM) facility at Yellow Creek, near Iuka, MS. The principal concerns in the analysis were the bandwidth (both on average and in the worst case) and the expandability of the network. As the communication network was designed and modified, a careful evaluation of the bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network was required. The overall network, which was heterogeneous in protocol and bandwidth, needed to be modeled, analyzed, and simulated to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of our analysis did have an impact on the design and operation of the ASRM facility. During 1993 we analyzed many configurations of this basic network structure. The analyses are described in detail in Section 2 and 3 herein. Section 2 reports on an analysis of the whole network. The preliminary results of that research indicated that the most likely bottleneck as the network traffic increased would be the hubs. Thus a study of Cabletron hubs was initiated. The results of that study are in Section 3. Section 4 herein reports on the final network configuration analyzed. When the ASRM facility was mothballed in December of 1993, this was basically the planned and partially installed network. A briefing was held at NASA/MSFC on December 7, 1993, at which time our final analysis and conclusions were disseminated. This report contains a written record of most of the information disseminated at that briefing
    corecore