28,746 research outputs found

    An extension of MATLAB to continuous functions and operators

    Get PDF
    An object-oriented MATLAB system is described for performing numerical linear algebra on continuous functions and operators rather than the usual discrete vectors and matrices. About eighty MATLAB functions from plot and sum to svd and cond have been overloaded so that one can work with our "chebfun" objects using almost exactly the usual MATLAB syntax. All functions live on [-1,1] and are represented by values at sufficiently many Chebyshev points for the polynomial interpolant to be accurate to close to machine precision. Each of our overloaded operations raises questions about the proper generalization of familiar notions to the continuous context and about appropriate methods of interpolation, differentiation, integration, zerofinding, or transforms. Applications in approximation theory and numerical analysis are explored, and possible extensions for more substantial problems of scientific computing are mentioned

    An extension of Chebfun to two dimensions

    Get PDF
    An object-oriented MATLAB system is described that extends the capabilities of Chebfun to smooth functions of two variables defined on rectangles. Functions are approximated to essentially machine precision by using iterative Gaussian elimination with complete pivoting to form “chebfun2” objects representing low rank approximations. Operations such as integration, differentiation, function evaluation, and transforms are particularly efficient. Global optimization, the singular value decomposition, and rootfinding are also extended to chebfun2 objects. Numerical applications are presented

    On Quasi-Newton Forward--Backward Splitting: Proximal Calculus and Convergence

    Get PDF
    We introduce a framework for quasi-Newton forward--backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal ±\pm rank-rr symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using duality, formulas are derived that relate the proximal mapping in a rank-rr modified metric to the original metric. We also describe efficient implementations of the proximity calculation for a large class of functions; the implementations exploit the piece-wise linear nature of the dual problem. Then, we apply these results to acceleration of composite convex minimization problems, which leads to elegant quasi-Newton methods for which we prove convergence. The algorithm is tested on several numerical examples and compared to a comprehensive list of alternatives in the literature. Our quasi-Newton splitting algorithm with the prescribed metric compares favorably against state-of-the-art. The algorithm has extensive applications including signal processing, sparse recovery, machine learning and classification to name a few.Comment: arXiv admin note: text overlap with arXiv:1206.115

    Automatic Frechet differentiation for the numerical solution of boundary-value problems

    Get PDF
    A new solver for nonlinear boundary-value problems (BVPs) in Matlab is presented, based on the Chebfun software system for representing functions and operators automatically as numerical objects. The solver implements Newton's method in function space, where instead of the usual Jacobian matrices, the derivatives involved are Frechet derivatives. A major novelty of this approach is the application of automatic differentiation (AD) techniques to compute the operator-valued Frechet derivatives in the continuous context. Other novelties include the use of anonymous functions and numbering of each variable to enable a recursive, delayed evaluation of derivatives with forward mode AD. The AD techniques are applied within a new Chebfun class called chebop which allows users to set up and solve nonlinear BVPs in a few lines of code, using the "nonlinear backslash" operator (\). This framework enables one to study the behaviour of Newton's method in function space

    A FEM for an optimal control problem of fractional powers of elliptic operators

    Full text link
    We study solution techniques for a linear-quadratic optimal control problem involving fractional powers of elliptic operators. These fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. Thus, we consider an equivalent formulation with a nonuniformly elliptic operator as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We discretize the proposed truncated state equation using first degree tensor product finite elements on anisotropic meshes. For the control problem we analyze two approaches: one that is semi-discrete based on the so-called variational approach, where the control is not discretized, and the other one is fully discrete via the discretization of the control by piecewise constant functions. For both approaches, we derive a priori error estimates with respect to the degrees of freedom. Numerical experiments validate the derived error estimates and reveal a competitive performance of anisotropic over quasi-uniform refinement

    Fast algorithms and efficient GPU implementations for the Radon transform and the back-projection operator represented as convolution operators

    Full text link
    The Radon transform and its adjoint, the back-projection operator, can both be expressed as convolutions in log-polar coordinates. Hence, fast algorithms for the application of the operators can be constructed by using FFT, if data is resampled at log-polar coordinates. Radon data is typically measured on an equally spaced grid in polar coordinates, and reconstructions are represented (as images) in Cartesian coordinates. Therefore, in addition to FFT, several steps of interpolation have to be conducted in order to apply the Radon transform and the back-projection operator by means of convolutions. Both the interpolation and the FFT operations can be efficiently implemented on Graphical Processor Units (GPUs). For the interpolation, it is possible to make use of the fact that linear interpolation is hard-wired on GPUs, meaning that it has the same computational cost as direct memory access. Cubic order interpolation schemes can be constructed by combining linear interpolation steps which provides important computation speedup. We provide details about how the Radon transform and the back-projection can be implemented efficiently as convolution operators on GPUs. For large data sizes, speedups of about 10 times are obtained in relation to the computational times of other software packages based on GPU implementations of the Radon transform and the back-projection operator. Moreover, speedups of more than a 1000 times are obtained against the CPU-implementations provided in the MATLAB image processing toolbox
    • …
    corecore