We introduce a framework for quasi-Newton forward--backward splitting
algorithms (proximal quasi-Newton methods) with a metric induced by diagonal
± rank-r symmetric positive definite matrices. This special type of
metric allows for a highly efficient evaluation of the proximal mapping. The
key to this efficiency is a general proximal calculus in the new metric. By
using duality, formulas are derived that relate the proximal mapping in a
rank-r modified metric to the original metric. We also describe efficient
implementations of the proximity calculation for a large class of functions;
the implementations exploit the piece-wise linear nature of the dual problem.
Then, we apply these results to acceleration of composite convex minimization
problems, which leads to elegant quasi-Newton methods for which we prove
convergence. The algorithm is tested on several numerical examples and compared
to a comprehensive list of alternatives in the literature. Our quasi-Newton
splitting algorithm with the prescribed metric compares favorably against
state-of-the-art. The algorithm has extensive applications including signal
processing, sparse recovery, machine learning and classification to name a few.Comment: arXiv admin note: text overlap with arXiv:1206.115