2,776 research outputs found

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Dynamic CPU management for real-time, middleware-based systems

    Get PDF
    technical reportMany real-world distributed, real-time, embedded (DRE) systems, such as multi-agent military applications, are built using commercially available operating systems, middleware, and collections of pre-existing software. The complexity of these systems makes it difficult to ensure that they maintain high quality of service (QoS). At design time, the challenge is to introduce coordinated QoS controls into multiple software elements in a non-invasive manner. At run time, the system must adapt dynamically to maintain high QoS in the face of both expected events, such as application mode changes, and unexpected events, such as resource demands from other applications. In this paper we describe the design and implementation of a CPU Broker for these types of DRE systems. The CPU Broker mediates between multiple real-time tasks and the facilities of a real-time operating system: using feedback and other inputs, it adjusts allocations over time to ensure that high application-level QoS is maintained. The broker connects to its monitored tasks in a non-invasive manner, is based on and integrated with industry-standard middleware, and implements an open architecture for new CPU management policies. Moreover, these features allow the broker to be easily combined with other QoS mechanisms and policies, as part of an overall end-to-end QoS management system. We describe our experience in applying the CPU Broker to a simulated DRE military system. Our results show that the broker connects to the system transparently and allows it to function in the face of run-time CPU resource contention

    Integrated Support for Handoff Management and Context-Awareness in Heterogeneous Wireless Networks

    Get PDF
    The overwhelming success of mobile devices and wireless communications is stressing the need for the development of mobility-aware services. Device mobility requires services adapting their behavior to sudden context changes and being aware of handoffs, which introduce unpredictable delays and intermittent discontinuities. Heterogeneity of wireless technologies (Wi-Fi, Bluetooth, 3G) complicates the situation, since a different treatment of context-awareness and handoffs is required for each solution. This paper presents a middleware architecture designed to ease mobility-aware service development. The architecture hides technology-specific mechanisms and offers a set of facilities for context awareness and handoff management. The architecture prototype works with Bluetooth and Wi-Fi, which today represent two of the most widespread wireless technologies. In addition, the paper discusses motivations and design details in the challenging context of mobile multimedia streaming applications

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    QoS-Aware Middleware for Web Services Composition

    Get PDF
    The paradigmatic shift from a Web of manual interactions to a Web of programmatic interactions driven by Web services is creating unprecedented opportunities for the formation of online Business-to-Business (B2B) collaborations. In particular, the creation of value-added services by composition of existing ones is gaining a significant momentum. Since many available Web services provide overlapping or identical functionality, albeit with different Quality of Service (QoS), a choice needs to be made to determine which services are to participate in a given composite service. This paper presents a middleware platform which addresses the issue of selecting Web services for the purpose of their composition in a way that maximizes user satisfaction expressed as utility functions over QoS attributes, while satisfying the constraints set by the user and by the structure of the composite service. Two selection approaches are described and compared: one based on local (task-level) selection of services and the other based on global allocation of tasks to services using integer programming
    • 

    corecore