31,084 research outputs found

    An Experimental Study on Generating Planar Graphs

    Get PDF

    Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    Get PDF
    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways.In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present only when it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to "efficiently" solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter αN\alpha\in\mathbb{N}. Nevertheless, here it is proved that the probability of requiring a value of α>k\alpha>k to obtain a solution for a random graph decreases exponentially: P(α>k)2(k+1)P(\alpha>k) \leq 2^{-(k+1)}, making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results.Comment: Working pape

    Uniform random sampling of planar graphs in linear time

    Get PDF
    This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Gim\'enez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost. Then, the expected time complexity of generation is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with nn vertices, which was a little over O(n7)O(n^7).Comment: 55 page

    Planar unclustered scale-free graphs as models for technological and biological networks

    Full text link
    Many real life networks present an average path length logarithmic with the number of nodes and a degree distribution which follows a power law. Often these networks have also a modular and self-similar structure and, in some cases - usually associated with topological restrictions- their clustering is low and they are almost planar. In this paper we introduce a family of graphs which share all these properties and are defined by two parameters. As their construction is deterministic, we obtain exact analytic expressions for relevant properties of the graphs including the degree distribution, degree correlation, diameter, and average distance, as a function of the two defining parameters. Thus, the graphs are useful to model some complex networks, in particular several families of technological and biological networks, and in the design of new practical communication algorithms in relation to their dynamical processes. They can also help understanding the underlying mechanisms that have produced their particular structure.Comment: Accepted for publication in Physica

    A Note on the Practicality of Maximal Planar Subgraph Algorithms

    Full text link
    Given a graph GG, the NP-hard Maximum Planar Subgraph problem (MPS) asks for a planar subgraph of GG with the maximum number of edges. There are several heuristic, approximative, and exact algorithms to tackle the problem, but---to the best of our knowledge---they have never been compared competitively in practice. We report on an exploratory study on the relative merits of the diverse approaches, focusing on practical runtime, solution quality, and implementation complexity. Surprisingly, a seemingly only theoretically strong approximation forms the building block of the strongest choice.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Degree distribution in random planar graphs

    Get PDF
    We prove that for each k0k\ge0, the probability that a root vertex in a random planar graph has degree kk tends to a computable constant dkd_k, so that the expected number of vertices of degree kk is asymptotically dknd_k n, and moreover that kdk=1\sum_k d_k =1. The proof uses the tools developed by Gimenez and Noy in their solution to the problem of the asymptotic enumeration of planar graphs, and is based on a detailed analysis of the generating functions involved in counting planar graphs. However, in order to keep track of the degree of the root, new technical difficulties arise. We obtain explicit, although quite involved expressions, for the coefficients in the singular expansions of the generating functions of interest, which allow us to use transfer theorems in order to get an explicit expression for the probability generating function p(w)=kdkwkp(w)=\sum_k d_k w^k. From this we can compute the dkd_k to any degree of accuracy, and derive the asymptotic estimate dkck1/2qkd_k \sim c\cdot k^{-1/2} q^k for large values of kk, where q0.67q \approx 0.67 is a constant defined analytically

    Asymptotic expansion of the multi-orientable random tensor model

    Full text link
    Three-dimensional random tensor models are a natural generalization of the celebrated matrix models. The associated tensor graphs, or 3D maps, can be classified with respect to a particular integer or half-integer, the degree of the respective graph. In this paper we analyze the general term of the asymptotic expansion in N, the size of the tensor, of a particular random tensor model, the multi-orientable tensor model. We perform their enumeration and we establish which are the dominant configurations of a given degree.Comment: 27 pages, 24 figures, several minor modifications have been made, one figure has been added; accepted for publication in "Electronic Journal of Combinatorics

    Single-Strip Triangulation of Manifolds with Arbitrary Topology

    Full text link
    Triangle strips have been widely used for efficient rendering. It is NP-complete to test whether a given triangulated model can be represented as a single triangle strip, so many heuristics have been proposed to partition models into few long strips. In this paper, we present a new algorithm for creating a single triangle loop or strip from a triangulated model. Our method applies a dual graph matching algorithm to partition the mesh into cycles, and then merges pairs of cycles by splitting adjacent triangles when necessary. New vertices are introduced at midpoints of edges and the new triangles thus formed are coplanar with their parent triangles, hence the visual fidelity of the geometry is not changed. We prove that the increase in the number of triangles due to this splitting is 50% in the worst case, however for all models we tested the increase was less than 2%. We also prove tight bounds on the number of triangles needed for a single-strip representation of a model with holes on its boundary. Our strips can be used not only for efficient rendering, but also for other applications including the generation of space filling curves on a manifold of any arbitrary topology.Comment: 12 pages, 10 figures. To appear at Eurographics 200
    corecore