1,862 research outputs found

    A Novel Approach for Hand-written Digit Classification Using Deep Learning

    Get PDF
    Humans' control over technology is at an all-time high, with applications ranging from visual object recognition to the dubbing of dialogue into silent films. Using algorithms for deep learning and machine learning. Similarly, the most crucial technologies are text line recognition fields of study and development, with an increasing number of potential outcomes. Handwriting recognition (HWR), also identified as Handwriting Text Acknowledgment, is the capacity of a computer to understand legibly handwritten input from bases such as paper documents, screens, and other devices. Evidently, we have performed handwritten digit recognition using MNIST datasets and SVM, Multi-Layer Perceptron (MLP), and CNN models in this research. Our primary purpose is to compare the accuracy and execution times of the aforementioned models to determine the optimal model for digit recognition

    Neuromorphic Systems for Pattern Recognition and Uav Trajectory Planning

    Get PDF
    Detection and control are two essential components in an intelligent system. This thesis investigates novel techniques in both areas with a focus on the applications of handwritten text recognition and UAV flight control. Recognizing handwritten texts is a challenging task due to many different writing styles and lack of clear boundary between adjacent characters. The difficulty is greatly increased if the detection algorithms is solely based on pattern matching without information of dynamics of handwriting trajectories. Motivated by the aforementioned challenges, this thesis first investigates the pattern recognition problem. We use offline handwritten texts recognition as a case study to explore the performance of a recurrent belief propagation model. We first develop a probabilistic inference network to post process the recognition results of deep Convolutional Neural Network (CNN) (e.g. LeNet) and collect individual characters to form words. The output of the inference network is a set of words and their probability. A series of post processing and improvement techniques are then introduced to further increase the recognition accuracy. We study the performance of proposed model through various comparisons. The results show that it significantly improves the accuracy by correcting deletion, insertion and replacement errors, which are the main sources of invalid candidate words. Deep Reinforcement Learning (DRL) has widely been applied to control the autonomous systems because it provides solutions for various complex decision-making tasks that previously could not be solved solely with deep learning. To enable autonomous Unmanned Aerial Vehicles (UAV), this thesis presents a two-level trajectory planning framework for UAVs in an indoor environment. A sequence of waypoints is selected at the higher-level, which leads the UAV from its current position to the destination. At the lower-level, an optimal trajectory is generated analytically between each pair of adjacent waypoints. The goal of trajectory generation is to maintain the stability of the UAV, and the goal of the waypoints planning is to select waypoints with the lowest control thrust throughout the entire trip while avoiding collisions with obstacles. The entire framework is implemented using DRL, which learns the highly complicated and nonlinear interaction between those two levels, and the impact from the environment. Given the pre-planned trajectory, this thesis further presents an actor-critic reinforcement learning framework that realizes continuous trajectory control of the UAV through a set of desired waypoints. We construct a deep neural network and develop reinforcement learning for better trajectory tracking. In addition, Field Programmable Gate Arrays (FPGA) based hardware acceleration is designed for energy efficient real-time control. If we are to integrate the trajectory planning model onto a UAV system for real-time on-board planning, a key challenge is how to deliver required performance under strict memory and computational constraints. Techniques that compress Deep Neural Network (DNN) models attract our attention because they allow optimized neural network models to be efficiently deployed on platforms with limited energy and storage capacity. However, conventional model compression techniques prune the DNN after it is fully trained, which is very time-consuming especially when the model is trained using DRL. To overcome the limitation, we present an early phase integrated neural network weight compression system for DRL based waypoints planning. By applying pruning at an early phase, the compression of the DRL model can be realized without significant overhead in training. By tightly integrating pruning and retraining at the early phase, we achieve a higher model compression rate, reduce more memory and computing complexity, and improve the success rate compared to the original work

    Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues

    Get PDF
    Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem has gained significant attention from the computer vision community in recent years, and several methods based on energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped words extracted from street images. The bottom-up cues are derived from individual character detections from an image. We build a conditional random field model on these detections to jointly model the strength of the detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our framework to further improve the recognition performance

    Handwritten Digit Recognition Using Machine Learning Algorithms

    Get PDF
    Handwritten character recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, form data entry, etc. The heart of the problem lies within the ability to develop an efficient algorithm that can recognize hand written digits and which is submitted by users by the way of a scanner, tablet, and other digital devices. This paper presents an approach to off-line handwritten digit recognition based on different machine learning technique. The main objective of this paper is to ensure effective and reliable approaches for recognition of handwritten digits. Several machines learning algorithm namely, Multilayer Perceptron, Support Vector Machine, NaFDA5; Bayes, Bayes Net, Random Forest, J48 and Random Tree has been used for the recognition of digits using WEKA. The result of this paper shows that highest 90.37% accuracy has been obtained for Multilayer Perceptron

    Bernoulli HMMs for Handwritten Text Recognition

    Full text link
    In last years Hidden Markov Models (HMMs) have received significant attention in the task off-line handwritten text recognition (HTR). As in automatic speech recognition (ASR), HMMs are used to model the probability of an observation sequence, given its corresponding text transcription. However, in contrast to what happens in ASR, in HTR there is no standard set of local features being used by most of the proposed systems. In this thesis we propose the use of raw binary pixels as features, in conjunction with models that deal more directly with the binary data. In particular, we propose the use of Bernoulli HMMs (BHMMs), that is, conventional HMMs in which Gaussian (mixture) distributions have been replaced by Bernoulli (mixture) probability functions. The objective is twofold: on the one hand, this allows us to better modeling the binary nature of text images (foreground/background) using BHMMs. On the other hand, this guarantees that no discriminative information is filtered out during feature extraction (most HTR available datasets can be easily binarized without a relevant loss of information). In this thesis, all the HMM theory required to develop a HMM based HTR toolkit is reviewed and adapted to the case of BHMMs. Specifically, we begin by defining a simple classifier based on BHMMs with Bernoulli probability functions at the states, and we end with an embedded Bernoulli mixture HMM recognizer for continuous HTR. Regarding the binary features, we propose a simple binary feature extraction process without significant loss of information. All input images are scaled and binarized, in order to easily reinterpret them as sequences of binary feature vectors. Two extensions are proposed to this basic feature extraction method: the use of a sliding window in order to better capture the context, and a repositioning method in order to better deal with vertical distortions. Competitive results were obtained when BHMMs and proposed methods were applied to well-known HTR databases. In particular, we ranked first at the Arabic Handwriting Recognition Competition organized during the 12th International Conference on Frontiers in Handwriting Recognition (ICFHR 2010), and at the Arabic Recognition Competition: Multi-font Multi-size Digitally Represented Text organized during the 11th International Conference on Document Analysis and Recognition (ICDAR 2011). In the last part of this thesis we propose a method for training BHMM classifiers using In last years Hidden Markov Models (HMMs) have received significant attention in the task off-line handwritten text recognition (HTR). As in automatic speech recognition (ASR), HMMs are used to model the probability of an observation sequence, given its corresponding text transcription. However, in contrast to what happens in ASR, in HTR there is no standard set of local features being used by most of the proposed systems. In this thesis we propose the use of raw binary pixels as features, in conjunction with models that deal more directly with the binary data. In particular, we propose the use of Bernoulli HMMs (BHMMs), that is, conventional HMMs in which Gaussian (mixture) distributions have been replaced by Bernoulli (mixture) probability functions. The objective is twofold: on the one hand, this allows us to better modeling the binary nature of text images (foreground/background) using BHMMs. On the other hand, this guarantees that no discriminative information is filtered out during feature extraction (most HTR available datasets can be easily binarized without a relevant loss of information). In this thesis, all the HMM theory required to develop a HMM based HTR toolkit is reviewed and adapted to the case of BHMMs. Specifically, we begin by defining a simple classifier based on BHMMs with Bernoulli probability functions at the states, and we end with an embedded Bernoulli mixture HMM recognizer for continuous HTR. Regarding the binary features, we propose a simple binary feature extraction process without significant loss of information. All input images are scaled and binarized, in order to easily reinterpret them as sequences of binary feature vectors. Two extensions are proposed to this basic feature extraction method: the use of a sliding window in order to better capture the context, and a repositioning method in order to better deal with vertical distortions. Competitive results were obtained when BHMMs and proposed methods were applied to well-known HTR databases. In particular, we ranked first at the Arabic Handwriting Recognition Competition organized during the 12th International Conference on Frontiers in Handwriting Recognition (ICFHR 2010), and at the Arabic Recognition Competition: Multi-font Multi-size Digitally Represented Text organized during the 11th International Conference on Document Analysis and Recognition (ICDAR 2011). In the last part of this thesis we propose a method for training BHMM classifiers using In last years Hidden Markov Models (HMMs) have received significant attention in the task off-line handwritten text recognition (HTR). As in automatic speech recognition (ASR), HMMs are used to model the probability of an observation sequence, given its corresponding text transcription. However, in contrast to what happens in ASR, in HTR there is no standard set of local features being used by most of the proposed systems. In this thesis we propose the use of raw binary pixels as features, in conjunction with models that deal more directly with the binary data. In particular, we propose the use of Bernoulli HMMs (BHMMs), that is, conventional HMMs in which Gaussian (mixture) distributions have been replaced by Bernoulli (mixture) probability functions. The objective is twofold: on the one hand, this allows us to better modeling the binary nature of text images (foreground/background) using BHMMs. On the other hand, this guarantees that no discriminative information is filtered out during feature extraction (most HTR available datasets can be easily binarized without a relevant loss of information). In this thesis, all the HMM theory required to develop a HMM based HTR toolkit is reviewed and adapted to the case of BHMMs. Specifically, we begin by defining a simple classifier based on BHMMs with Bernoulli probability functions at the states, and we end with an embedded Bernoulli mixture HMM recognizer for continuous HTR. Regarding the binary features, we propose a simple binary feature extraction process without significant loss of information. All input images are scaled and binarized, in order to easily reinterpret them as sequences of binary feature vectors. Two extensions are proposed to this basic feature extraction method: the use of a sliding window in order to better capture the context, and a repositioning method in order to better deal with vertical distortions. Competitive results were obtained when BHMMs and proposed methods were applied to well-known HTR databases. In particular, we ranked first at the Arabic Handwriting Recognition Competition organized during the 12th International Conference on Frontiers in Handwriting Recognition (ICFHR 2010), and at the Arabic Recognition Competition: Multi-font Multi-size Digitally Represented Text organized during the 11th International Conference on Document Analysis and Recognition (ICDAR 2011). In the last part of this thesis we propose a method for training BHMM classifiers using discriminative training criteria, instead of the conventionalMaximum Likelihood Estimation (MLE). Specifically, we propose a log-linear classifier for binary data based on the BHMM classifier. Parameter estimation of this model can be carried out using discriminative training criteria for log-linear models. In particular, we show the formulae for several MMI based criteria. Finally, we prove the equivalence between both classifiers, hence, discriminative training of a BHMM classifier can be carried out by obtaining its equivalent log-linear classifier. Reported results show that discriminative BHMMs clearly outperform conventional generative BHMMs.Giménez Pastor, A. (2014). Bernoulli HMMs for Handwritten Text Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37978TESI
    • …
    corecore