5 research outputs found

    A Simple and Practical Approach to Unit Testing: The JML and JUnit Way

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, the Extreme Programming approach relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly, thus automating the writing of unit test oracles. These oracles can be easily combined with hand-written test data. Instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. We have implemented this idea using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit test tools

    A Simple and Practical Approach to Unit Testing: The JML and JUnit Way

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, the Extreme Programming approach relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly, thus automating the writing of unit test oracles. These oracles can be easily combined with hand-written test data. Instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. We have implemented this idea using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit test tools

    The JML and JUnit Way of Unit Testing and its Implementation

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, Extreme Programming relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly; thus code to decide whether tests pass or fail is automatically produced from specifications. Our tool combines this testing code with hand-written test data to execute tests. Therefore, instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. In this paper we describe an implementation using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit testing tools

    An Empirical Evaluation of the Effectiveness of JML Assertions as Test Oracles

    Get PDF
    Test oracles remain one of the least understood aspects of the modern testing process. An oracle is a mechanism used by software testers and software engineers for determining whether a test has passed or failed. One widely-supported approach to oracles is the use of runtime assertion checking during the testing activity. Method invariants,pre- and postconditions help detect bugs during runtime. While assertions are supported by virtually all programming environments, are used widely in practice, and are often assumed to be effective as test oracles, there are few empirical studies of their efficacy in this role. In this thesis, we present the results of an experiment we conducted to help understand this question. To do this, we studied seven of the core Java classes that had been annotated by others with assertions in the Java Modeling Language, used the muJava mutation analysis tool to create mutant implementations of these classes, exercised them with input-only (i.e., no oracle) test suites that achieve branch coverage, and used a machine learning tool, Weka, to determine which annotations were effective at ``killing\u27\u27 these mutants. We also evaluate how effective the ``null oracle\u27\u27 (in our case, the Java runtime system) is at catching these bugs. The results of our study are interesting, and help provide software engineers with insight into situations in which assertions can be relied upon to find bugs, and situations in which assertions may need to be augmented with other approaches to test oracles
    corecore