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ABSTRACT

Test oracles remain one of the least understood aspects of the modern testing pro-

cess. An oracle is a mechanism used by software testers and software engineers for

determining whether a test has passed or failed. One widely-supported approach to

oracles is the use of runtime assertion checking during the testing activity. Method

invariants, pre- and postconditions help detect bugs during runtime. While asser-

tions are supported by virtually all programming environments, are used widely in

practice, and are often assumed to be effective as test oracles, there are few empirical

studies of their efficacy in this role. In this thesis, we present the results of an experi-

ment we conducted to help understand this question. To do this, we studied seven of

the core Java classes that had been annotated by others with assertions in the Java

Modeling Language, used the muJava mutation analysis tool to create mutant imple-

mentations of these classes, exercised them with input-only (i.e., no oracle) test suites

that achieve branch coverage, and used a machine learning tool, Weka, to determine

which annotations were effective at “killing” these mutants. We also evaluate how

effective the “null oracle” (in our case, the Java runtime system) is at catching these

bugs. The results of our study are interesting, and help provide software engineers

with insight into situations in which assertions can be relied upon to find bugs, and

situations in which assertions may need to be augmented with other approaches to

test oracles.
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Chapter 1

Introduction

While test oracles are a fundamental part of testing, they remain one of the least

understood aspects of the testing process. Oracles help us determine whether a

test has passed or failed. Several researchers have identified that assertions can be

used as an oracle. However, not much work has been done in employing a runtime

assertion checker as the test oracle engine and studying the effectiveness of assertions

at detecting faults. This is the first extensive and rigorous work that has been done to

study the effectiveness of the “implicit oracle” (which we refer to as the “null oracle”

from here onwards) as well as assertions at detecting faults. In this thesis, we present

the results of an experiment we conducted to evaluate the effectiveness of using Java

Modeling Language (JML) assertions as test oracles. To do this, we created mutant

versions of seven core Java classes that had been annotated by others and exercised

them with input-only test cases written by us that achieved branch coverage. By doing

this we were able to determine the effectiveness of both the “null oracle” (by turning

off the annotations) and JML assertions at “killing” these mutants. To determine the

effectiveness of JML assertions at catching bugs at different thresholds, we utilized

Weka, a machine learning tool.
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We worked with tools created by others in order to conduct our experiment. We

used the common JML tools version 5.2 which contained annotated files for our seven

test subjects. Working through the tool and learning the tool took a lot of effort.

Although our subjects were annotated by others, we had to add certain annotations

to all of them to get them to compile with the JML compiler (jmlc). A lot of other

issues had to be dealt with as well which we describe in Section 4.1. For the purpose

of this experiment more than 2050 mutants were generated and more than 800 were

manually inspected to make sure they were valid. We also wrote randomized test

cases for all of our test subjects to achieve branch coverage. The collection of method

level metrics as described in Subsection 4.2.2 was also done manually. Overall, 28

data sets and four “Grand data sets” were created to determine the effectiveness of

JML annotations at different thresholds.

The layout of this thesis is as follows: we start by introducing the major topics of

our research below. In Chapter 2 we present an overview of the tools and techniques

we used during our experiment viz. the null oracle, JML, jmlc, mutation testing, cov-

erage criteria and Weka. We present related work in Chapter 3. Chapter 4 describes

our experimental setup along with the metrics that we collected as well as our seven

Java test subjects. In Chapter 5 we present a complete report of our results including

the effectiveness of the “null oracle”, effectiveness of JML assertions and classifica-

tion of JML assertions at various thresholds of effectiveness. We end by presenting a

discussion of the experiment, a summary of our major findings and by listing out our

plans for future work in Chapter 6.
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1.1 Software Engineering

Software engineering is the application of systematic, disciplined, quantifiable ap-

proaches to the development, operation and maintenance of software, and the study

of these approaches [9]. One of the ten subdisciplines of software engineering is soft-

ware testing, which is an activity performed for the purpose of improving the quality

of a software system by identifying and eliminating defects and problems.

1.2 Software Testing

Software testing is the process of dynamic verification of the behavior of a program

on a finite set of test cases which are selected from the usually infinite execution

domain, against the expected behavior [9]. It is an indispensable step in the process

of software development. While testing can only show the presence of failures and

not their absence [1], it is still a very effective way of achieving software reliability.

Software testing can also be stated as the process of verifying that a program meets

the requirements and works as expected.

Testing can be categorized in different ways. If categorized using testing levels,

then there are unit testing, integration testing and system testing; if categorized by

objectives, there are acceptance/qualification testing, installation testing, alpha and

beta testing, conformance testing, reliability testing, regression testing, performance

testing, stress testing, back-to-back testing, recovery testing, configuration testing and

usability testing; if categorized by code accessibility, there are whitebox/structural

testing and blackbox/functional testing. Besides the above listed general categories,

there are different ways to test special types of software. For example, there are

different approaches to test object oriented software [62], [53].
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The three main steps in testing are test case definition, test execution and test

results evaluation. Test case definition is the basis of a successful test process. A

successful test is one that finds an error. The more errors found by executing a set

of test cases, the better those test cases are.

A test case is “A set of the test case values, expected results, prefix values, and

postfix values necessary for a complete execution and evaluation of the software under

test” [1].

Test cases are organized as one or more test sets/suites where a test set is “A set

of test cases” [1], which is usually run as a group.

System under 

Test

Test Inputs Test Results

Figure 1.1: I-P-O Testing Model

Figure 1.1 [32], shows an Input-Process-Output (I-P-O) model for blackbox/func-

tional testing. The test case here is a set of inputs and verification is done by observing

the results. The test results are things such as program states for the system under

test, software values, residual values left in memory, output data, etc.

All testing methods depend on the availability of an oracle, i.e., some mechanism

that checks whether the system under test has behaved correctly or not in a particular

execution. Test oracles are derived from the specifications of the system under test.

1.3 Oracles

An oracle is a mechanism used by software testers and software engineers for deter-

mining whether a test has passed or failed. We compare the output of the system

4



under test, for a given test case input, to the output that the oracle determines that

a unit should have. Oracles are separate from the system under test. An ideal oracle

is one that provides an unerring pass/fail judgment for any possible program exe-

cution, judged against a natural specification of intended behavior [5]. However, in

the real world it is usually impossible to come up with an ideal oracle. As a result,

based upon outputs, oracles are categorized as follows: true oracle, heuristic oracle,

sampling oracle, consistent oracle and no oracle [33].

A “true oracle” reproduces all relevant results for a software under test (SUT)

using independent platform, code, compiler, etc. In order to compare results, the

same values are fed to the oracle and the system under test. A “heuristic oracle”

reproduces only selected results for the system under test and the remaining values

are checked using simpler algorithms based on a heuristic. A heuristic is applied

to verify that the SUT returns values that are progressively larger or smaller than

the last value. A “sampling oracle” uses a selected set of values where the values

are selected based on some criteria besides statistical randomness. Boundary values,

maximum, minimum, midpoints are examples that are often chosen. A “consistent

oracle” is one where we verify current run results with the results of one test run

which we specify as the oracle. The oracle here often comes from a simulator or an

early version of the SUT. Lastly with “no oracle” we are only able to check that

some results were produced and the program terminates normally. This represents

a baseline oracle and is what we refer to as the “null oracle”. We do not check the

correctness of the results. Douglas Hoffman describes these different oracles in more

detail [32].

Not only do formal specifications help in the derivation of test oracles, some view

formal specifications as test oracles [3], [52]. Moving from the conventional way of

implementing test oracles by comparing the test output with some pre-calculated
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and presumably correct output, some formal specifications are able to monitor the

specified behavior of the method under test to decide test success or failure. Also, the

verification of an implementation can be checked by checking specification assertions

during the execution of programs.

1.4 Assertions

Assertions are formal facts about the state of a program; they are typically imple-

mented as a boolean expression that is true at certain points in program code [31].

Assertions are one of the most useful techniques for debugging, detecting faults and

providing information about the internal state of a program. In order to determine

the correctness of a program, a method or a segment of code, i.e. determine that it

does what is intended, we need the ability to make assertions. If an assertion does

not hold when the execution control reaches it, we know that either the program is

wrong or the assertion is wrong. Even though assertions were initially developed in

order to state the desired program behavior, it has found many other applications

in software engineering like model checking which is a static approach to program

verification [17].

Apart from their use in formal verification, assertions can also be viewed as a

permanent defensive programming mechanism for runtime detection in production

versions of software system [47]. This is where assertions have made their greatest im-

pact, in the area of automated runtime fault detection, where formal assertion checks

are instrumented into a program for execution along with the program’s application

logic [17]. Assertion features are supported by almost all programming languages.

One popular approach is the use of macro statements that are expanded into appro-

priate program statements by preprocessors. The main examples are the assertion

6



facilities of C and C++ and their extensions [19], [45], [58], [65]. Here, assertions are

boolean expressions that have been embedded into other program statements. If the

boolean expressions do not hold at runtime, when the control reaches them, asser-

tion failures are reported [16] and the program typically terminates abnormally. The

Java programming language provides assertions as built-in statements after version

1.5. The assert statement was added to Java in version 1.4 but it didn’t default on

the compiler. It has to be explicitly turned on in 1.4 by specifying the “-source 1.4”

option to the compiler. Since the built-in assertion is quite rudimentary, we do not

use them but rather focus on the more fully-featured JML runtime assertion checker.
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Chapter 2

Background

In this chapter we present the tools and techniques that are most important to the

work described here. We start with a description of the null oracle in Section 2.1. We

provide a brief overview of the Java Modeling Language (JML) in Section 2.2 along

with an introduction to the JML compiler (jmlc) in Subsection 2.2.1. In Section

2.3 we introduce mutation analysis and the main ideas behind it. We conclude the

chapter with an overview of coverage criteria (i.e., test adequacy criteria) in Section

2.4.

2.1 The Null Oracle

The “null oracle” is the implicit oracle that we have without doing any additional

work. In our case the null oracle is the Java runtime system which helps us catch

bugs in our code that cause the program to crash. If the program crashes (i.e., an

exception is raised and propagated to the Java Virtual Machine) then the bug is

caught as a result of having the null oracle and if the program terminates normally

then the null oracle is not able to catch the bug in our code.

8



2.2 Java Modeling Language

The Java Modeling Language (JML) [14] is a behavioral interface specification lan-

guage tailored to Java. It uses Hoare [31] style pre and postconditions and invariants

that follow the design by contract (DBC) paradigm. JML blends Eiffel’s design by

contract approach [47] with the Larch tradition [28] and uses Java’s expression syntax

in assertions. JML assertions are either written in separate files or are written as spe-

cial annotation comments to the Java program either after //@ or between /*@ ....

@*/. The Java compiler simply ignores such assertions as comments. Consider the

following example of a behavioral interface specification in JML, written as assertions

in a Java program file, ‘IntMathOps.java’.

1public class IntMathOps{
2/∗@ pu b l i c normal behav ior
3@ requ i r e s y >= 0;
4@ as s i gnab l e \nothing ;
5@ ensures 0 <= \ r e s u l t
6@ && \ r e s u l t ∗ \ r e s u l t <= y
7@ && ((0 <= (\ r e s u l t + 1) ∗ (\ r e s u l t + 1))
8@ ==> y < (\ r e s u l t + 1) ∗ (\ r e s u l t + 1 ) ) ;
9@∗/
10public static int i s q r t ( int y)
11{
12return ( int ) Math . s q r t ( y ) ;
13}
14}

Listing 2.1: A Java file IntMathOps.java with assertions [40]

In Listing 2.1, the precondition is on line 3 following the keyword requires. The

postcondition is on lines 5-8, following the keyword ensures. The precondition states

what must be true about the arguments and when the precondition is true, the

method must complete in a state that satisfies the postcondition. Hence, JML uses

the requires clause to specify the caller’s obligation and the ensures clause to specify

the implementor’s obligation [40]. The keyword \result is used in the postcondition

to denote the actual value returned by the method. The type of \result is the return

9



type of the method. In the above example the postcondition states that the result is

an integer approximation to the square root of the argument.

JML assertions can also be written in separate, non-Java files. This is mostly done

when one does not control the source code, but wishes to annotate it. A filename

with a suffix such as ‘.refines-java’ (or ‘.refines-spec or ‘.refines-jml’) would be used to

add assertions to such a library or framework. The file with such a name would hold

the assertions of the corresponding Java compilation unit. For example, if one wants

to annotate the file IntMathOps2.java without modifying it then one would write

assertions in the file ‘IntMathOps2.refines-java’, and include in that file the following

refine-prefix [40].

refine ‘‘IntMathOps2.java’’;

In Listing 2.2 and Listing 2.3 we provide an example of how JML assertions can

be kept in separate files. Listing 2.2 is the source file that does not contain any asser-

tions and Listing 2.3 is the file that contains assertions. Since the files that contain

assertions are not Java program files, JML requires the user to omit the code for

concrete methods, as in a Java abstract method declaration. This is also depicted in

Listing 2.3.

1public class IntMathOps2
2{
3public static int i s q r t ( int y )
4{
5return ( int ) Math . s q r t ( y ) ;
6}
7}

Listing 2.2: IntMathOps2.java without assertions

10



1//@ r e f i n e ”IntMathOps2 . java ” ;
2
3//@ model import org . jm l specs . models . ∗ ;
4
5public class IntMathOps2{
6/∗@ pu b l i c normal behav ior
7@ requ i r e s y >= 0;
8@ as s i gnab l e \nothing ;
9@ ensures 0 <= \ r e s u l t
10@ && \ r e s u l t ∗ \ r e s u l t <= y
11@ && ((0 <= (\ r e s u l t + 1) ∗ (\ r e s u l t + 1))
12@ ==> y < (\ r e s u l t + 1) ∗ (\ r e s u l t + 1 ) ) ;
13@∗/
14public static int i s q r t ( int y ) ;
15}

Listing 2.3: IntMathOps2.refines-java with assertions [40]

JML allows declarations of various identifiers with the modifier model. One

can declare model fields, methods and even types. A feature declared with model

is only usable for specification purposes and is not available for use in Java code

outside of assertions. Similarly, a model method is a method that can be called

from assertions but cannot be called from ordinary Java code. A model field can be

thought of as the abstraction of one or more non-model (i.e., Java or concrete) fields

[40]. Model fields abstract values from concrete fields. In JML this is done with the

help of a represents clause. Model methods and types, unlike model fields, are not

abstraction of non-model methods or types. They are simply methods or types that

help in specification.

A ghost field, similar to a model field, is also only used for the purposes of

specification and cannot be used outside of assertions. However, unlike in model

fields, represents clauses do not help determine the values of ghost fields. Their

values are set directly during their initialization or with the use of set-statements

embedded in the Java code.

In JML, class invariants are properties that have to hold for each reachable

object in each publicly visible state, i.e., for each state outside of a public method
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or constructor’s execution and at the beginning and end of each public method’s

execution. It does not, however, have to hold during the execution of an object’s

methods.

In Listing 2.4 we provide an example of a specification that contains the declara-

tion of a model field, an invariant and some method specifications.

1package org . jm l spec s . samples . s ta ck s ;
2
3//@ model import org . jm l specs . models . ∗ ;
4
5public abstract class UnboundedStack {
6
7/∗@ pu b l i c model JMLObjectSequence t heS tack ;
8@ pu b l i c i n i t i a l l y t heS tack != nu l l
9@ && theS tack . isEmpty ( ) ;
10@∗/
11
12//@ pu b l i c i n va r i an t t heS tack != nu l l ;
13
14/∗@ pu b l i c normal behav ior
15@ requ i r e s ! t heS tack . isEmpty ( ) ;
16@ as s i gnab l e t heS tack ;
17@ ensures t heS tack . equa l s (
18@ \ o ld ( t heS tack . t r a i l e r ( ) ) ) ;
19@∗/
20public abstract void pop ( ) ;
21
22/∗@ pu b l i c normal behav ior
23@ as s i gnab l e t heS tack ;
24@ ensures t heS tack . equa l s (
25@ \ o ld ( t heS tack . in se r tFron t ( x ) ) ) ;
26@∗/
27public abstract void push ( Object x ) ;
28
29/∗@ pu b l i c normal behav ior
30@ requ i r e s ! t heS tack . isEmpty ( ) ;
31@ as s i gnab l e \nothing ;
32@ ensures \ r e s u l t == theS tack . f i r s t ( ) ;
33@∗/
34public /∗@ pure @∗/ abstract Object top ( ) ;
35}

Listing 2.4: A file UnboundedStack.java with specifications [40]

In Listing 2.4, a model data field, theStack, is declared on the seventh line. At

the end of the model field’s declaration is an initially clause. Model fields cannot be

explicitly initialized as there is no storage directly associated with them. However,
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an initially clause can be used to describe an abstract initialization for a model field.

The initially clause must be true of the field’s starting value [40]. For our example,

all reachable objects of the type UnboundedStack must have been created as empty

stacks and subsequently modified using the type’s methods.

Following the model field declaration on line 13 is a class invariant. In the example

above, the invariant says that the value of theStack should never be null. Detailed

description of model variables, invariants, initially and represents clauses and method

specifications can be found in Leavens et al.’s JML Reference Manual [41].

2.2.1 JML Runtime Assertion Checker

The JML Runtime Assertion Checker (RAC) compiler (jmlc), like the Java compiler,

produces Java bytecode from source code. It was developed at Iowa State Univer-

sity. It also adds assertion checking code to the bytecode that it produces. The

bytecode produced by jmlc helps find inconsistencies between specifications and code

by executing the assertions at runtime. It finds such inconsistencies dynamically, by

executing JML’s assertions while the program runs and notifies the user of any asser-

tion violations [14]. The JML compiler not only helps us in the detection of software

faults, but it helps check the correctness of JML assertions as well. Figure 2.1 depicts

an overview of the JML environment. Further information about the JML Runtime

Assertion Checker compiler can be found in Yoonsik Cheon’s Technical Report [16].
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Figure 2.1: An overview of the JML environment [57]

We chose JML to test the effectiveness of assertions because it is an open source,

fully-featured, runtime assertion system on a modern object-oriented language. Classes

that have been annotated with JML are publicly available and the choice of Java

meant that we were able to use other common tools like muJava, JUnit and Cober-

tura. A useful feature of JML is that it allows assertions to be kept separate from the

source file. The fact that JML specifications are inherited by subclasses and classes

implementing interfaces also suited our experiment.

2.3 Mutation Testing

Mutation testing is a method of software testing which involves modifying a program’s

souce code or byte code in small ways. The idea of mutation testing dates back to

1971, when Richard Lipton proposed the initial concepts of mutation in a class term

paper entitled “Fault Diagnosis of Computer Programs” [50]. First research papers

in this topic were published in the late ’70s [12], [29], [21]. The DeMillo, Lipton and

Sayward paper [12] is usually credited as the seminal reference.

During mutation testing, faults are introduced into a program by creating multiple
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versions of the program, each of which contains one fault. Test data are then used to

execute these faulty programs with the goal of causing each faulty program to produce

different output than the original program. These faulty programs are mutants of the

original and a mutant is considered to be killed when a test case causes it to produce

output that is different from the original. The main concept behind mutation testing

is that if we are able to come up with a test suite that kills all the valid mutants that

have been generated, then that test suite will also be good at finding real bugs.

Mutations are always based on a set of “mutation operators” which specify syntac-

tic variations of strings generated from a grammar. Mutation operators were derived

from studies of programmer errors and correspond to simple errors that are typically

made by programmers [37]. Mutation operators have been designed for various pro-

gramming languages. Here are some that are listed by Offutt, Ammann and Liu [51]

for, Fortran IV [60], COBOL [30], Fortran 77 [22], [37], C [20], Lisp [13], Ada [10],

Java [35], and Java class relationships [43].

Mutation testing is done by selecting a set of mutation operators and applying

them to the source program one at a time. Mutation testing is used to help the user

measure and improve the quality of testing iteratively. Offutt, Lee, Rothermel, Untch

and Zapf have done an experiment to determine sufficient mutation operators and

have concluded that selective mutation is almost as strong as non-selective mutation

[49]. A more detailed description of mutation analysis and mutation operators can be

found in Ammann and Offutt’s book Introduction to Software Testing [1]. The use of

mutation analysis is common in empirical studies of software testing techniques, and

is borne out by an empirical assessment conducted by Andrew, Briand and Labiche

where they conclude that the use of mutation operators is an effective means of

instrumenting faults when compared to hand seeded faults [2].

For our experiment, we used muJava, a mutation analysis tool, to create mutant
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implementation of the seven Java classes. It automatically generates mutants for both

traditional mutation testing and class-level mutation testing [44].

Listing 2.5 and Listing 2.6 provide an example of a mutant created for Listing 2.2

using muJava. We present both the original as well as the mutated version here.

1public class IntMathOps2
2{
3public static int i s q r t ( int y )
4{
5return ( int ) Math . s q r t ( y ) ;
6}
7}

Listing 2.5: Original IntMathOps2.java

1public class IntMathOps2
2{
3public static int i s q r t ( int y )
4{
5return ( int ) Math . s q r t(−y ) ;
6}
7}

Listing 2.6: Mutated IntMathOps2.java

Listing 2.5 is the original Java class and Listing 2.6 is the mutated Java class

produced by muJava after applying the Arithmetic Operator Insertion (AOI) muta-

tion operator. This particular instance is a basic unary arithmetic operator insertion

(AOIU). The only difference between Listing 2.5 and Listing 2.6 is on line 5 which is

depicted by the diff file in Listing 2.7 with an exclamation (!) mark.
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1public static int i s q r t ( int y)
2{
3! return ( int ) Math . s q r t ( y ) ;
4}
5}
6−−− 3 ,7 −−−−
7
8public static int i s q r t ( int y)
9{
10! return ( int ) Math . s q r t (−y ) ;
11}
12}

Listing 2.7: Diff file representing the AOI mutation operator generated for IntMath-
Ops2.java

2.4 Coverage Criteria

Coverage criteria are used to measure how well a program is exercised by a test

suite, i.e., they help the engineer decide which test inputs to use. They are also

a stopping condition which helps one decide when to stop testing. Effective use of

coverage criteria makes it more likely that test engineers will find faults in a program,

but satisfying a criterion does not guarantee any particular level of effectiveness at

finding faults. Coverage criteria can sometimes be used to directly generate test case

values to satisfy a given criterion [1].

Coverage criteria can be defined in terms of test requirements. Test require-

ments are specific items that must be covered or satisfied during testing. For state-

ment coverage items consist of nodes whereas for branch coverage items consist of

edges in the control flow graph. A coverage criterion is a set of rules and a process

that define test requirements. Based on structure, we can divide coverage criteria

into four categories [1]:

1. Graph based criteria

2. Logical Expressions criteria
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3. Input Domain criteria

4. Syntactic Structures

Infeasible test requirements are test requirements that cannot be satisfied. If

no test case values exist that meet the test requirements then they are labeled infea-

sible. For example, the presence of dead code results in infeasible test requirements

as those statements can never be reached.

For our experiment we used graph coverage and in particular branch coverage.

In order to achieve branch coverage, test cases need to execute every edge in the

control flow graph of a program, i.e. all control transfers in the program under test

are exercised. A more in-depth discussion about coverage criteria can be found in

Amman and Offutt’s book Introduction to Software Testing [1]. Zhu, Hall and May

also do a good job of explaining various unit-testing coverage criteria as well as test

adequacy [69].

Branch coverage was chosen as our coverage criterion as it takes a more in-depth

view of the source code than simple statement coverage which just checks to see

whether every node in a program has been executed. If all edges in a flow graph

are covered, then all nodes are necessarily covered. In other words, branch coverage

subsumes statement coverage. Branch coverage is also supported by many tools and

is widely used in the industry.

To generate our coverage report, we chose Cobertura. Cobertura is a free Java

tool that calculates the percentage of code executed by tests 1. Cobertura is based

on jcoverage, which is another code coverage utility for the Java platform. Cobertura

instruments Java bytecode after it has been compiled and it can generate reports in

HTML or XML. It gives us the percentage of lines and branches covered for each class,

1http://cobertura.sourceforge.net/
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each package and the overall project. It also computes the McCabe cyclomatic code

complexity of each class [46]. Figure 2.2 depicts a report generated by Cobertura for

our subject NewHashSet. At the top of Figure 2.2, the overall statement and branch

coverage values along with the cyclomatic code complexity of the class are shown.

Along the left hand side, the number of times each statement has been executed is

displayed.

Figure 2.2: Report generated by Cobertura for NewHashSet

2.5 Weka

The Waikato Environment for Knowledge Analysis (Weka) is a comprehensive suite

of Java class libraries that implement many state-of-the-art machine learning and
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data mining algorithms [67]. Weka provides tools for pre-processing data, feeding

the data into a variety of learning schemes and also analyzing the resulting classifiers

and their performance. Weka was developed at the University of Waikato. The Weka

workbench contains a collection of visualization tools and algorithms for data analysis

and predictive modelling. Weka supports several standard data mining tasks such

as data preprocessing, clustering, classification, regression, visualization and feature

selection.

The primary learning methods in Weka are “classifiers” which induce a rule set

or decision tree that models the data. Weka also includes algorithms for learning

association rules and clustering data. Weka contains implementations of many algo-

rithms for classification and numeric predictions such as ZeroR, OneR, NaiveBayes,

DecisionTable, J48.J48, J48.PART, etc.

We use Weka’s J48.J48 classification algoririthm to classify the effectiveness of

JML assertions and come up with a decision tree. Weka’s J48 algorithm is a Java

implementation of the C4.5 algorithm [56] which generates a decision tree developed

by Ross Quinlan. The decision trees generated by C4.5 are used for classification and

hence C4.5 is often referred to as a statistical classifier. A more detailed description of

Weka and the J48 algorithm can be found in Witten and Frank’s book Data Mining:

Practical Machine Learning Tools and Techniques [66].

In this work, we primarily used Weka as a black box to help us come up with

decision trees that fit our empirical data at the different levels of effectiveness.
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Chapter 3

Related Work

The roots of formal, logical assertions about program behavior came even before the

existence of computers. The term “assertion” was used in Goldstine and vonNeu-

mann’s work on reasoning about programs to document invariants in algorithms [26].

Assertions were also used by Turing to document states that can be associated with

various points in a routine [63].

The idea behind using assertions to help in software development is not new either.

Floyd used loop assertions for program verification in 1967 [25]. Another work was

by Hoare in 1969 where he used assertions to make formal statements about the

behavior of programs [31]. Hoare famously defined “the proof schema {P} S {Q}

(originally written by Hoare as P {S} Q), where S is a (composition of) statements,

P is the precondition of S, and Q is the postcondition of S” [17]. Hoare interpreted his

original schema P {S} Q as “ If the assertion P is true before initiation of a program

S, then the assertion Q will be true on its completion.” After defining axiom schemas

for primitive program statements and inference rules for compound statements and

composition of statements, Hoare sketched a proof method whereby the programmer

supplied a precondition P and postcondition Q for a program S and then applied the
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system of proof rules to establish the validity of the statement {P} S {Q}. Luckham

et al. elaborated Floyd’s idea of using loop assertions into an algorithm for mechanical

program verification which was based on the creation and proof of simple assertions

called “verification conditions” [34].

In addition to helping in software development, assertions have been used to de-

tect software faults during runtime. Several researchers have described systems that

derive runtime consistency checks from simpler assertions [59], [8], [68]. Stucki and

Foshee in their approach wrote assertions as annotations of FORTRAN source code

which were translated by the preprocessor to embedded runtime checks that were

invoked at appropriate times during the execution of the program [59]. Luckham and

vonHenke developed the Anna annotation system to augment the Ada programming

language [42]. Clarke and Rosenblum in their Impact Report, list seven extensive

kinds of annotations that Anna provides [17]. These being subtype annotations, to

specify a logical constraint on the set of values belonging to an Ada subtype; ob-

ject annotations, to specify a logical constraint on the values a variable may hold;

statement annotations, for specifying point assertions on the states following state-

ment executions; subprogram annotations, to specify pre- and post conditions on

subprograms; axiomatic annotations, to axiomatically or algebraically specify pack-

age behaviors; context annotations, to specify constraints on the items a compilation

unit uses from the other compilation units it imports; and propagation annotations,

to specify constraints on the way exceptions are propagated within a program.

The best known example of checking assertions at runtime is perhaps Bertrand

Meyer’s design-by-contract implemented in a programming language Eiffel [47]. Eiffel

incorporated assertion constructs into the programming language, including support

for pre and post conditions, initial values (in post conditions only), loop invariants,

class invariants and a general assert statement. Eiffel was also used to specify behavior
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at the design level. Not only is Eiffel suitable for runtime error checking but it also

provides a good static analysis of semantic consistency. Eiffel’s success in checking

pre and post conditions contributed to the availability of similar facilities in other

programming languages.

Other third party tools have also been designed that support design by contract.

For Java, iContract by Reliable-Systems is one such tool [38]. iContract is a source

code preprocessor which identifies annotated assertion expressions that use tags such

as @pre to specify preconditions, @post to specify postconditions, etc. iContract con-

verts these assertions into check code. iContract supports the use of class invariants,

preconditions and postconditions. Additionally, it supports propagation of assertions

via inheritance.

Besides the ones mentioned above there are numerous other runtime assertion

checking facilities that have been developed. Here are some that are listed by Cheon

[16] for programming languages, C++ [23], [27], [55], [65], .NET [4], Python [54],

Smalltalk [15] and Java [6], [24], [36], [38], [18]. A comprehensive report on the history

of runtime assertion checking can be found in Clarke and Rosenblum’s IMPACT

report [17].

Even though the use of runtime assertion checking is a widely-supported approach

during the testing activity, there have only been a few empirical studies on their ef-

fectiveness at detecting faults. Rosenblum reports on several experiments that led

to a classification of the assertions that were most effective at detecting faults in C

programs [58]. Rosenblum describes a tool called APP, an Annotation PreProcessor

for C. His work mainly strives to add annotations to existing C programs to describe

the assertions. In his experiment Rosenblum carried out a case study on a C program

subject. He found that the assertions that were written for the C program detected

a high percentage of the discovered faults in the program. He also provided a clas-
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sification of the assertions that were most effective at detecting faults so that future

developers would reap the benefits of his efforts.

Muller et al. performed an experiment where they compared two assertion prepro-

cessors, APP and Jcontract, in terms of their ability to aid software maintenance and

extension tasks [48]. They found that programs produced with the help of assertions

were more reliable and that assertions reduced the effort needed and made the effort

more predictable.

Baudry et al. empirically validated the robustness and diagnosability factors of

software using different measures by applying mutation analysis in a telecommunica-

tions switching system [7]. Baudry et al. defined robustness as “the degree to which

software can recover for internal faults that would otherwise have provoked a failure”

and diagnosability as the “degree to which the software allows easy and precise lo-

cation of a fault when it is detected.” They conclude that design by contract is a

very efficient way of improving the diagnosability and robustness of a system and its

general quality. They also state that the quality of contracts is more important than

their quantity.

Vaos and Miller have done work to advocate the placement of assertions in code

[64]. Excessive assertion uses slows down the execution speed and there might not be

any cost-benefits between the performance degradation and the potential benefits of

finding faults. They claim that assertions should be placed in locations where tradi-

tional testing is unlikely to uncover software faults and advocate the use of sensitivity

analysis. Sensitivity analysis makes predictions concerning future program behavior

by estimating the effect that input distribution, syntactic mutants and changed values

in data states have on current program behavior [64].

According to Clarke and Rosenblum [17] the most definitive study to date regard-

ing the impact of assertions on faults in production software systems is the study
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undertaken by Microsoft researchers [39]. Their study revealed that there existed a

“statistically negative correlation between the assertion density and fault density.”

Code that had been developed and tested with assertions had fewer faults than code

that did not and as the density of assertions in the code increased, the number of

faults decreased.

Several researchers have identified that specification can be used as an oracle.

However, not much work has been done in employing a runtime assertion checker as

the test oracle engine. Yoonsik Cheon and Gary T. Leavens use a runtime assertion

checker as the decision procedure for test oracles [16]. They monitor the specified

behavior of the method under test to decide test failure or success. Peters and Parnas

have also generated test oracles from formal program specifications [52]. A relational

program specification is used to specify the behavior of a program and the test oracle

procedure generated in C and C++ checks if an input and output pair satisfies the

relation described by the specification. Their approach tests for only pre and post

conditions and the specification by themselves aren’t used as test oracles.

Another approach is by Antoy and Hamlet who check the execution of an ab-

stract data type’s implementation against its specification [3]. They use an algebraic

specification which serves as a test oracle. The algebraic specification is executed

by rewriting and compared with the implementation’s execution. In order to com-

pare, the user provides an abstraction function which maps implementation status to

abstract values.

Briand, Labiche and Sun have investigated how the instrumentation of contracts

addresses the definition and coding of test oracles as well as the isolation of faults

once failures have been detected [11]. They investigate in detail the impact of contract

executable assertions on diagnosability. They perform a thorough case study where

they define OCL (Object Constraint Language) contracts, instrument them using a
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commercial tool (JContract) and assess the benefits and limitations of contracts by

comparing the results of programs instrumented with contracts and programs that

exclusively use test oracles. They present an ATM case study and generate mutant

versions to compute diagnosability for program versions using only test oracles and

instrumented versions using contracts. They discover that the average diagnosability

for the ATM program when using contract is at least eight times better than using

just test oracles and that hence it leads to significant effort savings.

Tan and Edwards performed a study to evaluate the effectiveness of JML-JUnit

Testing [61]. They test the JML-JUnit unit testing strategy using mutation analysis.

They chose six classes from the java.util library and chose Jester 1, a mutation testing

tool to generate mutants for the classes. After generating mutants they ran the JUnit

test cases by providing preselected values for scalars and provided null and the default

constructor for object types. Their results show that the JML-JUnit testing strategy

is not very effective but they were able to detect bugs in the specifications of classes.

However, their study raises some questions. They used Jester to generate bugs which

does not provide a comprehensive set of mutations.

Our contributions are most closely related to Tan and Edwards’ study [61]. We

both use mutation analysis to evaluate the effectiveness of testing with assertions.

However, rather than just generating mutants and seeing how many mutants were

caught and how many weren’t, we analyze the effectiveness of different annotations

at different thresholds. We also evaluate how effective the Java runtime system is

when it comes to finding bugs. They used Jester to create faulty implementations

of the Java classes where as we used muJava. Jester does not even cover all of the

traditional mutation operators. Also, Tan and Edwards’ only experimented with six

classes from the java.util library where as we test with seven, one of which stems from

1http://jester.sourceforge.net
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the java.net library. Unlike Tan and Edwards we also break down the classes in order

to evaluate the effectiveness of JML annotations at the method-level.

27



Chapter 4

Experimental Method

In this chapter we describe the experimental setup, the metrics that we collected, and

the seven Java classes that are the subjects of our experiment. Section 4.1 lists the

steps that we took when conducting our experiment. Section 4.2 provides the set of

class as well as method-level metrics that we collected and in Section 4.3 we describe

the seven core Java classes which serve as subjects in our experiment.

4.1 Experimental Infrastructure

We downloaded the common JML tools version 5.2 (JML.5.2) 1. Since JML only

works with J2SDK 1.4.2 and earlier versions, we also downloaded J2SDK 1.4.2 and

got that set up. We also downloaded and set up muJava - a Mutation Analysis Tool

and Cobertura - a Java Coverage Tool. muJava was needed to create mutant versions

of our subjects and Cobertura to generate our coverage reports. Once we had the

tools that were needed, the next step was to get the source code for the different Java

libraries as those were going to be our subjects. We obtained the Java 1.4 source files

1http://sourceforge.net/projects/jmlspecs/
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from the Sun Microsystems website 2.

Once all the tools were set up, the different Java library classes were compiled with

the JML compiler (jmlc). We had to rename the JML specification files which came

with the JML tools to *.refines-java and also add a //@ refine “*.java” statement to

the refines-java file. To get the classes to compile with the JML complier certain /*@

nullable @*/ and /*@ non null @*/ assertions had to be added to various methods of

the refines-java file as well as the source file itself. With certain classes, some ghost

field errors had to be fixed and in some cases there were missing represents clauses

that had to be included to represent the declared model variables.

After all of the JML errors were taken care of, test cases were written for the

different Java classes. The goal was to achieve 90% branch coverage. In order to

generate our coverage reports we used Cobertura. To generate mutant versions of our

test subjects, we used muJava. Traditional method-level mutation operators were

used to create the mutants.

Once we had our mutants and our test cases, we ran the test cases to inspect how

many mutants were killed and how many mutants were still alive. When running the

test cases on the mutants, the first run did not include assertions (referred to below

as the “null oracle”) and the second run did include the JML assertions. All the

mutants that were not caught by the null oracle were then classified to see whether

they were valid or invalid. Invalid mutants are mutants that represent infeasible test

requirements as they always produce the same output as the original program. An

example of invalid mutants are equivalent mutants which are functionally equivalent

to the original program. Replacing a “==” with a “<=” would result in an equivalent

mutant. Of the remaining valid mutants that were not killed by the null oracle during

the first run we checked to see how many of them that contained assertions were killed

2http://www.sun.com/
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during the second run as a result of using JML assertions as a test oracle. In this

way, we were able to make a comparison between the number of mutants killed by

the null oracle itself and the mutants which were not killed by the null oracle and

had assertions that were killed as a result of JML assertions.

Even though we had the results for the effectiveness of the null oracle at killing

mutants as well as the effectiveness of JML assertions, used as the test oracle, at killing

mutants we still did not have enough information to evaluate the effectiveness of JML

assertions at different thresholds. The thresholds that we used for our experiment

were 70%, 80%, 90% and 100%. In order to do that we collected various metrics

as listed in Section 4.2. We had to manually collect all of the method-level metrics

whereas as Cobertura helped generate the class metrics. Once we had collected all

the metrics, we created a data set in the Attriture-Relation File Format (ARFF) for

each of our test subjects, for thresholds of effectiveness ranging from 70% to 100%.

Overall, we created 28 data sets for our seven test subjects. After creating the 28

data sets, we merged the data sets for each threshold of effectiveness together thus

giving us four “Grand Data Sets.” We fed these four data sets to Weka and utilized

the J48 classification algorithm to come up with a decision tree for each of the four

thresholds of effectiveness. We present these results in Section 5.4.

4.1.1 A Sample Run Through the Experiment

Below is an example of an entire run-through of our experimental setup with the Java

utility class HashSet.

Step 1 - We created a package java.util and hence had to rename HashSet as

NewHashSet as we wanted the Java and jml compiler to use our HashSet

(NewHashSet.java) and not the original java.util.HashSet. At first we tried
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creating a package java util HashSet and using HashSet from the package but

this was causing class loader issues.

Step 2 - We copied over the specification file for HashSet - HashSet.refines-spec into

our package under java.util and renamed it to NewHashSet.refines-java. We also

added a //@ refine “NewHashSet.java” clause. Since NewHashSet.refines-java

refines the NewHashSet.java file, we had to add ‘also’ to all of the method

specifications in the NewHashSet.refines-java file.

Step 3 - To get both of the files to compile with the jml compiler, we had to add

/*@ nullable @*/ and /*@ non null @*/ assertions at certain places. Listing 4.1

shows an example of us adding the /*@ non null @*/ assertion to the clone()

method in NewHashSet.java and Listing 4.2 shows an example of us adding the

/*@ non null @*/ and ‘also’ assertions to NewHashSet.refine-java.

1public /∗@ non nu l l @∗/ java . lang . Object c l one ( )
2{
3try {
4java . u t i l . NewHashSet newSet =
5( java . u t i l . NewHashSet) super . c l one ( ) ;
6newSet .map = ( java . u t i l . HashMap)
7map . c l one ( ) ;
8return newSet ;
9} catch ( java . lang . CloneNotSupportedException e ) {
10throw new java . lang . I n t e r na lE r r o r ( ) ;
11}
12}

Listing 4.1: /*@ non null @*/ assertion added to NewHashSet.java
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1/∗@ a l s o
2@ pu b l i c normal behav ior
3@ as s i gnab l e \ nothing ;
4@ ensures \ r e s u l t i n s t an c eo f Set && \ f r e s h (\ r e s u l t )
5@ && (( Set )\ r e s u l t ) . e qua l s ( t h i s ) ;
6@ ensures redundan t l y \ r e s u l t != t h i s ;
7@∗/
8public /∗@ non nu l l ∗/ Object c l one ( ) ;

Listing 4.2: also assertion added to NewHashSet.refines-java

Step 4 - Besides the above assertions we also had to add certain represents and in

clauses to the original HashSet.refines-spec file. The represents and in clauses

caused us a lot of trouble at first. Certain classes that we looked into al-

ready had model variables being represented with represents clauses whereas

for other classes although the model variables were defined and being used

throughout the class, they were never actually being represented. In Listing 4.3

we present the original HashSet.refines-spec file with all of their defined model

variables, invariants and represents clauses and in Listing 4.4 we present our

NewHashSet.refines-java file with all of their assertions as well as our added in

and represents clauses.

1public class HashSet extends AbstractSet
2implements Set , Cloneable , java . i o . S e r i a l i z a b l e
3{
4//@ pu b l i c r e p r e s en t s addOperat ionSupported = t rue ;
5//@ pu b l i c r e p r e s en t s removeOperationSupported = t rue ;
6
7//@ pu b l i c model i n t i n i t i a lCapa c i t y ;
8//@ pu b l i c model f l o a t loadFactor ;
9
10//@ pu b l i c i n va r i an t i n i t i a lCapa c i t y >= 0;
11//@ pu b l i c i n va r i an t loadFactor > 0 ;
12
13/∗@ pu b l i c normal behav ior
14@ as s i gnab l e theSet , i n i t i a lCapa c i t y , loadFactor ;
15@ ensures t heSe t != nu l l && theSe t . isEmpty ( ) ;
16@ ensures loadFactor == 0 .75 ;
17@ ensures i n i t i a lCap a c i t y == 16;
18@∗/
19public HashSet ( ) ;

Listing 4.3: Original HashSet.refines-spec file provided by JML
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1public class NewHashSet extends AbstractSet
2implements Set , Cloneable , java . i o . S e r i a l i z a b l e
3{
4//@ pu b l i c r e p r e s en t s addOperat ionSupported <− t ru e ;
5//@ pu b l i c r e p r e s en t s removeOperationSupported <− t ru e ;
6//@ pu b l i c r e p r e s en t s nu l lE lementsSuppor ted <− t ru e ;
7
8//@ pu b l i c model i n t i n i t i a lCapa c i t y ;
9//@ pu b l i c model f l o a t loadFactor ;
10
11private /∗@ spe c pu b l i c @∗/ f ina l int i n i t i a l C a p a c i t y ;
12//@ in i n i t i a lCap a c i t y ;
13private /∗@ spe c pu b l i c @∗/ f ina l f loat l o adFac to r ;
14//@ in loadFactor ;
15private /∗@ spe c pu b l i c @∗/ transient HashMap map ;
16//@ in theSe t ;
17
18//@ pu b l i c r e p r e s en t s i n i t i a lCap a c i t y <− i n i t i a l C a p a c i t y ;
19//@ pu b l i c r e p r e s en t s loadFactor <− l oadFac tor ;
20
21//@ pu b l i c r e p r e s en t s t heSe t <−
22//@ JMLEqualsSet . convertFrom (map . keySet ( ) ) ;
23
24//@ pu b l i c i n va r i an t i n i t i a lCapa c i t y >= 0;
25//@ pu b l i c i n va r i an t loadFactor > 0 ;
26
27/∗@ a l s o pu b l i c ∗ normal behav ior
28@ as s i gnab l e theSet , i n i t i a lCapa c i t y , loadFactor ;
29@ ensures t heSe t != nu l l && theSe t . isEmpty ( ) ;
30@ ensures loadFactor == 0 .75 ;
31@ ensures i n i t i a lCap a c i t y == 16;
32@∗/
33public NewHashSet ( ) ;

Listing 4.4: Altered NewHashSet.refines-java file with additional in and represents
clauses

Step 5 - The next step was to write test cases for the class NewHashSet.java.

NewHashSet was a fairly simple class hence we did not face too many issues

writing test cases for it. For some other complex classes like Date and URL

this process was quite challenging. The parse(String) method for Date was

one that was really challenging. After writing the test cases we generated a

coverge report using Cobertura. For NewHashSet we were able to achieve 90%

branch coverage with 20 test cases. The process of generating Cobertura cover-

age reports was quite troublesome as well. Since we had our package named as
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java.util and java.net in order to eliminate class loader issues in Step 1, we were

now getting security exceptions that told us that we were using a prohibited

package name: java.util. We basically had to create two packages for every

test subject one named java.util to get the jml compiler to work and the other

java util SubjectName for us to be able to generate Cobertura reports. The

files in these packages were identical except for the ‘package’ statement.

Step 6 - Next we used muJava to generate mutant versions of NewHashSet.java.

This step was not as troublesome as some of the others but for certain classes

we had to comment out assert statements as those was causing Open muJava

exceptions. Listing 4.5 shows us an example of a diff file that represents one of

the mutants that muJava generated.

1public boolean remove ( java . lang . Object o )
2{
3! return map. remove ( o ) == PRESENT;
4}
5
6public void c l e a r ( )
7−−− 86 ,92 −−−−
8
9public boolean remove ( java . lang . Object o )
10{
11! return map. remove ( o ) != PRESENT;
12}
13
14public void c l e a r ( )

Listing 4.5: Diff file representing the Relational Operator Replacement mutation
opearator generated for NewHashSet.java

Step 7 - Next we ran the test cases on the mutants. During the first run we did

not include the JML assertions. In the second run we did. We then classified

all the mutants that were not caught by the null oracle to see if they were valid

or invalid. Of the remaining valid mutants that were not killed by the null

oracle during the first run, we checked to see how many of them that contained
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assertions were killed during the second run.

The results that we got for NewHashSet are listed in Table 4.1 which reflect

our results in Sections 5.1 and 5.2. A method-level breakdown of the results for

NewHashSet is presented in Subsection 5.3.2.

Total number of mutants generated by muJava 99
Number of invalid mutants 6
Total number of valid mutants 93
Mutants not caught by the null oracle during the 1st run 76
The total number of mutants not caught by the null oracle
with assertions

42

The number of mutants caught by JML assertions during the
2nd run

24 (57.14%)

Table 4.1: Results for NewHashSet

Step 8 - Once we had our results as described in Step 7, we were able to deter-

mine the effectiveness of the null oracle and JML assertions used as the test

oracle at catching bugs. In order for us to evaluate the effectiveness of JML

assertions at different thresholds, we collected the metrics as listed in Section

4.2 for NewHashSet. The class level metrics were generated by Cobertura but

we collected all of the method-level metrics manually. After collecting all the

metrics, we created a data set in the ARFF file format for us to be able to

utilize Weka’s J48 algorithm to help us come up with a decision tree to classify

the JML assertions at various thresholds of effectiveness. Figure 4.1 depicts a

data set that was created for NewHashSet at 70% effectiveness.
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Figure 4.1: Weka Data Set for NewHashSet at 70% Effectiveness

The attributes that we use in our data sets as shown in Figure 4.1 are number

of statements, number of branches, number of preconditions on others, presence of

postcondition on others, number of postconditions on self, number of preconditions

on self, number of class invariants, number of explicit test cases, number of model

variables defined, number of model variables used, number of model methods defined

and the number of model methods used. The final attribute is the “outcome” which

tells us whether the threshold for effectiveness was reached or not (for this specific

example whether 70% of the valid mutants that were not caught by the null oracle,

that were annotated, were caught as a result of using JML assertions as the test

oracle). We converted the final attribute from a numerical value as represented in the

JML Caught Weighted % column in Section 5.3 to a boolean value as we just wanted

to see whether 70% of the bugs were caught or not.
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4.2 Metrics

In order to help us classify the effectiveness of JML assertions we collected some

metrics for all of our test subjects listed in Section 4.3. We provide a list as well as

a brief introduction of the various metrics collected in this section. Subsection 4.2.1

describes class metrics and Subsection 4.2.2 describes method-level metrics.

4.2.1 Class Metrics

The class metrics we collected are source lines of code (executable lines of code),

number of methods for each class, number of branches in each class, the number and

percentage of lines our test suite covered for each class (statement coverage numbers),

the number and percentage of branches our test suite covered for each class (branch

coverage numbers), the McCabe’s cyclomatic code complexity [46] and the number of

test cases written for each class. All of the metrics besides the number of test cases

listed above are generated by Cobertura.

4.2.2 Method-level Metrics

The method-level metrics we collected with their abbreviations provided in parenthe-

sis () to fit them all in a single table are as follows: number of executable statements

in the method (statements), number of branches in the method (branches), number of

preconditions on other methods that affect this method (Pre O), number of postcon-

ditions on other methods that affect this method (Post O), number of preconditions

for the method itself (Pre S), number of postconditions on the method itself (Post S),

explicit number of test cases to test that method (Explicit Test Cases) and number of

valid mutants that muJava generated for that method (Mutants). All of the metrics

mentioned above were manually collected.
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There are a few metrics listed above that need further clarification. By precondi-

tions on other methods that affect this method we mean preconditions on some other

(caller) method that calls the method under test (callee) and by postconditions on

other methods that affect this method we mean the postconditions on some other

(caller) method that calls the method under test (callee) as shown in Figure 4.2.

Pre Self, Post Self

Pre Self, Post Self

Method under test 

(Callee method)

Other method 

(Caller method)

Pre Self and Post Self for the other method become Pre 

Others and Post  Others for the method under test

Pre Others, Post Others

Figure 4.2: Pre and Postconditions on Others

Now let us take a look at a specific example in Date. Date has two methods

getTime() and getTimeImpl(). The method getTime() simply calls the method

getTimeImpl(). Here getTime() is the caller and getTimeImpl() is the callee. The

method getTimeImpl() has no assertions whereas getTime() is annotated (we tested

subjects with assertions written by others). muJava generated 6 mutants for get-

TimeImpl() out of which 2 were caught by the null oracle. Even though getTimeImpl()

didn’t have any assertions, the remaining 4 mutants were still killed during the 2nd

run as shown in Table 5.3. This is where the preconditions of others and postcondi-
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tions of others come into play. The caller method getTime() has 2 preconditions and 2

postconditions which helped kill the remaining 4 mutants for getTimeImpl() (callee).

The 2 preconditions and 2 postconditions of getTime() serve as the 2 precondition

on others (Pre O) and the 2 postcondition on others (Post O) for getTimeImpl() as

shown in Table 4.3.

4.3 Subjects

As our subjects, we chose seven Java classes. Of the seven subjects, six were from the

Java Utility package: Date, HashSet, Observable, Stack, TreeSet and Vector. One

was from the Java Net package: URL. Below we provide a brief description of these

classes along with the class metrics and the coverage numbers we are able to get which

are generated by Cobertura. After the class metrics and coverage numbers, we also

provide a method-level metrics that we have collected for each class.

4.3.1 Date

Date represents a specific time, with millisecond precision 3. Listed below are the

metrics for Date along with our coverage numbers.

Source Lines of Code 263
Number of methods 40
Number of branches 204
Number of lines covered 218 (82%)
Number of branches covered 168 (82%)
Cyclomatic complexity 3.6
Number of test cases 64

Table 4.2: Metrics for Date

For Date, we were able to get a pretty high number for branch coverage of 82%.

3http://sun.java.com/j2se/1.4.2/docs/api/java/util/Date.html
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Most of the complexity in Date was in the method long parse() which did not have

any assertions. In Table 4.3, we provide a breakdown of the class Date based on its

methods.

Method Name statements branches Pre O Post O Pre S Post S Explicit
Test Cases

Mutants

boolean after(Date) 1 1 0 0 4 2 2 6
boolean before(Date) 1 1 0 0 4 2 2 1
boolean equals(Date) 1 2 0 0 1 2 3 9
Date(int,int,int) 1 1 0 0 0 0 1 12
Date(int,int,int,int,int) 1 1 0 0 0 0 1 20
Date(int,int,int,int,int,int) 6 4 0 0 0 0 1 32
Date(long) 2 1 0 0 0 2 1 4
int compareTo(Date) 3 4 2 1 6 3 4 24
void setTime(long) 2 2 0 0 2 2 2 8
long getTimeImpl() 1 2 2 2 0 0 2 6

Table 4.3: Method-level metrics for Date

4.3.2 HashSet

HashSet implements the Set interface, backed by a hash table. It makes no guarantees

as to the iteration order of the set but it does guarantee that the order will remain

constant over time 4. Listed below are the metrics for HashSet along with our coverage

numbers.

Source Lines of Code 46
Number of methods 15
Number of branches 10
Number of lines covered 41 (89%)
Number of branches covered 9 (90%)
Cyclomatic complexity 1.4
Number of test cases 20

Table 4.4: Metrics for HashSet

For HashSet, we were able to get a high number for branch coverage as well of

90%. HashSet was a simpler class in terms of complexity as it only had 10 branches.

4http://sun.java.com/j2se/1.4.2/docs/api/java/util/HashSet.html
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In Table 4.5, we provide a breakdown of HashSet based on its methods.

Method Name statements branches Pre O Post O Pre S Post S Explicit
Test Cases

Mutants

HashSet(int) 3 1 0 0 0 4 1 10
HashSet(int,float) 3 1 0 0 1 4 1 18
HashSet(Collection) 4 1 0 0 1 2 1 16
HashSet(int,float,boolean) 3 1 0 0 0 0 0 22
boolean add(Object) 1 1 0 2 0 0 2 2
boolean remove(Object) 1 1 0 1 0 0 2 2
void readObject(Object) 6 2 0 0 0 0 2 23

Table 4.5: Method-level metrics for HashSet

4.3.3 Observable

Observable represents an observable object or data in the model-view paradigm. An

observable object can have one or more observers. After an observable instance

changes, an application calling the Observable’s notifyObservers method causes all of

its observers to be notified of the change by the call to their update method 5. Listed

below are the metrics for Observable along with our coverage numbers.

Source Lines of Code 30
Number of methods 10
Number of branches 8
Number of lines covered 19 (63%)
Number of branches covered 4 (50%)
Cyclomatic complexity 1.6
Number of test cases 8

Table 4.6: Metrics for Observable

We were only able to achieve 50% branch coverage for Observable as the test cases

which exercised the remaining branches caused JMLEntryPreCondition Errors. As a

result those test cases had to be turned off. An entry precondition error refers to an

assertion violation concerned with the precondition of the method. In Table 4.7, we

5http://sun.java.com/j2se/1.4.2/docs/api/java/util/Observable.html
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provide a breakdown of Observable based on its methods. The * in the Explicit Test

Cases column below implies implicit test cases. What we mean by those is that we

did not write an explicit test case to test that method but to test other methods we

called that method, hence it was tested implicitly. For example, if we were testing

the remove method for a List, then for certain test cases we would first add an item

to the List and then remove it. In this case add is being tested implicitly by the test

case for remove.

Method Name statements branches Pre O Post O Pre S Post S Explicit
Test Cases

Mutants

void notifyObservers(Object) 8 4 1 0 1 0 1* 17
void addObserver(Observer) 4 4 0 0 1 1 2 3
boolean hasChanged() 1 1 0 0 0 1 1 1

Table 4.7: Method-level metrics for Observable

4.3.4 Stack

Stack represents a last-in-first-out (LIFO) stack of objects. It provides the usual push

and pop operations as well as a method to peek at the top item on the stack 6. Listed

below are the metrics for Stack along with our coverage numbers.

Source Lines of Code 17
Number of methods 6
Number of branches 6
Number of lines covered 17 (100%)
Number of branches covered 6 (100%)
Cyclomatic complexity 1.67
Number of test cases 10

Table 4.8: Metrics for Stack

Since Stack was a small class with only 6 branches it was not hard to achieve 100%

branch coverage. In Table 4.9, we provide a breakdown of Stack based on its methods.

6http://sun.java.com/j2se/1.4.2/docs/api/java/util/Stack.html
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Method Name statements branches Pre O Post O Pre S Post S Explicit
Test Cases

Mutants

boolean empty() 1 1 0 0 0 1 2 0
int search(Object) 4 2 0 0 2 3 2 14
Object peek() 4 2 0 0 1 2 2 18
Object pop() 5 1 0 0 1 4 2 8

Table 4.9: Method-level metrics for Stack

4.3.5 TreeSet

TreeSet implements the Set interface backed by a TreeMap instance which guaran-

tees that the sorted set will be in ascending element order, sorted according to the

natural order of the elements 7. Listed below are the metrics for TreeSet along with

our coverage numbers.

Source Lines of Code 59
Number of methods 22
Number of branches 22
Number of lines covered 42 (71%)
Number of branches covered 11 (50%)
Cyclomatic complexity 1.55
Number of test cases 19

Table 4.10: Metrics for TreeSet

For TreeSet too we were only able to achieve 50% branch coverage as the test

cases which exercised the remaining branches caused JMLInternalNormalPostcondi-

tion Errors. As a result those test cases had to be turned off. Overall, for TreeSet we

had to turn off 5 test cases. An internal normal postcondition error notifies internal

normal postcondition violations. In Table 4.11, we provide a breakdown of TreeSet

7http://sun.java.com/j2se/1.4.2/docs/api/java/util/TreeSet.html
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based on its methods.

Method Name statements branches Pre O Post O Pre S Post S Explicit
Test Cases

Mutants

boolean add(Object) 1 1 2 5 0 0 1 2
boolean addAll(Collect 9 4 4 1 0 0 3 31
boolean remove(Object) 1 1 2 6 0 0 1 2
void readObject(Object) 6 1 0 0 0 0 2 7

Table 4.11: Method-level metrics for TreeSet

4.3.6 URL

URL represents a Uniform Resource Locator (URL), a pointer to a resource on the

World Wide Web. A resource can be something as simple as a file or a directory

or other complicated objects such as a query to a database 8. Listed below are the

metrics for URL along with our coverage numbers.

Source Lines of Code 244
Number of methods 33
Number of branches 156
Number of lines covered 152 (62%)
Number of branches covered 81 (51%)
Cyclomatic complexity 3.91
Number of test cases 29

Table 4.12: Metrics for URL

For URL, we were able to achieve 51% branch coverage. URL was a complex

class with complicated private methods. Also we needed to turn off some of our test

cases for URL as they were causing some JML errors. In Table 4.13, we provide a

breakdown of URL based on its methods. The * in the Explicit Test Cases column

8http://sun.java.com/j2se/1.4.2/docs/api/java/net/URL.html
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below implies implicit test cases.

Method Name statements branches Pre O Post O Pre S Post S Explicit
Test Cases

Mutants

boolean isValidProtocol(String) 11 8 0 0 0 0 6 68
int getPort() 1 1 0 0 0 1 1 4
URL(String,String,int,String) 1 1 0 8 0 1 5 4
URL(String,String,int,String,..) 25 14 0 0 0 8 5* 56
URL(String,String,String) 1 1 0 9 0 1 1 1
void set(String,String,int,..) 11 1 0 0 0 9 1 7

Table 4.13: Method-level metrics for URL

4.3.7 Vector

Vector implements a growable array of objects. Like an array, it contains components

that can be accessed using an integer index. However, the size of a Vector can grow

or shrink as need to accommodate adding and removing items 9. Listed below are

the metrics for Vector along with our coverage numbers.

Source Lines of Code 192
Number of methods 48
Number of branches 84
Number of lines covered 183 (95%)
Number of branches covered 80 (95%)
Cyclomatic complexity 2.24
Number of test cases 73

Table 4.14: Metrics for Vector

We were able to achieve 95% branch coverage for Vector. In order to achieve 95%

branch coverage we wrote 73 test cases. In Table 4.15, we provide a breakdown of

Vector based on its methods. The * in the Explicit Test Cases column implies implicit

9http://sun.java.com/j2se/1.4.2/docs/api/java/util/Vector.html
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test cases.

Method Name statements branches Pre O Post O Pre S Post S Explicit
Test Cases

Mutants

boolean add(Object) 3 1 0 0 1 1 1* 4
boolean addAll(int,Collection) 10 3 6 1 0 0 4 12
boolean addAll(Collection) 7 1 4 1 0 0 2 4
boolean removeElement(Object) 5 2 0 0 2 3 2 0
int indexOf(Object,int) 7 10 0 0 3 4 5* 2
int lastIndexOf(Object) 1 1 3 4 2 3 5 4
int lastIndexOf(Object,int) 8 8 0 0 4 4 5* 2
Object lastElement() 3 2 0 0 2 1 2 4
Object remove(int) 7 4 0 0 3 1 4 12
Vector(Collection) 3 1 0 0 1 1 1 8
void addElement(Object) 3 1 0 0 14 8 1 4
void ensureCapacity(int) 2 1 0 0 2 2 1 0
void ensureCapacityHelper(int) 8 4 0 0 0 0 0 8
void insertElementAt(Object,int) 7 2 0 0 16 5 3* 13
void removeAllElements() 4 2 0 0 0 1 2* 1
void removeElementAt(int) 11 6 0 0 4 1 4 13
void removeRange(int,int) 6 2 6 1 0 0 1 12
void setSize(int) 7 4 0 0 4 3 2 1
void trimToSize() 6 2 0 0 0 1 2 0

Table 4.15: Method-level metrics for Vector

Apart from the seven subjects listed above we also looked into a few more Java

libraries which we couldn’t carry on with because of various problems faced. We had

class loader issues with certain classes and for others we were able to compile the

classes with the JML compiler (jmlc) but we got errors when running our input only

test cases. The classes that we looked into but did not carry on with are listed al-

phabetically as follows: ArrayList.java, Arrays.java, BigInteger.java, Dictionary.java,

HashMap.java, Hashtable.java, LinkedList.java, TreeMap.java and URI.java.
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Chapter 5

Results and Discussion

In this chapter we provide a complete report of our results. We first examine the

effectiveness of the “null oracle” (Java runtime system) at detecting faults and then

move on to the detection effectiveness of JML assertions. Next we classify JML

assertions based on their effectiveness at different thresholds. We conclude the chapter

with a discussion based on our results.

5.1 Effectiveness of the null oracle

Before evaluating the effectiveness of JML assertions at detecting errors, we first

examine the efficacy of the null oracle at catching bugs. 759 valid mutants were gen-

erated for our seven subjects. Out of the 759 valid mutants, the null oracle killed 159

(20.95%) of them. Table 5.1 represents a breakdown of the valid mutants generated

by muJava and the number of mutants killed by the null oracle for our seven test

subjects.
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Class Name Valid Mutants Caught by the null oracle

Date 319 55 (17.24%)
HashSet 93 17 (18.28%)
Observable 21 2 (9.52%)
Stack 40 26 (65%)
TreeSet 42 7 (16.67%)
URL 140 16 (11.43%)
Vector 104 36 (34.62%)

Table 5.1: Number of valid mutants killed by the null oracle

Table 5.1 does not include the 1236 mutants generated by muJava for the method

parse(String) of Date. Because of the sheer size of the number of mutants generated

for the method parse(String), we were unable to manually determine whether the

mutants were valid or invalid. Of those 1236 mutants, 643 (52.02%) of the mutants

were caught by the null oracle. If we add the mutants generated for parse(String), of

the (759 + 1236) = 1995 mutants, (159 + 643) = 802 (40.2%) are caught by the null

oracle. If we were to evaluate the number of invalid mutants from the 1236 generated

for parse(String), then after throwing out those mutants which were not caught, the

percentage of the mutants killed by the null oracle would be higher than 40.2%.

5.2 Effectiveness of JML Assertions

After determining the number of mutants caught by the null oracle, we evaluated how

many of the mutants (for methods that had been annotated) that were not caught

by the null oracle were caught with JML assertions. Out of the 275 valid mutants

that were not killed by the null oracle whose methods contained JML assertions, 142

(51.64%) of them were killed when we used JML assertions as the test oracle. We did

not take into account mutant implementations whose methods were not annotated

as we wanted to find how effective JML assertions are at finding bugs when they are
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implemented. Table 5.2 represents a breakdown of the valid mutants which were not

caught by the null oracle and of those, how many were caught by JML assertions for

our seven test subjects.

Class Name Valid Mutants not
caught by the null oracle

Caught by JML
Assertions

Date 52 51 (98.08%)
HashSet 42 24 (57.14%)
Observable 19 2 (10.53%)
Stack 14 7 (50%)
TreeSet 28 3 (10.71%)
URL 60 40 (66.67%)
Vector 60 15 (25%)

Table 5.2: Number of valid mutants killed by JML Assertions that were not killed by
the null oracle

Figure 5.1 depicts the classification of our valid mutants. 759 valid mutants were

generated, out of which 159 (20.95%) were caught by the null oracle. Of the remaining

600 that were not caught by the null oracle, 325 did not contain annotations. Hence

we only looked at (600 - 325) = 275 valid mutants that were not caught by the null

oracle which did contain annotations to evaluate the effectiveness of JML assertions.

Of the 275, JML assertions was successful in killing 142 (51.64%) mutants. The

remaining 133 (48.36%) mutants were not killed by JML assertions.
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Figure 5.1: Valid Mutants distribution

5.3 Breakdown of our Results listed by Subject

For all our test subjects presented in Section 4.3, we provide a list of our results. As in

Section 4.3, we provide a list of methods for each class along with the number of valid

mutants for that method (Valid Mutants), the number of mutants caught by the null

oracle (Caught by null oracle), the number of mutants not caught by the null oracle

(Not caught by null oracle), the number of mutants caught as a result of using JML

assertions as the test oracle (Caught by JML), the number of mutants not caught by

JML assertions (Not caught by JML) and a JML caught weighted percentage (JML

Caught Weighted %) that shows how effective JML assertions were at killing mutants

that were not killed by the null oracle. We determine JML caught weighted % as

follows:

(Caught by JML − Caught by the null oracle)

(V alid mutants − Caught by the null oracle)
∗ 100
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For methods that do not contain annotations, we put an N/A in the JML Caught

Weighted % column.

5.3.1 Date

Method Name Valid Mu-
tants

Caught by
null oracle

Not caught
by null oracle

Caught by
JML

Not caught
by JML

JML Caught
Weighted %

boolean after(Date) 6 0 6 6 0 100
boolean before(Date) 1 0 1 1 0 100
boolean equals(Date) 9 2 7 9 0 100
Date(int,int,int) 12 0 12 0 12 N/A
Date(int,int,int,int,int) 20 0 20 0 20 N/A
Date(int,int,int,int,int,int) 32 2 30 2 30 N/A
Date(long) 4 0 4 4 0 100
int compareTo(Date) 24 0 24 23 1 96
void setTime(long) 8 2 6 8 0 100
long getTimeImpl() 6 2 4 6 0 100

Table 5.3: Method-level results for Date

Table 5.3 lists the results we got for Date. Here, the null oracle only catches a few

bugs where as JML assertions were really effective in killing the mutants that were

not killed by the null oracle. All of the methods for Date that were annotated were

simple methods with at most a couple of execution statements and branches.

5.3.2 HashSet

Method Name Valid Mu-
tants

Caught by
null oracle

Not caught
by null oracle

Caught by
JML

Not caught
by JML

JML Caught
Weighted %

HashSet(int) 10 2 8 10 0 100
HashSet(int,float) 18 4 14 18 0 100
HashSet(Collection) 16 0 16 0 16 0
HashSet(int,float,boolean) 22 0 22 0 22 N/A
boolean add(Object) 2 0 2 2 0 100
boolean remove(Object) 2 0 2 0 2 0
void readObject(Object) 23 11 12 11 12 N/A

Table 5.4: Method-level results for HashSet

As in Date, the null oracle for HashSet only catches a few bugs while JML as-

sertions proved quite effective here as well as listed in Table 5.4. Besides a couple
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of methods HashSet(Collection) and remove(Object), JML assertions killed all

the remaining mutants.

5.3.3 Observable

Method Name Valid Mu-
tants

Caught by
null oracle

Not caught
by null oracle

Caught by
JML

Not caught
by JML

JML Caught
Weighted %

void notifyObservers(Object) 17 0 17 0 17 0
void addObserver(Observer) 3 2 1 3 0 100
boolean hasChanged() 1 0 1 1 0 100

Table 5.5: Method-level results for Observable

For Observable, the null oracle hardly catches any bugs as depicted in Table 5.5.

Although JML assertions catch a couple of bugs, it doesn’t catch any for the method

notifyObservers(Object). We believe this is because we had to turn off certain

test cases when testing Observable as mentioned in Subsection 4.3.3.

5.3.4 Stack

Method Name Valid Mu-
tants

Caught by
null oracle

Not caught
by null oracle

Caught by
JML

Not caught
by JML

JML Caught
Weighted %

boolean empty() 0 0 0 0 0 0
int search(Object) 14 2 12 9 5 58
Object peek() 18 17 1 17 1 0
Object pop() 8 7 1 7 1 0

Table 5.6: Method-level results for Stack

Table 5.6 lists the results we got for Stack. The null oracle manages to kill a

decent number of mutants here. However, JML assertions doesn’t do as well. The

methods listed for Stack are more complex and consist of four or more executable

statements and multiple branches.
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5.3.5 TreeSet

Method Name Valid Mu-
tants

Caught by
null oracle

Not caught
by null oracle

Caught by
JML

Not caught
by JML

JML Caught
Weighted %

boolean add(Object) 2 0 2 2 0 100
boolean addAll(Collect 31 7 24 8 23 4
boolean remove(Object) 2 0 2 0 2 0
void readObject(Object) 7 0 7 0 7 N/A

Table 5.7: Method-level results for TreeSet

The null oracle as well as JML assertions seem to perform poorly when it come to

TreeSet as shown by Table 5.7. Us having to turn off certain test cases as mentioned

in Subsection 4.3.5 might be the reason behind this.

5.3.6 URL

Method Name Valid Mu-
tants

Caught by
null oracle

Not caught
by null oracle

Caught
by JML

Not caught
by JML

JML Caught
Weighted %

boolean isValidProtocol(String) 68 4 64 4 64 N/A
int getPort() 4 0 4 4 0 100
HashSet(String,String,int,String) 4 2 2 4 0 100
URL(String,String,int,String,..) 56 10 46 37 19 59
URL(String,String,String) 1 0 1 1 0 100
void set(String,String,int,..) 7 0 7 6 1 86

Table 5.8: Method-level results for URL

Table 5.8 lists our results for URL. The null oracle only kills a few mutants here.

However, JML assertions manage to kill a lot of mutants. For simple methods, JML

assertions catch all the bugs but for complex methods with 10 or more statements

and multiple branches, it only manages to kill 86 and 59% of the mutants that were

not killed by the null oracle.
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5.3.7 Vector

Method Name Valid Mu-
tants

Caught by
null oracle

Not caught
by null oracle

Caught
by JML

Not caught
by JML

JML Caught
Weighted %

boolean add(Object) 4 4 0 4 0 0
boolean addAll(int,Collection) 12 7 5 7 5 0
boolean addAll(Collection) 4 2 2 2 2 0
boolean removeElement(Object) 0 0 0 0 0 0
int indexOf(Object,int) 2 2 0 2 0 0
int lastIndexOf(Object) 4 4 0 4 0 0
int lastIndexOf(Object,int) 2 1 1 1 1 0
Object lastElement() 4 0 4 3 1 75
Object remove(int) 12 3 9 8 4 56
Vector(Collection) 8 4 4 4 4 0
void addElement(Object) 4 0 4 0 4 0
void ensureCapacity(int) 0 0 0 0 0 0
void ensureCapacityHelper(int) 8 0 8 0 8 N/A
void insertElementAt(Object,int) 13 3 10 4 9 10
void removeAllElements() 1 1 0 1 0 0
void removeElementAt(int) 13 3 10 9 4 60
void removeRange(int,int) 12 1 11 1 11 0
void setSize(int) 1 1 0 1 0 0
void trimToSize() 0 0 0 0 0 0

Table 5.9: Method-level results for Vector

For Vector the null oracle performs quite well as shown in Table 5.9. JML asser-

tions on the other hand, doesn’t do as well. Besides four methods where it manages

to kill some mutants, JML assertions do not kill any of the mutants not killed by the

null oracle.

5.4 Evaluation of the Effectiveness of JML Asser-

tions at Different Thresholds

The work done so far gave us insights into how effective the null oracle and JML

assertions are when it comes to finding faults. However, with JML assertions, we also

wanted to know how effective they were at different thresholds. Since we had already

collected a lot of data, we wanted to utilize a machine learning tool and see if the tool

could draw some conclusions from the data. We used Weka’s J48 algorithm to help
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us evaluate the effectiveness of JML assertions and come up with decision trees that

fit our empirical data at different levels of effectiveness. We present the evaluation of

JML assertions at 70, 80, 90 and 100% effectiveness below.

5.4.1 70% Effective

Figure 5.2 depicts a graphical representation of the decision tree created by Weka’s J48

algorithm to determine when at least 70% of the bugs that were not killed by the null

oracle are killed by using JML assertions as the test oracle. The oval nodes represent

decision nodes and the rectangular light gray nodes represent leaf nodes. The

numbers in (parenthesis) at the end of each leaf node tells us the number of instances

in this leaf. If one or more leaves are not pure (i.e., all of the same class), the number

of misclassified instances are given after a slash (/).

s t a t e m e n t s

branches

< = 3

no (21/2)

> 3

classinvariants

< = 1

yes (5)

> 1

postself

< = 2

no (2)

> 2

yes (9)

> 0

no (7/2)

< = 0

Figure 5.2: Evaluation of the effectiveness of JML Assertions at 70%

According to the decision tree in Figure 5.2, it is most likely that JML assertions

will not be able kill more than 70% of the mutants for methods that have more than

3 statements (i.e., methods that are not simple). However, there are two misclassified
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instances here. Another important decision node here is postself which is the number

of postconditions defined for a method. The tree says that if a method has less than

or equal to 3 statements, has less than or equal to one branch, has less than or equal

to 2 class invariants and it has postconditions then bugs will be detected by JML

assertions. When we do not have postconditions then the bugs will most likely not

be caught. Here again, we have two misclassified instances.
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Figure 5.3: Output generated by Weka for 70% Effectiveness

Figure 5.3 shows the full output generated by Weka to determine when JML
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assertions catch 70% of the bugs that the null oracle couldn’t. The error on training

data tells us that our classifier is 90.9% accurate (i.e, almost all the instances were

classified correctly). The stratified cross-validation, which is a technique for assessing

how the results of a statistical analysis will generalize to an independent data set,

tells us that the accuracy of our classifier is 70.45%. From here onwards we will only

provide the graphical decision tree and not the full output produced by Weka.

5.4.2 80% Effective

Figure 5.4 depicts a graphical representation of the decision tree created by Weka’s

J48 algorithm to determine when at least 80% of the bugs that are not killed by the

null oracle are killed by JML assertions.

classinvariants

postself

< = 2

no (14)

> 2

yes (16/2)

> 0

no (14/3)

< = 0

Figure 5.4: Evaluation of the effectiveness of JML Assertions at 80%

According to the decision tree in Figure 5.4, postconditions on self (abbreviated

as postself in the graph) are important to catch 80% of the bugs. 30 out of the 44

total instances were classified based on the presence or absence of postconditions on

self. The role of class invariants is a little misleading here as it seems to be counter

intuitive. One would think that more class invariants would result in more bugs

being caught, but all of our subjects did not have class invariants defined. Some

classes that did not have any class invariants actually ended up killing more mutants

whereas some classes that had 5 or more class invariants did not manage to kill as
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many mutants. The error on training data for 80% effectiveness was 88.63% accurate

and the stratified cross-validation was 79.54% accurate.

5.4.3 90% Effective

A graphical representation of the decision tree created by Weka to determine when

at least 90% of the bugs that are not killed by the null oracle are killed by JML

assertions is shown in Figure 5.5.

s t a t e m e n t s

classinvariants
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no (17)

> 4

postself

< = 2

no (5)

> 2

pos to the r s

< = 0

yes (14/1)

> 0

yes (5/2)

yes

no (3)

no

Figure 5.5: Evaluation of the effectiveness of JML Assertions at 90%

The decision tree in Figure 5.5 tells us that if a method is not simple (i.e., it consists

of more than 4 statements) then it is really difficult to achieve 90% effectiveness with

JML assertions (17 of the 44 instances classified). It also tells us that postconditions

on self as well as postconditions on others (as described in Section 4.3) play an

important role in killing mutants. For methods with less than 4 statements that had

postcondition annotations, 14 out of 44 instances resulted in 90% of the mutants being

killed. Here again we see some misleading information regarding class invariants the

reasons for which are described in Subsection 5.4.2. The error on training data for
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90% effectiveness was 93.18% accurate and the stratified cross-validation was 81.81%

accurate.

5.4.4 100% Effective

Figure 5.6 depicts a graphical representation of the decision tree created by Weka to

determine when all of the bugs that are not killed by the null oracle are killed by

JML assertions.

s t a t e m e n t s
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> 2
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< = 0

yes (9)

> 0

yes (5/2)

yes

no (2)

no

Figure 5.6: Evaluation of the effectiveness of JML Assertions at 100%

The decision tree in Figure 5.6 portrays that it is really hard to catch 100% of

the bugs with JML assertions, unless the method we are dealing with is simple. For

methods that consisted of more than 2 statements, in 28 of the 44 instances, all of the

bugs were not caught. For methods with 2 or less than 2 statements, in order to catch

100% of the bugs, postconditions on self and postconditions on others were the most

important factors with the presence of postcondition annotations on self resulting in

9 of the 44 instances being able to kill 100% of the mutants. The error on training

data for 100% effectiveness was 88.63% accurate and the stratified cross-validation

was 75% accurate.
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5.5 Discussion

From our results we see that oracles play an important role in software testing. With

the use of the null oracle, we were able to kill 159 (20.95%) of the 759 valid mutants.

We describe in Section 5.1 how the percentage of the valid mutants killed by the null

oracle should be around the region of 40.2%. However, this still doesn’t catch more

than half of the bugs.

With the use of JML assertions as the test oracle, we were able to kill 142 (51.64%)

of the 275 valid mutants that were annotated. This tells us that assertions are effective

at catching bugs but it does not however catch all the bugs. From our results we see

that JML assertions are particularly useful in finding bugs for small non-complex

methods. For complex methods JML assertions are not as useful. Also, writing

assertions for complex methods can end up taking a lot of time as they require the use

of model variables, model methods as well as ghost variables. The other observation

that we were able to make from our results is that postcondition annotations, both

on self and others, help in the detection of bugs. Hence, the presence of suitable

postcondition annotations are a necessary means of detecting program faults.

With the help of Weka, we were also able to classify the effectiveness of JML

assertions at different thresholds. We see that at 70% effectiveness, for methods that

have more than 3 statements, JML assertions are not able to kill at least 70% of

the mutants in 21 out of 44 instances. At 100%, for methods that have more than

2 statements, JML assertions are not able to kill all the mutants in 28 out of 44

instances. Another interesting statistic is for the postcondition on self annotation.

There are 16 out of 44 instances where the presence of postcondition on self kills 80%

of the mutants where as there are only 9 out of 44 instances where the presence of

postcondition on self kills 100% of the mutants.
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Chapter 6

Conclusion

In this chapter we provide our conclusions. Section 6.1 consists of an overview of the

experience gained after finishing the experiment. In Section 6.2 we list a summary of

our major findings and in Section 6.3 we describe our plans for future work.

6.1 Reaction

Oracles are an important part of the software testing process. Null oracles although

useful, cannot help us catch most of the bugs. We need oracles to help us find the

remaining bugs. The use of assertions as test oracles are also useful and can help in

bug detection. However, assertions are only useful as test oracles in certain cases.

They are more useful when dealing with simple methods but they cannot be relied

upon to catch all the bugs when the unit under test is complex. When testing complex

systems, we need to augment assertions with other approaches to test oracles.
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6.2 Summary of Major Findings

During the process of running our experiment, we found that the null oracle was able

to detect a fair share of the valid mutants. Out of the 759 valid mutants, the null

oracle was able to kill 159 (20.95%) of them. We also found that the percentage of

mutants caught by the null oracle could have been as high as 40.2%, as justified in

Section 5.1. The use of assertions in the form of JML annotations as a test oracle

on the other hand was able to detect 142(51.64%) of the 275 valid mutants that

were annotated and were not caught by the null oracle. The use of Weka helped us

classify the effectiveness of JML assertions at various thresholds. We found that JML

assertions were useful in detecting bugs for small non-complex methods. When it

came to complex methods, JML assertions did not fare as well. We were also able

to determine that the postcondition annotation both on self and others helped catch

most of the bugs.

6.3 Future Work

We believe that there is still additional information that we can get out of all the

data that we have collected. For our purposes, we just created a data set based on all

of the information that we had collected and derived a decision tree from Weka’s J48

classification algorithm. It would be interesting to see the results from Weka after

separating the instances that contained class invariants from the instances that did

not contain class invariants. How differently would those two data sets be classified?

Would they still look fairly similar? What would that say about the importance of

class invariants when evaluating the effectiveness of JML assertions? We could do

something similar with model variables and model methods and see what that tells
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us about the importance of the use of model methods and model variables to detect

faults.

As part of our future work we would also like to extend the number of test subjects

that we currently have. Apart from just having Java libraries as our subjects, we

would like to incorporate a few additional subjects that would help us collect more

data and verify our results and conclusions to date.
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