
AN ABSTRACT OF THE THESIS OF

Eugene Rogan Creswick for the degree of Masters of Science in Computer Science

presented on June 7, 2004.

Title: Dynamic, Incremental Assertion Propagation in End-User Programming.

Abstract approved:

k

tiargaret M. Burnett

End-user programming is growing at a rapid rate, but there has been little in the

way of tools or environments to improve the correctness of programs created by

end users. We present an approach to dynamic assertions in one of the most widely

used end-user programming paradigmsnamely the spreadsheet paradigm. Our

approach does not assume any formal knowledge of, or interest in, software engi-

neering practices. Dynamic assertions, which can be entered incrementally, feature

deductive propagation from user-entered assertions through spreadsheet formulas.

These propagated dynamic assertions can then be compared with other user-entered

dynamic assertions andin the event of a conflictalert the user to the possibility

of a bug in the spreadsheet formulas.

Deductive propagation, however, is not necessarily viable in all situations. We

present algorithms for a set of spreadsheets that obey a particular set of restrictions,

and evaluate these algorithms in regard to four properties: Reliability, Correctness,

Responsiveness and Usefulness. We present lower bounds on the classification of

the propagation problem for the case where When propagation is not viable. We

Redacted for privacy

also empirically examine the occurrence of these difficult situations in a corpus of

real-world spreadsheets, determining that our approach is capable of propagation

through common situations present in real-world spreadsheets.

©Copyright By Eugene Rogan Creswick

June 7, 2004

All Rights Reserved

Dynamic, Incremental Assertion Propagation in End-User Programming

by

Eugene Rogan Creswick

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Masters of Science

Presented June 7, 2004
Commencement June 2005

Masters of Science thesis of Eugene Rogan Creswick presented on June 7, 2004

APPROVED:

Maj or PnSfessy'r,)epresening Computer Science

Director of the School of E1btrical Engineering and Computer Science

Dean of the 5lthiat'e School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to

any reader upon request. _-

Eu'gene RogfEreswick, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Margaret Burnett, for her count-

less bits of advice, endless patience and encouraging comments as this thesis

evolved. I would also like to thank Jay Summet for his contributions to asser-

tion propagation, on which this work is built. I also owe a great deal to the entire

Formsf 3 Visual Programming Research Group for their work on the Forrnsl3 envi-

ronment and for their constant feedback and constructive criticism.

I would also like to thank Jason Dagit and the studious tutors in the Math Learn-

ing Center for their patience with the multitude of questions II brought to their at-

tention.

TABLE OF CONTENTS
Page

Chapter 1: Introduction
Chapter 2: Related Work 4

Chapter 3: Dynamic Assertions for End Users 9

3.1 Dynamic Assertions from the User's Perspective 11

3.2 Example 13

3.3 Assertions 15

Chapter 4: Propagation 18

4.1 Propagation Through Trees: a-Propagation 22

4.1 .1 Correctness of a-propagation 25
4.1.2 Complexity of a-Propagation 29
4.1.3 Limitations of a-propagation 32

4.2 Complications from Shared Data-flow Dependencies 33

4.2.1 Required Formula Restrictions 35

4.3 Complications from Control-flow Dependencies 38

4.3.1 Classification of the If-problem 42

Chapter 5: Working Around Complications from Shared Data-flow
Dependencies: /-Propagation 45

5.1 1@-Propagation: Propagating Through Low-Degree, c1 Spread-
sheets 45

5.1.1 Correctness of 3-Propagation 52
5.1.2 Complexity of ,8-Propagation 54

TABLE OF CONTENTS (Continued)
Page

Chapter 6: Dynamic Assertions: Evaluations and Applicability . . . 60

6.1 Summary of Empirical Evaluations with Users 60

6.2 Spreadsheet Evaluations 63

6.2.1 How often do these situations occur9 63
6.2.2 When do the situations occur, and how might they be

addressed7 64

Chapter 7: Conclusion and Future Work 65

Bibliography 67

LIST OF FIGURES
Figure Page

3.1 A simple temperature conversion spreadsheet shown at three
stages as an end user changes the spreadsheet to convert from
Celsius to Fahrenheit. Assertions are shown above each cell,
and formulas are in the boxes at the lower right of each cell. . 10

3.2 The graphical interface to assertions in Forms!3......... 13

4.1 In (a) both input assertions are violated. However, the resulting
sum is within the range of the output. In (b) no assertions are
violated, and Out has the same value as in (a).......... 20

4.2 The five equations here represent the general form of interval
arithmetic............................. 24

4.3 The three possible situations when merging sub-assertions. . . 26

4.4 This spreadsheet rounds a value (num) down to the nearest
even number by removing the least significant bit from the bi-
nary representation (bitO-bit3), and printing the result in
decimal. This procedure causes an explosion of sub-assertions,
as seen on the numevens cell................. 30

4.5 A simple "diamond". Dataflow follows the arrows between
cells. Assertions are shown above each cell, and formulas are
in the boxes at the lower right of each cell. Cell A has an
assertion which has been u-propagated to B and C; however
the shared dependency prevents valid o-propagation to D. . . . 34

4.6 A simple spreadsheet demonstrating the if-problem....... 39

4.7 The control flow arc from the predicate to the "then" node
completes a (3-arc) diamond with the two data-flow arcs into
cell B............................... 40

5.1 Multiple data-flow diamonds end in Cell D, but propagation is
still possible because all terms in the expanded formula (X2
X Y2) depend on at most one variable............ 51

LIST OF TABLES
Table Page

5.1 The notation used in the discussion of the complexity of j3-
propagation. E is represented separately because it is not
bounded by N2 since there can be more than one edge be-
tween any two cells........................ 55

6.1 Data-flow diamonds and instances of the if-problem were
found in 15 of the 40 spreadsheets in our corpus 64

LIST OF ALGORITHMS
Algorithm Page

1 Overview of the a-propagation algorithm............ 23

2 Overview of the dynamic assertion propagation algorithm with

a-propagation and /3-propagation................ 46

3 A function used to locate shared dependencies with breadth-

first search and flagging. parents(x,untraversableEdges) re-

turns only the parents of x accessible through traversable edges 48

4 This procedure finds all cells between a given cell D and its

shared dependencies....................... 48

Dynamic, Incremental Assertion Propagation in

End-User Programming

CHAPTER 1

INTRODUCTION

Program correctness in end-user programming is a problem in need of serious

attention. End-user programming has spread widely, in such varied manifestations

as CAD applications, e-mail filtering rules, spreadsheets, and multimedia authoring.

Many people using these applications do not have any programming background,

and it seems unlikely that they will want to learn programming techniques, but

the need for software engineering support in these environments is real. Boehm and

Basili observe that 40-50% of the software created by end-users contains non-trivial

faults [8]. This is further supported by Panko's reports of spreadsheet errors [27,

28, 29]. Typical software engineering tools, however, are not directly applicable to

end-user programming for several reasons: it is not reasonable to expect end-user

programmers to climb the learning curve required for these tools, end users do not

usually create the formal specifications needed by many of these tools, and many

software engineering tools are designed for batch operation whereas most end-user

programming environments are interactive in nature.

To help address this problem, we have developed a paradigm of software engi-

neering for end-user programmers, termed end-user software engineering and have

implemented our work to date in Forms/3 [10, 12], a research spreadsheet language.

One of the techniques we have examined within the spreadsheet paradigm involves

2

the use of assertions.

Assertions are a potentially attractive addition to end-user programming for

three reasons. First, assertions provide a way to make explicit a user's mental model

of the program, essentially integrating "specifications" with that program. Such

specifications, integrated into end-user programs, could provide a host of opportu-

nities for harnessing other software engineering methodologies, such as techniques

for test suite improvement, specification-based test generation, automated test or-

acle generation, or proving program properties. Second, assertions can be used in

an incremental manner; it is possible to enter one or two assertions and gain some

value without the commitment to enter a purportedly complete set of specifications.

Third, assertions in the form of preconditions, postconditions and invariants have a

proven track record of increasing effectiveness in software maintenance and debug-

ging by professional programmers [31].

When creating a spreadsheet, the user has a mental model of how it should

operate. The formulas he or she enters provide one approximation of this model, but

unfortunately these formulas may contain inconsistencies or faults. These formulas

are only one representation of the user's model of the problem and its solution;

they contain information on how to generate the desired result, but do not provide

ways for the user to communicate other properties. Traditionally, assertions have

provided a means for professional programmers to make these expectations explicit

and catch exceptions. Our dynamic approach to assertions attempts to provide these

same advantages to end-user programmers.

In this paper we use the term dynamic assertions to describe initial assertions

(such as assertions entered by the user) that are deductively propagated through the

program to derive more dynamic assertions. In contrast to dynamic assertions, the

3

term static assertions will be used to describe assertions that are not propagated.

When multiple dynamic assertions meet on the same cell, the assertions can be

compared to cross-check the program with the specifications (the user-entered as-

sertions). If there is a conflict between these assertions, there are only two possible

sources for this inconsistency: the spreadsheet formulas that were used to derive the

assertions and the initial user-entered assertions from which the derived assertions

were propagated. For this reason, dynamic assertion conflicts often identify faults in

the program or faults in the user's mental model of how the program should operate.

In this paper we present an approach to dynamic assertions for end-user pro-

grammers, we identify difficult situations related to propagating assertions, we

present algorithms that propagate dynamic assertions through portions of these

difficult situations, and we present open problems regarding propagation.

ri

CHAPTER 2

RELATED WORK

Dynamic assertions touch on many areas in the field of Computer Science. Of

these, four primary areas have generated contributions that are closely related to our

approach for dynamic assertions. These areas are:

Assertions for professional software developers

. Assertions for end-user programmers

. Automatic invariant generation

. Constraint programming

Assertions for Professional Software Developers: For professional software de-

velopers, the only widely used language that natively supports assertions is Eiffel

23j. To allow programs in other languages to share at least some of the benefits of

assertions, methods to add support for assertions to languages such as C, C++ and

Awk have been developed [3, 431. All these approaches have provided static asser-

tions. Despite the static nature of these assertions, the application of such assertions

to software engineering problems has proven promising. For example, there has

been research on deriving runtime consistency checks for Ada programs [32, 361.

Rosenbium has shown that these assertions can be effective at detecting runtime

errors [311. However, these traditional approaches are not geared toward end users.

5

Assertions for End-User Programmers: Microsoft Excel, which is currently the

most widely used end-user programming environment, provides users with a "data

validation" tool, which is similar to static assertions. Users are able to specify

a list or range of acceptable values for a cell. However, the value in that cell is

checked against these limits only when the user edits that cell or when the user

explicitly requests that all violations be shown. It is therefore possible for a visible

cell to contain a value that is out of range without the system notifying the user.

Excel also does not reason in any form about the user-specified limits. Reasoning

about assertions deductively is an important aspect of our approach to deductive

assertions.

Ayalew et al. have also studied the application of assertions to debugging in

the spreadsheet paradigm [4j. Their approach, "interval testing", takes user-entered

ranges and calculates intervals on cells that are dependent on those with specified

ranges. These intervals are then compared and, if they conflict, heuristics are used

to determine the "most influential faulty cell". This cell is then shaded to indicate

that it may be the source of an error. Our work differs from that of Ayalew in a

number of ways. From a human perspective, our approach includes a strategy that

takes into consideration users' curiosity and attention, and also reduces the need

for memorization. From an algorithmic perspective, interval testing relies entirely

on interval arithmetic to propagate assertions, which is not sufficient for many real-

world spreadsheets [4]. (In Section 6.2 we present an examination of real-world

spreadsheets which demonstrates this.) Later in this paper, we identify specific

situations in which interval arithmetic is not sufficient and we present an algorithm

for dynamic assertion propagation through some of these situations.

Automatic Invariant Generation: In addition to methods that allow the pro-

grammer to define assertions, methods have been developed that generate invariants

automatically. Ernst has examined the use of statistical methods to detect likely pro-

gram invariants by extensive examination of a program's behavior over a large test

suite 115], these techniques have been implemented in Daikon 114]. Our approach

differs from Ernst's invariants in that our dynamic assertions are created directly

from user input and deductive propagation. Currently, Ernst's work uses a rela-

tively large set of test cases (in the thousands) to generate invariants that are likely

to be correct [15]. While automatic test generation may assist with this problem, it

is important that an approach targeted at end-users generate tight and relevant as-

sertions on outputs. The assertions generated by our approach fit this requirement,

although there are some situations our approach is unable to propagate through. Be-

cause of the statistical nature of Ernst's work, generated invariants can sometimes

be incorrect. Our work also differs in that Ernst's invariants are designed to be used

in batch by professional programmers, while our approach is interactive.

DIDUCE [181 deduces invariant assertions and uses them to check program cor-

rectness. DIDUCE has a training phase, in which it considers all behaviors to be

correct and relaxes invariants to encompass these behaviors. A checking phase then

reports violations to the invariants inferred in the training phase. Raz et al.'s ap-

proach to semantic anomaly detection [3Q] uses off-the-shelf unsupervised learning

and statistical techniques, including a variant of Daikon, to infer invariants about

incoming data from online data feeds. Raz et al. have conducted empirical work

that shows effectiveness. Recent work that can be described as inferring assertions

related to correctness of end-user programs involves automatic detection of errors

through outlier analysis [24]. This approach is similar to that of Raz et al., but it has

been developed in the domain of programming-by-demonstration for text process-

ing.

Jeffords and Heitmeyer have presented a system which automatically generates

state invariants from an operational (model based) requirements specification ex-

pressed in SRC (Software Cost Reduction) tabular notation [19]. BjØrner et at.

presented a formal proof system that attempts to prove a given goal by generating

intermediate assertions [7]. This system is implemented in STeP, the Stanford Tem-

poral Prover [6]. These approaches require some knowledge of proof systems and

requirements specifications. It is not reasonable to expect end-user programmers to

have such background knowledge.

Constraint Programming: Assertions are similar to the constraints used in Con-

straint Logic Programming [22]. When programming with constraints, a query is

specified as a set of constraints that are solved by a constraint solver [211. For exam-

ple, in ThingLab [9], constraints can be placed on objects. Based on user input, the

values of unconstrained objects change to maintain these constraints. Systems such

as ThingLab can be used to solve myriad problems. (These systems are typically

Turing complete.) However, the way the problem is stated can affect the solver's

ability to find a solution. An example of this is the problem of finding the roots of

a quadratic equation such as x2 + 6x + 10 = 0. A typical constraint solver will not

be able to "discover" the quadratic formula, and therefore cannot find the roots of

all quadratic equations [9].

Information such as the quadratic formula in the previous example is based on

background knowledge about the problem. In constraint programming, this infor-

mation is provided by a domain expert. In the quadratic equation example, the

quadratic formula (would be provided by a domain expert. Since

many end-user programming environments, such as Excel, are used for a very wide

range of tasks, our approach cannot predict the domains that will be relevant, and

the approach does not have access to an expert to convey this knowledge to the

system.

CHAPTER 3

DYNAMIC ASSERTIONS FOR END USERS

Two factors motivated our research on dynamic assertions: First, end-user pro-

gramming languages are often interactive and incremental, therefore dynamic asser-

tions should also possess these properties. Second, end users should not be expected

to have knowledge about, or an interest in, software engineering practices. There-

fore dynamic assertions should not require such knowledge or interest.

We have prototyped our approach to dynamic assertions for end-user program-

mers in Forms/3 [1OJ, a research spreadsheet language. Figure 3.1 shows a spread-

sheet in Forms/3 that a user is in the course of changing. (The user's changes are

discussed in Section 3.2.) One obvious difference from commercial spreadsheet

systems is that in Forms/3, cells are not locked to a grid. Cells can also be given

meaningful names (by the user), such as Input_temp. which represents a user-

entered temperature for the spreadsheet to convert.

Currently our prototype supports three sources of assertions. User assertions

are entered by the user directly, and are displayed next to a stick figure. User asser-

tions can be seen in Figure 3.1, on the inputtemp cell. User assertions provide

a base for system-generated assertions. System-generated assertions result from

deductively propagating assertions through spreadsheet formulas in the direction of

data-flow, and are dynamically updated whenever the user edits a formula or an as-

sertion. System-generated assertions are displayed next to a computer icon. (The

*!32t0 212

200

input_temp

)200

0 to 180

a

rput_temp. 32

40

a5

to 100

to 100

:33

utpu_tanp

(a)

HM.j

Titonp fi;
200

B

a

(b)

b19

10

* O1c30

9. 33

input.terr

93.3333

0 to 180

.157. 8984

a

32- 32t 212
199.99994

a + 32

*;32I 212
32to 212

199. 99994

ouIputjerr

(c}

FIGURE 3.1: A simple temperature conversion spreadsheet shown at three stages
as an end user changes the spreadsheet to convert from Celsius to Fahrenheit. As-
sertions are shown above each cell, and formulas are in the boxes at the lower right
of each cell.

11

methods used to calculate these assertions are presented in Sections 4 and 5.) The

output_temp cell in Figure 3.1 has both user and system-generated assertions.

Help Me Test assertions (HMT assertions) are automatically generated assertions

based on possible input values found by Help Me Test F17], an automatic test-case

generation tool1. HMT assertions are propagated in the same manner as user asser-

tions, and are briefly discussed in Section 6.1.

3.1 Dynamic Assertions from the User's Perspective

In the field of professional software engineering, specifications play a large part

in the software engineering process. Similarly, in our vision of end-user software

engineering, the user's mental model of the program plays a large part in the devel-

opment of their program. Although some of the user's model can be expressed via

spreadsheet formulas, some aspects cannot, such as constraints on values. User as-

sertions alone, even in a static approach to assertions, have the benefit of providing

a means for the user to inform the system of these constraints in their mental model.

A dynamic approach to assertions brings even more benefits. Dynamic assertions

add three ways of potentially helping end users:

First, dynamic assertions act as "guards" for the values in a cell, just as static

assertions do. If the value in a cell falls outside any of the assertions on that

cell, a value violation occurs and a red violation oval is drawn around the

'Forms/3 presents users with the ability to visually test their spreadsheet 34, 33, 35}; however,
coming up with test cases is sometimes diffi cult. Help Me Test generates values to assist users
with this.

12

value in the cell.

Second, because dynamic assertions allow for multiple sources of assertions,

the assertions from each source can be compared with the other assertions

on the cell. If any of these assertions are not in complete agreement, an

assertion conflict occurs and a red assertion conflict oval is drawn over the

disagreeing assertions (output_temp in Figure 3.1(b) has such an oval),

alerting the user to the possible failure in the program. If a user assertion is

ever in conflict with a system-generated assertion there is either a bug in the

spreadsheet formulas or an incorrect user assertion. This guarantee is a key

aspect of the advantages of dynamic assertions.

Third, when a formula is incorrect, the system-generated assertion may not fit

with the user's mental model of the spreadsheet. Dynamic assertions provide

this alternate view of a program through deductive propagation. A simplistic

example is dividing by three, where division by two was needed. This often

results in a system-generated assertion containing repeating decimals, and

may not "look right" to the user. Section 3.2 discusses a study in which a

user's program contained an extra division operator. The resulting system

assertion of 3.5556 to 23.5556 alerted the user to the fault.

End users interact with assertions in our current prototype through two inter-

faces: a graphical interface designed to assist the first-time user and a more concise

textual interface for the more experienced user. The graphical interface is presented

as a separate window (shown in Figure 3.2) which is opened by the user double-

clicking on a cell's assertion tab. This window presents a graphical depiction of the

13

Valid Ranges midlor Values

Yota Number line
Close IAPPlYGuardLj

- ._j PQ

FormS Number Line'S

FIGURE 3.2: The graphical interface to assertions in Forms/3.

assertion. Currently this interface supports only numerical ranges, and displays a

graphical number-line on which the user can place, remove, add, and move points

and ranges. After specifying an assertion through this interface, the user applies the

assertion which is then displayed in a more compact syntax above the cell. This

is the second interfacethe assertion bar. Assertion bars exist above all cells, al-

though they are hidden if they are empty (empty assertions represent null assertions,

which accept all values). Users can display assertion bars for a cell by clicking on

its assertion tab. Once an assertion bar is visible, the user may edit the text on the

bar directly (if the assertion is a user assertion or HMT assertion), and then click

"apply" to change the assertion. All of the assertions in Figure 3.1 are displayed

through assertion bars.

3.2 Example

This example demonstrates dynamic assertions by stepping through a simple task

for an end user. Figure 3.1(a) shows a Forms/3 spreadsheet that converts tempera-

14

tures in degrees Fahrenheit to degrees Celsius. The input_temp cell has a con-

stant value of 200 in its formula and is displaying the same value. There is a user

assertion on this cell that alerts the user (with a violation oval) if the value of the

cell is below 32 or above 212. (The assertion does not prevent such values from be-

ing entered.) The formulas of the a, b, and output_temp cells each perform one

step in the conversion, first subtracting 32 from the original value, then multiplying

by five, and finally dividing by nine. Cells a and b have assertions generated by

the system (as indicated by the computer icon), which reflect the propagation of the

user assertion on the input_temp cell through their formulas. The spreadsheet's

creator has told the system that the output_temp cell should range from 0 to

1.00, and the system has agreed with this assertion. This agreement was determined

by dynamically propagating the user assertion on the inputtemp cell through the

formulas in cells a, b, and outputtemp, and comparing it with the user assertion

on the outputtemp cell.

Suppose a user has decided to change the direction of the conversion to make

the spreadsheet convert from degrees Celsius to degrees Fahrenheit. We conducted

a study in which users were asked to perform this task. What follows is a sum-

mary of one user's behavior F39J. The quotes are from a recording of the subject's

commentary.

First, the user changed the assertion on inputtemp to range from 0 to

100. This caused several red violation ovals to appear, as in Figure 3.1(b), be-

cause the values in inputtemp, a, b, and outputtemp were out of range and

the assertion on outputtemp was in conflict with the previously specified asser-

tion for that cell. The user decided "that's OK for now," and changed the value in

inputtemp from 200 to 75 ("something between zero and 100"), and then set

15

the formula in cell a to "inputtemp * 915" and the formula in cell b to "a + 32".

At this point, the assertion on cell b was 32 to 212. Because the user

combined two computation steps in cell a's formula (multiplication and divi-

sion), the correct value appeared in cell b, but not in output_temp (which still

had the formula "b I 9"). The user now chose to deal with the assertion con-

flict on outputtemp, and double-clicked on the guard icon to view the details

graphically. Seeing that the system-generated assertion specified 3 5556 to
23 . 5556, the user stated "There's got to be something wrong with the formula"

and edited output_temp's formula, removing the division operator and making

it a reference to cell b. This corrected the value in output_temp. although an

assertion conflict still existed because the previous user assertion remained at 0 to

100, which no longer matched the system assertion of 32 to 212. Comparing

the system-generated assertion with the user assertion, the user saw the discrepancy

and changed the user assertion to agree, which removed the final conflict. Finally,

the user tested by setting input_temp to 93.3333, the original output value, to

see if it resulted in approximately 200, the original input value. The results were as

desired, and from this the user (correctly) determined that the task was complete.

3.3 Assertions

The example in Section 3.2 motivates dynamic assertions as a useful tool for an

end user. This section addresses the power and adaptability of these dynamic as-

sertions, from a theoretical point of view. To show the expressive power of as-

sertions, we consider them in terms of an abstract syntax. An assertion on a cell

guardedcell is in the form of a tuple:

LL

(guardethcell, {and-assertions})

Where:

. each and-assertion is a set of or-sub-assertions

each or-sub-assertion is a set of (unary-relation, value-expression)

and (binary-relation, value-expression-pair) tuples

each unary-relation {=, <, <,>,}

each binary-relation E {to-closed, to-open, to-openleft , to-openright}

each value-expression is a valid formula expression in the spreadsheet lan-

guage

each value-expression-pair is simply a pair of value-expressions

Despite the apparent simplicity of the concrete syntax described in Section

3.1, it is just as powerful as the abstract syntax above. Each assertion bar (and-

assertion) is AND'ed with all other assertion bars; each assertion bar contains a

comma-delimited list of sub-assertions (or-sub-assertions) that are OWed together.

Unary and binary expressions can be expressed within each sub-assertion. In our

current prototype unary relations are expressed through binary expressions. Each

sub-assertion represents a range (a binary-relation) which the cell's value is ex-

pected to be within. Unary relations can be specified by various combinations of

sub-assertions (binary-relations). For example, the relation"< n" can be expressed

17

as "-infinity to n" where n is a value-expression. (Our prototype currently supports

only constant value-expressions.)

In this document, sub-assertions are represented with the standard notation for

intervals: [a b] represents the inclusive range from a to b, including the end points,

expressed in the abstract syntax as (to-closed, a, b); (a b) represents the exclusive

(asymptotic) range from a to b, excluding the endpoints, expressed in the abstract

syntax as (to-open, a, b). For ease of reasoning, single points are represented by

degenerate ranges such as [b b]. The absence of an assertion, also called a null

assertion, is interpreted as the all-encompassing assertion [-oc oc, which cannot be

violated.

CHAPTER 4

PROPAGATION

The ability to propagate assertions through program logic to determine the valid

outputs for a spreadsheet program is at the core of the empirically-proven benefits

of our dynamic approach to assertions. In this section we present methods of de-

ductively propagating assertions through program logic. We begin with a precise

definition of the propagation problem:

For each relevant cell C, given the spreadsheet as a graph of cells, with for-

mulas and the assertions on those cells, compute a system-generated assertion

for C, where a relevant cell is any cell in the forward static slice 1 of a cell

whose formula or assertion has been modified.

We further identify four properties by which we will evaluate solutions to the

propagation problem:

Property 1: Reliability. Given a cell C, C's assertion can be computed if all C's

ancestors have assertions2.

'A cell C is in the forward static slice of a modifi ed cell A if C is dependent on Ameaning the
value of A possibly can affect the output of C. Slicing was introduced by Weiser as a technique for
analyzing program dependencies 4OI.

2 In most cases this requirement is overly conservative. For many common situations, propagation
is possible if all of C's parents have assertions.

19

Property 2: Correctness. A system-generated assertion will be termed correct if

it accepts every output that can be produced by the cell's formula given inputs

accepted by assertions on the cell 's parents, and rejects all other values. We

evaluate Correctness later in this section.

Property 3: Responsiveness. Assertions are responsive if they do not interfere

with the property of immediate visual feedback which is characteristic of the

spreadsheet paradigm.

Property 4: Usefulness. Assertions must be useful to their intended audience: end

users creating spreadsheets.

To complete the description of Property 2, we need to define "acceptance".

Given an assertion, A, consider one of A's sub-assertions Ak = [Ak1 Akj where

Ak1 and Ak are the lower and upper bounds on the sub-assertion, respectively, with

the property: Ak1 Ak. Recall from Section 3.3 that Ak1 and Ak, constitute a

value-expression-pair, and Ak represents an or-sub-assertion, that is part of A. A

accepts a value v if and only if A1 <v for at least one of A's sub-assertions

A. More concisely we say that A(v) is true if there exists an assertion A such that

A1 <v <A and false otherwise.

One subtlety of the definition of Correctness bears closer examination. Given a

cell 0, it is possible that some or all of 0's parents contain values that violate their

assertions even though 0's value is within the propagated assertion on 0. Figure

4.1(a) demonstrates this with cell Out. This behavior is acceptable because it is

still possible to generate Out's value from a valid set of inputs, as shown in Figure

4.1(b).

20

A

I

B

Out

A B

to lB

2

A

ID

4

B

Out

A B

(a) (b)

FIGURE 4.1: In (a) both input assertions are violated. However, the resulting sum
is within the range of the output. In (b) no assertions are violated, and Out has the
same value as in (a).

21

It turns out that propagating dynamic assertions through arbitrarily complex

spreadsheets is a daunting problem. Recall from Section 3.1 the guarantee that

in the event of an assertion conflict, either a formula or a user assertion is incorrect.

To maintain this guarantee, the system must be able to calculate correct assertions

(as defined by Property 2). Without the Correctness property, users may lose trust in

the system, which could result in the user losing interest in providing any assertions

at all [13].

We have identified three situations that each require different approaches to

propagation. These three situations are described in the following sections:

Propagation through trees (Section 4.1).

Complications from shared data-flow dependencies (Section 4.2).

Complications from control-flow dependencies (Section 4.3).

In the following sections we examine these situations, present situations that pose

unresolved difficulties for propagation, provide algorithms to propagate dynamic

assertions through some of these situations, and evaluate these algorithms with re-

gard to Properties 1-3. Section 6.1 evaluates our approach to dynamic assertions

regarding Property 4.

22

4.1 Propagation Through Trees: a-Propagation

a-Propagation3 can be used to propagate an assertion through an arbitrarily complex

formula on a cell C as long as the following three conditions hold:

1. The cell C has no shared dependencies. (The data-flow graph is a tree.)

2. All of C's parents have assertions.

3. Assertion-specific operators have been provided for each formula operator in

C's formula.

We discuss the first condition, shared dependencies, in Section 4.1.3 where we ad-

dress the limitations of a-propagation. Recall from Section 3.3 that the absence

of an assertion is treated as an all-encompassing assertion, [- oc], which cannot

be violated. Thus the second condition is always satisfied, since all cells have an

assertion of some sort (either a user assertion, a system-generated assertion, or an

all-encompassing assertion). Regarding the third condition, in our a-propagation

approach, each formula operator is paired with an assertion-specific operator that

performs a function on the appropriate sub-assertion using interval arithmetic. For

example, the assertion+ operator adds two sub-assertions together.

When a formula or assertion changes, the changes must be propagated forward

through the downstream cells, a-Propagation propagates assertions through data-

flow trees by applying the procedure described in Algorithm 1 to each cell in the

spreadsheet.

3cr-Propagation was originally developed by Jay Summet 1137].

23

Algorithm 1 Overview of the a-propagation algorithm.
Input: Cell D, Spreadsheet S.

1: Build the assertion-specific formula from D's formula:
2: Replace operands with assertions.
3: Replace formula operators with assertion-specific operators.
4: Evaluate the assertion-specific formula.
5: Merge sub-assertions.

In lines 1-3 of Algorithm 1, the system replaces all constants and cell refer-

ences in D's formula with the assertions on D's parents, which are termed input

assertions. For example, if D's formula is "2+A", the conversion results in "[2 21 +

[A1 An]" where [2 2] is a degenerate range representing the constant 2, and [A1 A1

is a sub-assertion on the cell A. The system then replaces each operator with its

assertion-specific version. Here we will examine the assertion+ operator, referring

the reader to [371 for details of other assertion-specific operators. In our example,

this generates "[2 21 assertion+ [A1 A1".

Once this assertion-specific formula is built, the formula is evaluated (line 4 of

Algorithm 1), resulting in an assertion for cell D. In our example, the evaluation

performs the following calculations:

ii == 2+A1

= 2+A
= 2+A1

i4 == 2+A

More generally, an assertion is calculated using the equations in Figure 4.2, which

calculate an output assertion °r given the input sub-assertions Ar = [A1 A] and

Br = [B1 Ba], and the formula operator op. While it is not strictly necessary to

calculate the mm and max values for addition (since i1 is always the minimum, and

24

= A1 op B1

'12 = A1 op B

A op B1

i4 AopB

Or = {min(i1,i2,i3,i4) max(ii,i2,i3,i4)]

FIGURE 4.2: The five equations here represent the general form of interval arith-
metic.

i4 is always the maximum), we do so here because the other arithmetic4 operators

(,*,/) require this additional step, and thus it gives a general idea of how they all

work.

In the simplest case of assertion-specific formula evaluation, only two input sub-

assertions are involved. In the more complex case, where one or both input asser-

tions contain multiple sub-assertions, the substitution and evaluation steps are per-

formed on all combinations of input sub-assertions, generating a set of output sub-

assertions. In this case each sub-assertion A is evaluated with each sub-assertion

B, to generate a set of sub-assertions

a-Propagation deals with complex formulas by using a divide-and-conquer ap-

proach. Each operator is addressed individually, and in the order specified by the

4Assertion-specifi c operators for non-arithmetic operators, such as trigonometric operators, can
be implemented using fi rst and second derivative tests to generate assertions by calculating the
minimum and maximum values for the operator in the specifi ed range.

25

order of operations in the host language. For example, consider a cell D with the

formula "A B x C". Assuming "x" has higher precedence than "-" in the host

language, an assertion for "B x C" is calculated first, and then that assertion is used

with the assertion on A to find the final assertion for 1).

In some cases, the propagation algorithm may generate multiple sub-assertions

for a cell. This may occur because input assertions have multiple sub-assertions,

or a formula may split a sub-assertion by introducing discontinuities. In this case,

a-propagation merges the sub-assertions by OR'ing them together (line 5 of Algo-

rithm 1) with an assertion-merging algorithm.

Given two sub-assertions, A == [A1 A] and Br = [B1 BJ where A1 < B1, an

assertion-merging algorithm considers three situations to when merging assertions

(Figure 4.3):

Overlap If A1 < B1 < A < B the sub-assertions overlap, and a new sub-

assertion [A1 B] is generated.

Enclosure If A1 < B1 < B < A, one sub-assertion encloses the other, and the

larger sub-assertion is used, discarding the smaller.

No Overlap If A < B1 the sub-assertions do not intersect, and they cannot be

merged. These sub-assertions are left as individual or-sub-assertions.

4.1.1 Correctness of a-propagation

Theorem 4.1.1 a-propagation correctly propagates assertions, given that assertion-

specific operators for all relevant formula operators have been provided, and that

none of the cells providing input assertions have shared dependencies.

26

Overlap: LEIIIIIIIIIIIIIIIII3iII ________ ___________________Iiuii
H Bul

Enclosure:
A

U

LLIIIIII3

A,A AiA
No Overlap:

HIiIIIIIIII1 B1

FIGURE 4.3: The three possible situations when merging sub-assertions.

Proof of Theorem 4.1.1: a-Propagation works by first replacing operators and

operands with assertion-specific operators and assertions, respectively, and then

evaluating the result with standard evaluation rules (eg: 13-reduction in lambda cal-

culus), and finally merging sub-assertions with the merging algorithm. The proof,

therefore, proceeds by first proving the correctness of the replacement step, and then

proving the correctness of the evaluation step using the assertion-specific operators.

The correctness of the merging algorithm is trivially proven by Figure 4.3.

Lemma 4.1.1 a-Propagation correctly generates an assertion-specific formula by

replacing formula operators and formula operands with assertion-specific opera-

tors and assertions.

Proof: For the generation step we define a correct assertion-specific formula to

be one that generates the correct assertion for the given cell. Operator replacement is

done in a one-to-one mapping from the standard language operators to their counter-

part assertion-specific operators. Given that assertion-specific operators have been

27

provided, operator replacement is obviously correct.

There are four situations to consider when performing operand replacement: If

the operand is a sub-expression, it is handled recursively. If the operand is a cell

reference, it is replaced with the referenced cell's assertion. Given that there are

no shared dependencies, the assertion on each input cell precisely defines the set of

values that the input cell can contribute to the formula. If the referenced cell does

not have an explicit assertion, a null assertion is used. If the operand is a constant

value, it is replaced with a degenerate range of {k k] where k is the constant in

question. For all k E R this is obviously correct, since Vk, k E [k k] and no other

number has this property. a

Regarding correctness of assertion-specific formula evaluation (the evaluation

of a formula with assertion-specific operators), we provide the proof of correct eval-

uation of the assertion+ operator here, and refer the reader to the similar proofs of

evaluation for other assertion-specific operators given by Summet and Burnett 11371.

The assertion+ operator takes two assertions, A and B as input, and produces

an output assertion 0. The assertion+ operator is correct if the output assertion it

produces is correct. Recall from Property 2 earlier in this section that an output

assertion 0 is considered to be correct if it accepts every output value that can be

produced by the cell's formula given inputs accepted by assertions on the cell's

parents, and rejects all other values.

Lemma 4.1.2 The assertion-specific formula evaluates correctly.

Proof: There are two situations to consider. The first situation is where each

input assertion contains only one sub-assertion. These assertions are propagated

28

by the algorithm described by Figure 4.2, which is correct by definition of interval

arithmetic [25, 21.

Next, consider the situation where one or more of the input assertions (A and

B) contains multiple sub-assertions.

First we show that 0 accepts all values it should. Choose two numbers (c, d)

where c is accepted by A and d is accepted by B. Because c is accepted by A, c is

accepted by at least one sub-assertion of A, A. Likewise, d is accepted by at least

one sub-assertion of B, B. The output assertion 0 contains a sub-assertion O

(OR'd with all other sub-assertions of 0) which was generated via the algorithm in

Figure 4.2 using A and B, so O accepts q where q c + d, and therefore 0

accepts q.

Now we show that 0 rejects all other values. Assume that 0 accepts some value

r c + d which cannot be generated by values that are both accepted by A and

B. If c is accepted by A, then d = r c. However, by interval arithmetic theory,

d must then also be accepted and we reach a contradiction. If d is accepted by B,

then c = r d, and similarly by interval arithmetic theory c must be accepted and

another contradiction is reached. If neither c or d are accepted, then one value (say

c) must exceed the maximum range of A or B by some value k1 while the other

value (d) is below the minimum value of B or A by k2 (respectively). In this case

the larger of k1j and k2 can be added to d and subtracted from c, resulting in

two new values c' and d' such that c' + d' = r which is a contradiction, since e' is

accepted by A, d' is accepted by B and r is generated by c' and d'. Since we know

that at least one of the values used to generate r must be rejected by either A or B,

then our assumption must be incorrect, and 0 rejects r. U

29

By Lemma 4.1.1 the assertion-specific formula is created correctly (incorporat-

ing all parents, and therefore supporting Property 1) , and by Lemma 4.1.2 this for-

mula generates a correct output assertion (as defined by Property 2) when evaluated.

While the output assertion 0 may contain redundant or overlapping sub-assertions,

the sub-assertion merging algorithm finds the minimum set of sub-assertions that

accept the same set of values. Therefore given that assertion-specific operators for

all relevant formula operators have been provided, and that none of the cells provid-

ing input assertions have shared dependencies, a-propagation correctly propagates

assertions and Theorem 4.1.1 is true.

4.1.2 Complexity of a-Propagation

Property 3 (Responsiveness) states that dynamic assertions should not interfere with

the property of immediate visual feedback that is characteristic of the spreadsheet

paradigm. In this section we examine the complexity of a-propagation to determine

if it fulfills Property 3.

a-Propagation's task is simply to evaluate the formula of a cell with assertion-

specific operators. However, since assertion-specific operators are dealing with

ranges rather than points, evaluation of a formula for assertion propagation may

require more work than evaluation for a value.

The additional work performed by assertion-specific operators is dependent on

the size of the input assertions; thus input assertions with many sub-assertions

would greatly increase the time required to calculate an output assertion. However,

in our experience, users rarely enter more than one sub-assertion on any given cell.

Analysis of the assertions entered by users during a debugging task [441 showed

Ei.

num

1

1
bit3 b42 biti bitO

46,8, 10,12,14

nun_evens (R
brt3 8- b42 4- biti 2

FIGURE 4.4: This spreadsheet rounds a value (num) down to the nearest even
number by removing the least significant bit from the binary representation (bit 0-
bit3), and printing the result in decimal. This procedure causes an explosion of
sub-assertions, as seen on the numevens cell.

that, of the 279 assertions they entered, only three contained more than one sub-

assertion5.

It is possible, however, that a small number of sub-assertions can generate large

numbers of sub-assertions through propagation. Figure 4.4 gives an example of such

a pathological situation. Propagation through a formula is done one operator at a

time, generating intermediate results that are potentially large. Since each operand

may have up to A sub-assertions, the evaluation of the first assertion-specific opera-

The users went on to replace two of these three assertions with assertions containing only one
sub-assertion within 30 seconds.

31

tor in a formula may result in A2 sub-assertions because every pair of sub-assertions

must be evaluated with each assertion-specific operator in the assertion-specific for-

mula, and there are A2 pairs givenA sub-assertions in each input assertion. The out-

put of the first operation is used as the input to other operations in the formula (these

are the intermediate results mentioned above), and therefore the second assertion-

specific operator may generate up to A3 sub-assertions. In the worst case, this may

happen for every operator, generating AF sub-assertions, where F is the number

of operators in the largest formula in the spreadsheet. (This assumes that each op-

erator is evaluated in constant time. Aggregate operators, such as sum, must be

broken down into their component parts to determine F.) But, as we have already

explained, it seems reasonable to assume that A = 1 for input cells. Further, it turns

out that assertions are rarely split by the propagation engine. Of the supported oper-

ators, only "if" and division (which splits assertions only when a divide-by-zero is

possible) can split single sub-assertions into multiple sub-assertions. (The special

requirements of "if" and division will be returned to several times in later sections.)

Under the assumptions that A = 1 and assertions are not split by the prop-

agation engine, the time complexity of a-propagating assertions through a for-

mula becomes 0(F). The system may also need to propagate through the entire

spreadsheet, adding a factor of N to the complexitythe number of cells in the

spreadsheetraising the complexity to 0(NFAF), or 0(NF) under the assump-

tion that A = 1. Assertions must then be merged with the sub-assertion merg-

ing algorithm, taking 0(AF log AF) which is added to the worst case complexity.

This does not change the asymptotic complexity however, because 0(AF log AF)

is equivalent to 0(FAF) for A > 1, which is smaller than NFAF. Under the

assumption that A = 1 the merging step takes constant time.

32

The propagation of dynamic assertions occurs in two cases: Assertions are

propagated when the user edits an assertionin which case the operation takes

O(NFAF) time as described aboveand assertions are propagated when the user

edits a formula of a cell with an assertion. In the second case, assertion propaga-

tion is done in parallel with standard spreadsheet evaluation (to generate new values

based on a new formula). Without assertions, it takes O(NF) time to populate a

spreadsheet with new values (using the same interpretations of N and F as above).

Thus, when A = 1, a-propagation adds only constant overhead to the work that is

done already.

4.1.3 Limitations of a-propagation

Earlier in this section we stated that a-propagation cannot handle shared dependen-

cies. There are two interrelated reasons for this: a-propagation examines only one

formula at a timetherefore preventing the detection of shared dependencies more

than one cell up the chain of data flowand cell references are treated as indepen-

dent "interval constants" rather than interval variables. The problem is that shared

dependencies need to be detected, as they require treatment as interval variables for

correctness.

To see why this is true, consider the formula "X X". The appropriate asser-

tion for this formula is 0. This result can be obtained by treating X as an interval

variable, which forces both instances of X to be bound to the same value for any

one evaluation. Treating X as an interval constant, as a-propagation does, gen-

erates a much different result. For example, if X represents the range 0 1], the

interval expression [0 1] [0 1] would be evaluated, resulting in [-1 1] which is not

33

correct. interval variables would maintain the dependency between instances of a

variable (in our case, a cell reference) explicitly [25]. Situations like "X X" arise

because of shared dependencies (called diamonds because the data flow arcs create

a diamond-shaped structure), such as in the example given in Figure 4.5.

4.2 Complications from Shared Data-flow Dependencies

The complications caused by shared dependency diamonds stem from the way inter-

val arithmetic treats intervals as constants, ignoring dependencies between multiple

instances of variables. Overcoming these complications requires addressing both

the problem of identifying the dependencies and the problem of maintaining the

dependencies during the evaluation step.

Identification of shared dependencies can be accomplished by locating (1) the

diamond head6 the top-most cell in the diamondand (2) the diamond sources
those cells that contribute to the diamond, but are not in the diamond themselves.

The diamond heads and diamond sources together are termed the diamond inputs.

Once the diamond inputs are identified, an expanded formula can be built that makes

explicit all the shared dependencies. Section 5.1 discusses an algorithm to locate

diamond heads and diamond sources, and then to use these identified cells to build

an expanded formula.

Once the expanded formula has been constructed and all dependencies are ex-

plicit, the formula must be evaluated while maintaining the dependencies. This

6 Note that it is possible for a cell to be affected by more than one diamond head.

Otc1

11

D

9+C

FIGURE 4.5: A simple "diamond". Dataflow follows the arrows between cells.
Assertions are shown above each cell, and formulas are in the boxes at the lower
right of each cell. Cell A has an assertion which has been u-propagated to B and C;
however the shared dependency prevents valid ci-propagation to D.

35

problem can also be stated as the problem of calculating the precise set of outputs

for the expanded formula given the inputs specified by the assertions on diamond

inputs. Specifically, given a function f(xo, x1, . . . x7) and f's domain, find the

range of f (the output assertion). In the general case this is an unsolvable problem

since it is not possible to deterministically locate all discontinuities in an arbitrary

function. In Section 5.1 we present an algorithm that is capable of propagating

assertions through shared dependencies given a reduced set of formulas and a re-

striction on the data-flow graph complexity. We discuss the necessary restrictions

below. In Section 6.2 we examine a set of real-world spreadsheets to determine the

practical impact of the restrictions on the scope of our algorithm.

4.2.1 Required Formula Restrictions

By restricting the set of formulas supported by our approach to propagation it is

possible to maintain Property 3 (Responsiveness) while calculating assertions with

shared dependencies. (To maintain consistency with related work in the field of

mathematics, we use the terms "formula" and "function" interchangeably.) Restric-

tions are required not only for operators, but also for some operands.

Our approach relies heavily on the use of derivatives to propagate assertions

through shared dependencies. The critical points (maxima, minima, and saddle

points) of a function f can be calculated by using the first derivative test. (This is

done by setting the derivative of f equal to 0 and solving the resulting equation.)

The largest and smallest critical points define the endpoints of the assertion; how-

ever, derivative tests cannot be applied to arbitrarily complex functions. Since there

are multiple ways functions can become complex, we address these restrictions in-

36

dividually.

Discontinuous functions: When calculating an assertion for a function it is im-

portant to remember that the exact range must be represented (Property 2,

Correctness). However, it is not possible to find all discontinuities of an arbi-

trary function in general, even when given a set of inputs. From this we place

our first restriction on the acceptable functions. Functions must be continuous

and have a first derivative. (This set of functions is called c' [411.)

High-order polynomials: All polynomials are c1 [381. However the derivative of

a polynomial must also be a function that can be solved algebraically when

set equal to 0. Abel's impossibility theorem [1] states that this is only possi-

ble for polynomials of degree four or less. (The general quintic can be solved

in terms of Jacobi Theta Functions [20, 421 but this method does not sca'e

to higher degree polynomials either.) Because the first derivative of a poly-

nomial of degree n results in another polynomial of degree n 1, functions

must be of degree five or less.

Functions of multiple variables: As the number of independent parameters of a

function (the number of unique cell references) increases the derivative test

used with one variable is no longer sufficient. Gradients can be used in place

of derivatives7 but this is still not adequate. The reason is that each input

are required because derivatives are only applicable to functions of one variable. Gra-
dients provide a multi-dimensional derivative in the form of a vector, with each element in the
vector equal to the partial derivative with respect to one variable.

37

assertion introduces bounds on one dimension of the range of the given func-

tion. Thus, as the number of cell references increases, these bounds define a

cube of interest that has dimensions equivalent to the dimensionality of the

function (for example, a function containing four cell references will have

sub-assertions that specify a hypercube of interest). The values inside this

cube can be generated by the function given values accepted by the inputs.

The challenge then is to find the maximum and minimum values within this

cube, or on the cube's border. The bounds of this cube, however, increase

exponentially with the number of cell references and all bounds would need

to be checked explicitly.

In addition, there is another complication with multivariate functions. Recall

from Section 4.11 that all pairs of sub-assertions on the inputs were evalu-

ated with the assertion-specific operators. In a-propagation, the cardinality

of the assertion-specific operators was low. However, since 3-propagation

must maintain the dependencies between interval variables in the expanded

formula, the number of input cells considered simultaneously is bounded only

by the number of cells in the spreadsheet. Given N input cells, and A sub-

assertions on each cefl, the expanded formula would have to be evaluated AN

times.

The solution to this problem is to use divide and conquer. As we indicated

above, it is viable to propagate dynamic assertions through functions of de-

gree five or less. This capability can be leveraged to propagate dynamic as-

sertions through some multivariate functions. Since polynomials consist of

addition and multiplication, both of which are commutative, it is possible to

38

divide multivariate functions into single variable functions that are combined

with addition and multiplication. However, in order to maintain the depen-

dencies between instances of the same variable, propagation is possible only

when the expanded formula can be divided into single-variable polynomials

such that no cell reference occurs in more than one polynomial. The expanded

formula can be split in such a way if no more than one variable occurs in more

than one term with other variables. With this restriction, each variable can be

treated individually and the combinatorial explosion of sub-assertions men-

tioned above is avoided.

The intuition behind this restriction is that any function that can be divided in

this way can be represented by a spreadsheet in which no shared dependency

has more than one diamond input (the diamond head). Section 5.1 describes

in detail an approach, which we term /3-propagation, to dynamic assertion

propagation using divide and conquer.

Our prototype of dynamic assertions, implemented in the Formsl3 spreadsheet

environment, supports propagation through the following operations: +, , *, <,
,>, <,==, if (certain instances of if cannot be propagated through, these are exam-

med in Section 4.3) and / (for cr-propagation).

4.3 Complications from Control-flow Dependencies

In addition to the complications presented by pure data-flow constructs, control-

flow can create a new source of dependencies. This situation is still caused by a

diamond of sorts, but the diamond is not caused entirely by data flow (although it

to 25

5

A

B

if A <= 0

then A

else I

FIGURE 4.6: A simple spreadsheet demonstrating the if-problem.

appears this way when viewed at the granularity of cells). An example of this is

shown in Figure 4.6.

In Figure 4.6 the formula for cell B has two basic blocks8 and a predicate. Figure

4.7 shows the control-flow graph for cell B. Notice that the control-flow arcs in cell

B complete a diamond with the data-flow arcs from cell A. We will term the problem

of propagating through these situations the if-problem.

By virtue of control-flow, the "then" and "else" nodes are executed only for a

specific set of inputs to cell B. Specifically, the "then" node is executed precisely

when the inputs to B cause the predicate to evaluate to true, and the "else" node

executes precisely when the predicate evaluates to false. Given a formula of the

form:

if pred then
then expr

else

8A basic block portion of a program that is run in its entirety every time it is executed. Formally,
a basic block is a maximal single-entry, single exit sequence of atomic statements.

Cell B

FIGURE 4.7: The control flow arc from the predicate to the "then" node completes
a (3-arc) diamond with the two data-flow arcs into cell B.

else _expr
end if

we define the following terms:

. cellRefs(pred) is the set of all cells referenced by pred

. cellRefs(thenexpr) is the set of all cells referenced by thenexpr

ce11Refs(elseexpr) is the set of all cells referenced by elseexpr

sat(refs, pred) is the set of assignments to cell references in refs that can

cause pred to evaluate to true.

fail(refs, pred) is the set of assignments to cell references in refs that can

cause pred to evaluate to false.

41

The if-problem occurs when the following condition is true:

cellRefs(pred) fl [cellRefs(then_expr) U cellRefs(else_expr)J 0. (4.1)

When an if expression does not have shared dependencies between the predicate

and either the "then" or "else" expressions, the if-problem does not occur. In this

case, sub-expression assertions are propagated with the assertion-if operator (using

a-propagation or 3-propagation as appropriate), which first propagates a boolean

assertion9 to the predicate, and then calculates the correct assertion for the if based

on the possible truth values of the predicate. The assertion-if operator returns the

assertion on the "then" expression if the predicate is asserted to be true and returns

the assertion on the "else" expression if the predicate is asserted to be false. If the

input to the predicate can be either true or false, the sub-expression assertions on

the "then" and "else" expressions are unioned and returned.

A precise definition of the if-problem follows from Equation 4.1 above and from

the fact that an assertion on a cell with an if is simply the union of the assertions

on the "then" and "else" clauses of the formula. The if-problem is then defined

as the problem of calculating precise sub-expression assertions for the "then" and

"else" clauses, given the subset of variable assignments that can cause the predicate

to evaluate to true (for the "then" clause) or false (for the "else" clause). In general,

these subsets are:

sat (cellRefs (pred) fl cellRefs (then _expr) , pred)

Propagation of boolean assertions follows from the propagation of ranges, and is discussed in
detail by the previous work [371.

42

for the then_expr, and

fail (cellRefs (pred) fl cellRefs (else _expr), pred)

for the else_expr.

If the sat and fail sets can be found, they can then be used to generate sub-

expression assertions for the then _expr and else_expr as follows. If either expres-

sion is a constant, then the sub-expression assertion is simply that constant. Since

all possible paths of execution must pass through one of these two expressions, the

sub-expression assertions can be unioned to give a cell-level assertion. Given a

nested if, this procedure is repeated recursively.

4.3.1 Classification of the If-problem

The general case of the if-problem, with no restrictions on the predicate complexity

is at least NP-Complete. This is shown through a simple reduction from Satisfiabil-

ity, which is known to be NP-Complete.

The satisfiability problem is defined as follows:

Given a boolean expression S over N variables, is there an assignment of truth

values to each of the N variables such that S evaluates to true?

Any instance of satisfiability can be transformed into an instance of the if-

problem in linear time through the following five steps:

1. create a cell C with an if expression.

2. Set the expression S to be the predicate.

43

3. Set the "then" clause to be True.

4. Set the "else" clause to be False.

5. Place an assertion of "True, False" on each variable.

Steps 1, 3 and 4 all take constant time. Steps 2 and 5 each take time linear in the

number of variables.

If S is unsatisfiable, the assertion on C will be "False", since only the "else"

clause is reached. If S is a tautology, the assertion on C will be "True" since only

the "then" clause is reached. Otherwise the assertion on C will be "True, False",

indicating that both branches of the if can be exercised. Thus, any instance of

satisfiability can be transformed in to an instance of the if-problem in linear time.

Therefore the if-problem is at least as hard as satisfiability.

It is not clear, however, that the if-problem is no harder than satisfiability. Since

the precision of values in the if-problem is theoretically unbounded (variables in

the if-problem can all be mapped to the Reals), it may not be possible to solve any

instance of the if-problem by solving an instance of satisfiability.

Section 6.2 considers the occurrence of the if problem in a corpus of real-world

spreadsheets. The empirical evidence from this corpus show that the if-problem

is rare in real-world spreadsheets. Because of this evidence, we have decided not

to support assertion propagation through instances of the if-problem, instead a null

assertion is generated. This decision violates Property 1 (Reliability, from Section

4) because of the inherent difficulty of the if-problem. It may be possible to restrict

the set of predicates such that assertions can be propagated through some instances

of the if-problem efficiently, but this would violate Property 1 as well. Another

trade off would be to use an approach such as Ernst's statistical methods of invariant

detection [151, which may support Property 1, but such methods would most likely

violate Property 2 (Correctness). Our decision to not support propagation through

instances of the if-problem maintains Properties 2 and 3 (Responsiveness).

CHAPTER 5

WORKING AROUND COMPLICATIONS FROM SHARED DATA-FLOW

DEPENDENCIES: /3-PROPAGATION

In Section 4.2 we discussed complications with propagation of assertions

through certain spreadsheets. Despite these complications with general spread-

sheets, it is still viable to propagate assertions if certain restrictions are placed on

the spreadsheets supported. Section 4.2.1 presented a set of restrictions on the func-

tions our approach is able to propagate assertions through given spreadsheets with

shared data-flow dependencies. In this section we present algorithms for dynamic

assertion propagation through spreadsheets that obey these restrictions.

5.1 /3-Propagation: Propagating Through Low-Degree, e1 Spreadsheets

/3-propagation is a generalization of a-propagation' that provides a solution to c-

propagation's issues with shared dependency diamonds by maximizing and mini-

mizing formulas that represent spreadsheet calculations. Because of the inherent

difficulties of calculating minimum and maximum values of complex functions,

/3-propagation can be applied only to the portions of spreadsheets that obey the

restrictions stated in Section 4.2.

3-Propagation is triggered by the same events as c-propagation. Depending on the presence of
shared dependencies, the correct algorithm is applied.

Algorithm 2 Overview of the dynamic assertion propagation algorithm with
propagation and /3-propagation.
Input: Cell D, Spreadsheet S

1: if not(detect_diamonds(D, 5, 0)) then
2: Perform cr-propagation (Algorithm 1)
3: else
4: ;; Perform /3-propagation:
5: Find the diamond inputs.
6: Expand D's formula.
7: if D 's formula violates any restrictions from Section 4.2.1 then
8: return null

9: end if
10: Build sub-assertions from critical points.
11: Merge sub-assertions.
12: end if

Algorithm 2 gives an overview of the dynamic assertion propagation algorithm

with both ct-propagation and /3-propagation. Algorithm 2 is applied to one cell at

a time, propagating an assertion to each cell in turn, if possible. The first step (line

1 in Algorithm 2) determines if /3-propagation is needed in order to propagate an

assertion to a cell D. To determine this, D's formula is checked for shared depen-

dencies. This check is made by performing a breadth-first search of D's backward

slice and flagging visited cells. Specifically, the approach detects shared depen-

dencies by checking the flag on each cell before traversing that cell. If the flag

is set, the cell represents a shared dependency and the search halts. Algorithm 3

(detect diamorids) performs this check, returning the first shared dependency (di-

amond head) found. For example, if Algorithm 3 were applied to cell D in the

spreadsheet in Figure 4.5, the algorithm would return cell A. If a diamond head is

found, /3-propagation is required. Once shared dependencies have been detected,

all the dependencies must be found.

47

Without keeping track of which diamond heads have been found, /3-propagation

would not haltrather, the same diamond head would be located at each iteration

(Algorithm 4). This is dealt with in Algorithm 3 by ignoring certain edges in the

data-flow graph because they have already been determined to be within diamonds.

The untraversableEdges set defines these edges which are not to be traversed. Un-

traversableEdges is initially empty (line 1 of Algorithm 2 and line 3 of Algorithm

4), and the full graph is traversable. As /3-propagation locates diamond heads, un-

traversableEdges is maintained by adding to untraversableEdges all but one edge

from each diamond head to flagged children of that diamond head.

In order to perform /3-propagation, all ofD 's shared dependencies must be made

explicit in D's formula. First, our approach identifies all the ancestors of D that

participate in diamonds for which D is a sink. Algorithm 4 shows one way of

doing this. Once the cells that participate in these diamonds have been found, our

approach uses set difference to find the diamond sources (cells that are parents of

cells participating in a diamond, but that are not in diamonds themselves).

diamond sources parents(diamonds) diamonds

The set of diamond sources is combined with the diamond head(s) to yield the set

of diamond inputs (line 5 of Algorithm 2).

Once the diamond inputs have been identified, a recursive formula expansion

algorithm is applied to D 's formula (line 6 of Algorithm 2). Recursive formula

expansion recursively replaces each cell reference with that cell's formula, enclosed

in a construct from the host language that maintains any implicit order of evaluation

created by data flow. In the language of arithmetic, parentheses are used for this.

Algorithm 3 A function used to locate shared dependencies with breadth-first
search and flagging. parents(x,untraversableEdges) returns only the parents of x
accessible through traversable edges.
Require: Cell D, Spreadsheet 5, Set untraversableEdges

1: function detecLdiamonds(D, S, untraversableEdges)
2: head null
3: UpFrontier parents(D, untraversableEdges)
4: while UpFrontier not empty do
5: if cflag - True then
6: head
7: return head
8: else
9: cflag True

10: UpFrontier UpFrontier U parents(e, untraversableEdges)
11: Remove c from UpFrontier
12: end if
13: end while
14: return null
15: end function

Algorithm 4 This procedure finds all cells between a given cell D and its shared
dependencies.
Require: Cell D, Spreadsheet S

1: diamondHeads = 0
2: untraversableEdges 0 ;; The set of edges not to be traversed by parents
3: head = detecLdiamonds(D,S,untraversableEdges)
4: downstreamCells 0
5: while head null do
6: diamondHeads = diamondHeads U {head}
7: Add all but one edge from head to flagged children of head to Un-

traversableEdges

8: Set all flags to False
9: head detect_diamonds(D,S,untraversableEdges)

10: end while
11: for all c diamondHeads do
12: downstream Cells = downstream Cells U forwardSlice(c)
13: end for
14: return backwardSlice(D) fl downstream Cells

This expansion repeats recursively until each diamond input is reached2. At this

point the expansion stops, and the expanded formula is returned. The expanded

formula represents all the shared dependencies together in one formula, so that they

can effectively be treated as interval variables. Recall from Section 4.1.3 that input

assertions must be treated as interval variables for correctness.

For example, the formula for the cell D, B + C in Figure 4.5 is expanded to:

(1A)+A

The expanded formula is now checked against the restrictions stated in Section 4.2.1

(line 7 of Algorithm 2). This is done by scanning the expanded function for oper-

ators and operands that are not allowed. The restrictions on functions of multiple

variables are checked by converting the expanded formula into a canonical represen-

tation This canonical representation is then searched by checking for non-linear

terms, and if any are found, checking again for terms with multiple variables. If any

of the restrictions in Section 4.2.1 are violated, a null assertion is generated for the

diamond sink.

First derivative tests are used to find maximum and minimum values. Due to

the restrictions from Section 4.2.1, all non-linear expanded functions can be bro-

ken into polynomials of one variable, and these polynomials are of degree five

or less. For example, Figure 5.1 shows a spreadsheet with the expanded formula

X2 X Y2, which meets the restrictions. The canonical representation stores

2 Because it is possible for an edge to be traversed multiple times, due to nested data-thw dia-
monds, recursive formula expansion is implemented with dynamic programming.

is possible because the expanded formula is a polynomial at this point 11261.

50

polynomials as a main polynomial over one variable which is added and multi-

plied with polynomials of other variables. if no polynomials In the canonical form

have the same main variable, then the restriction is satisfied and each polynomial

can then be treated independently. This is the divide step of the divide and con-

quer algorithm. Continuing with the example from Figure 5.1, our approach breaks

the expanded formula into X2 X and Y2. (The canonical representation of

X Y2 is < X, 1, 1, < Y, 1,0,0 >> where the first element of the vector

is the variable for that polynomial, and the other entries are the coefficients. As this

example shows, polynomials over additional variables are stored as coefficients of

the constant term. This format is explained in detail by Norvig F261j.)

First derivative tests are applied to these polynomials to find critical points (line

10 of Algorithm 2). The boundary conditions specified by the sub-assertion on

the relevant variable are then added to the set of critical points. (Recall that each

variable is a cell reference.) The critical points within the boundary conditions

are then evaluated, along with the boundary conditions, generating a set of values.

The largest and smallest of these values are used to generate a sub-assertion for

the relevant part of the expanded formula. Since the dependencies in the expanded

formula have now been dealt with, the resulting intervals can be treated as interval

constants. These interval constants are combined with standard interval arithmetic

to generate a set of output sub-assertions.

These output sub-assertions are finally merged (line 11 of Algorithm 2) using

the sub-assertion merging algorithm discussed in Section 4.1.

Returning to our example from Figure 4.5, the expanded formula ((1 A) + A)

is evaluated with A = 0 (since this is a constant function, 0 is chosen arbitrarily),

resulting in 1. Since only one critical point was found (and therefore only one value

LII1L

to 110

Y * V + X

51

FIGURE 5.1: Multiple data-flow diamonds end in Cell D, but propagation is still
possible because all terms in the expanded formula (X2 X Y2) depend on at
most one variable.

52

is returned) the output assertion is the degenerate range [1 1]. In the example from

Figure 5.1, the interval constant [-0.25 901 is generated for the polynomialX2 X,

from the critical point (0.5) and the boundary point(10). The interval constant [-100

01 is then calculated for the polynomial Y2. These constants are added together

with the assertion+ operator, yielding the final sub-assertion [-100.25 90J for cell

D.

5.1.1 Correctness of/3-Propagation

/3-Propagation is applied to data-flow diamonds that do not involve instances of the

if-problem. Such diamonds are termed pure data-flow diamonds.

Theorem 5.1.1 /3-Propagation correctly propagates assertions through all pure

data-flow diamonds.

Proof of Theorem 5.1.1: Once the shared dependencies have been found,

/3-propagation generates assertions through two steps: a formula expansion step,

which generates a formula with explicit dependencies; and a calculation step, which

maintains these dependencies when calculating a final assertion. The proof of cor-

rectness reflects these steps by proving the correctness (as defined in Section 4,

Property 2) of each step as a lemma.

Lemma 5.1.1 Recursive formula expansion creates a formula that generates the

same value as the original set of cells traversed with recursive formula expansion.

Proof: The proof of Lemma 5.1.1 follows directly from the definition of formula

expansion. A formula is expanded by replacing each instance of a cell reference

53

with that cell's formula, enclosed in parentheses (or other grouping construct). This

process is repeated as needed. Grouping constructs, such as parenthesis, preserve

the order of evaluation; hence formula expansion is simply the replacement of left-

hand sides (cell references) with their right-handed sides (those cells' formulas). I

Lemma 5.1.2 The calculation step of/3-propagation generates correct assertions

with first derivative tests.

Proof: The expanded formula is broken into polynomials of one variable and

first derivative tests are applied to each of these polynomials to find critical points.

By definition all critical points of a function are found by first derivative tests, but

the bounds on the inputs might not fall on one of these critical points. However,

recall that the bounds from the input assertions are added to the set of critical points,

resolving this discrepancy. By definition, all maximum and minimum points of

a continuous function must be on boundaries or at critical points. Thus, correct

sub-assertions are generated for each polynomial of one variable. These assertions

are then combined with interval arithmetic using the assertion-specific operators as

described in Section 4.1.

Finally, the resulting output sub-assertions are merged with the sub-assertion

merging algorithm described in Section 4.1. Because derivative tests, the assertion-

specific operators involved (for example, assertion+), and the sub-assertion merging

algorithm have all been proven to be correct, the generated output assertion is also

correct. I

54

5.1.2 Complexity of /3-Propagation

In this section we examine the time complexity of /3-propagation. Based on this

analysis we are able to evaluate /3-propagation with regard to Property 3 (Respon-

siveness) from Section 4.

/3-Propagation consists of six primary steps:

1. First, breadth-first search is used to locate the diamond head(s).

2. Second, the cells within the diamond are identified by traversing the data-flow

graph from the diamond heads to the diamond sink.

3. Third, the expanded formula is created with recursive formula expansion.

4. Fourth, the expanded formulas are checked against the restrictions in Section

4.2.1.

5. Fifth, output sub-assertions are created by finding and comparing critical

points.

6. Finally, the output sub-assertions are merged with the sub-assertion merging

algorithm.

The complexity of each of these steps is addressed individually using the no-

tation of Table 5.1. /3-propagation is triggered by the same user actions as a-

propagation: either a formula or assertion edit by the user. Since an edit may cause

the entire spreadsheet to be updated in the worst case, it is possible that every cell

may need an assertion propagated to it with /3-propagation. For simplicity, we ex-

amine the complexity of each of the steps of /3-propagation for one cell, then add a

55

Variable Description

N The number of cells in the spreadsheet.

E The number of edges in the spreadsheet, each edge

representing a reference to a cell in another cell's formula.

R The number of references in the expanded formula.

A The greatest number of sub-assertions on any cell in the spreadsheet.

X A convenience variable. By definition X> N, X> E, X> R and X > A.

TABLE 5.1: The notation used in the discussion of the complexity of /3-
propagation. E is represented separately because it is not bounded by N2 since
there can be more than one edge between any two cells.

factor of N to accommodate the case where every cell on the spreadsheet must be

updated, which is possible in the worst case.

For the first step, location of the diamond heads, repeated breadth-first search

with flags is used. Each search returns one diamond head. In the worst case, there

may be N diamond heads, and each instance of breadth-first search may have to

traverse the entire spreadsheet, taking O(N + E) time for each search. Therefore

this step takes O(N2 + NE) time in the worst case.

For the second step, identifying the cells in the diamond, the graph is traversed

from each diamond head to the diamond sink. In the worst case, there are N di-

amond heads and there may be N cells and E edges between each diamond head

and the diamond sink. Since this traversal is linear in the number of edges (in the

worst case) this step takes 0(E) time for each diamond head, and 0(NE) time for

all heads.

For the third step, creating the expanded formula, recursive formula expansion

traverses every edge in the diamond. This procedure recursively calls itself each

time an edge is traversed. Recursive formula expansion performs one operation at

each recursive step: The formula of the current cell is copied into the expanded

formula. Assuming a constant bound on the spreadsheet formula length, this single

copy operation takes 0(1) time4. Since recursive formula expansion is implemented

with dynamic programming, each edge is only traversed once and therefore the copy

operation happens only once for each edge. In the worst case recursive formula

expansion traverses the entire spreadsheet (because the diamondmay span the entire

spreadsheet), taking 0(1) time at each of E edges, resulting in an asymptotic time

complexity of 0(E).

As the fourth step, the expanded formula is now checked against the restrictions

in Section 4.2.1. It is searched for operators that are not allowed in polynomials

and for exponents greater than five. This requires a pass through the expanded

formula, taking 0(R) time (recall from Table 5.1 that R represents the number

of cell references in the expanded formula). A second pass puts the formula in

canonical form. In the worst case, conversion to canonical form may take 0(2R)

time, since the expanded formula may be a product of R polynomials, each of which

is a sum of terms. This case, however, always generates a polynomial which cannot

be split, and therefore cannot be propagated through. This could also be detected in

advance through an examination of the expanded formula.

In practice, conversion to canonical form takes 0(Rlog R) time, since it may re-

For example, in Excel the maximum formula length is 1024 characters.

57

quire polynomial multiplication to obtain the simplest (canonical) form 11261. (This

is supported by the empirical evaluation of spreadsheets in Section 6.1.) A final

0(R) pass ensures that the formula can be split into sub-polynomials of one vari-

able.

In step five, the expanded formula is divided into sub-polynomials in 0(R)

time. This generates (at most) R polynomials of constant size. Each of these sub-

polynomials is differentiated in constant time, taking a total of 0(R) steps. The

resulting derivatives are solved to find critical points, taking constant time for each

sub-polynomial [5, 161, and 0(R) steps for all sub-polynomials. Evaluating all

critical points for R polynomials takes 0(R) time, since each polynomial has a

constant number of operators and only a constant number of critical points can exist

for polynomials with constant bounded degree. In total, the asymptotic time for this

step is 0(R).

For each of A sub-assertions on the diamond inputs, the only sub-polynomial

depending on that input is evaluated at the end points of the sub-assertion. The

resulting points are compared with the set of values from critical points to find

sub-assertions for the sub-polynomials. This takes A time to evaluate one sub-

polynomial, and A time to find the new boundary points. This is repeated for each

of the R sub-polynomials, resulting in 0(AR) time. Notice that by separating the

diamond inputs (in step five), this approach is able to avoid the combinatorial explo-

sion discussed in Section 4.2.1. Since the sub-polynomials are only dependent on

one variable, and they are continuous, this step generates at most A sub-assertions.

Finally, step six combines these resulting intervals with the assertion+ and as-

tion* operators, which take 0(A2R) time given A sub-assertions on each of R

rands. As these operators are evaluated, the sub-assertion merging algorithm

58

from Section 4.1 is applied to the resulting output sub-assertions. The merging al-

gorithm takes O(A2 logA2) time, since the output sub-assertions may need to be

sorted. It is possible, however to concoct a situation in which each combination

step generate A2 assertions that cannot be merged, and that are then combined with

the next operand to generate A3 output sub-assertions that cannot be merged, and

so on, generating AR output sub-assertions in total. As the number of generated

sub-assertions increases, it becomes statistically less likely that they will not over-

lap, in which case they will be combined by the sub-assertion merging algorithm.

In addition, we anticipate users will rarely enter multiple sub-assertions on a cell,

further reducing the chances of this combinatorial explosion5. Section 6.1 discusses

a study in which users entered assertions that support this assumption.

In total, the time required for /3-propagation is dominated by the combination

and merging of sub-assertions in step six, which takes O(AR) time in the worst

case. The exponential complexity of this step is due to the same reasons discussed

in Section 4.1.2. Similarly, we anticipate that it is safe to assume that in most

cases A = 1. Under this assumption, the time required for /3-propagation is dom-

inated by steps one, locating the diamond heads O(N2 + NE); and four, check-

ing the formula restrictions O(Rlog(R)). These steps are additive, resulting in

O(N2 + NE + R log(R)). Recall that this time complexity represents the time

required to propagate an assertion onto one cell, it may be necessary to perform

these calculations for every cell on the spreadsheet, adding a factor of N. Adding

this factor, and noting that R is bounded by E (because each edge represents a

50f the functions our approach supports, only if-expressions can split individual sub-assertions.

59

cell reference), brings the complexity to O(N3 + N2E + NE log E). By introduc-

ing X, a variable larger than N, E, R and A, this complexity can be re-written as

O(X3 + X3 + X2 logX), which is dominated by 0(X3)

Under the simplifying assumption that the number of sub-assertions stays small,

/3-propagation adds time linear in the size of X to the work already done by standard

spreadsheet evaluation mechanisms. Therefore /3-propagation is a viable algorithm

for assertion propagation in spreadsheets with shared data-flow diamonds and /3-

propagation maintains Property 1 (Reliability) and Property 3 (Responsiveness).

CHAPTER 6

DYNAMIC ASSERTIONS: EVALUATIONS AND APPLICABILITY

6.1 Summary of Empirical Evaluations with Users

Although the focus of this paper is propagation, the motivation for propagation is

usefulness of the propagated assertions (Property 4 in Section 3). Therefore, in this

section we briefly summarize four empirical studies that address the usefulness of

dynamic assertions in end-user programming environments.

The initial think-aloud study alluded to in Section 3.2 provided insights into five

users' abilities to reason about and use assertions. Results and observations from

this initial study led to the following questions:

1. Will users with assertions be more effective at debugging than users with-

out assertions?

2. Will users understand assertions?

3. Will assertions help users judge the correctness of their spreadsheets?

These questions were then addressed by a controlled experiment with 59 par-

ticipants (end users with little or no programming experience) [11]. These users

performed two debugging tasks. The participants were split into two groups: a con-

trol group without access to dynamic assertions, and a treatment group with specific

dynamic assertions available, if they chose to display them. (Participants were not

61

able to enter assertions other than those provided.) This study revealed that the

treatment participants (participants with assertions) both identified and corrected

significantly more faults than the control group, answering Question 1. Questions 2

and 3 were addressed by a post-session questionnaire. This questionnaire revealed

that users understood assertions and that users with assertions were able to more

accurately judge the correctness of their spreadsheets than users without assertions.

Questions 1, 2 and 3 demonstrated the usefulness of dynamic assertions once

they have already somehow been entered. However the benefits exhibited by the

studies above can be achieved only if users actually enter assertions, from which

more can be propagated. Since the use of assertions is not ubiquitous among profes-

sional programmers, it seemed likely that a similar reluctance may exist with end-

user programmers. To address this issue, we developed a strategy called Surprise-

Explain-Reward 44]. This strategy leverages the user's curiosity (triggered by a

surprise) to educate and entice him or her (through an unintrusive negotiated expla-

nation system) into using dynamic assertions. Once assertions are present, various

rewards such as violation ovals and testing assistance improvements continue to

provide rewards for entering more dynamic assertions. In our prototype, surprises

are generated by Help-Me-Test, an automatic test-case generation tool that may

be invoked by the user [17]. These surprises take the form of "guessed" HMT-

assertions that are based on the tool's attempts to find suitable test values for each

cell. By exploring the HMT-assertions with the mouse, users discoverthrough

tool tips that they can enter better assertions and reap rewards.

Wilson et al. performed an experiment to test the effectiveness of Surprise-

Explain-Reward with dynamic assertions [44] and to answer the following ques-

tions related to assertions. (Other questions regarding Surprise-Explain-Reward

62

were also addressed.)

4. Will users enter assertions?

5. Do users understand assertions without any training?

6. Will user-entered assertions be accurate?

In this study 16 participants (business students) conducted the same debugging

tasks as in [111. In contrast to the earlier assertions studies, in this study the partic-

ipants were not trained to use assertions. In fact, assertions were never mentioned

by the experimenters. Participants initially did not use assertions (on average, they

entered their first assertion 14 minutes into the first task); however once they did

use assertions, they continued to use them. Every participant who entered an asser-

tion entered more assertions later. During this experiment the participants entered

279 assertions, of which 95% were correct. By "correct" we mean that the asser-

tions were identical to the assertions created by the design team for the previous

experiment. This indicates that, given suitable support, not only will users enter

assertions without any previous knowledge of the feature, users are also capable of

creating accurate assertions on their own (answering Questions 4 and 6). Through

questionnaires we were also able to determine that the participants were able to un-

derstand assertions based entirely on the explanations provided by the system and

their experimentation (answering Question 5). The empirical results of Questions

1-6 provide encouraging evidence that dynamic assertions satisfy the Usefulness

property (Property 4).

63

6.2 Spreadsheet Evaluations

Sections 4.2 and 4.3 describe situations in which deductive propagation of dynamic

assertions is not viable. Recall, however, that Property 1 from Section 4 requires

that given a cell C, an assertion for C can be computed if all C's ancestors have

assertions. The inability to propagate dynamic assertions in all situations violates

this property. This raises the following questions:

1. How often do the situations arise in which it is not viable to propagate dy-

namic assertions?

2. When these situations arise, how do they arise, and how might they be ad-

dressed?

To answer these questions we conducted an empirical examination of 40 real-world

spreadsheets. This corpus of spreadsheets was collected from spreadsheets used for

real-world tasks that were either donated to us or were obtained from Google search

results for the terms "database", "grades" and "financial". Of the spreadsheets ob-

tained, we considered only macro-free spreadsheets with at least one formula in-

volving one or more cell references. The spreadsheets ranged in size from 15 to

7,773 cells.

6.2.1 How often do these situations occur?

Each spreadsheet was examined by instrumenting our prototype to record all dia-

monds found, and then applying our prototype to each spreadsheet as if every input

cell had an assertion. As Table 6.1 shows, of the 40 spreadsheets examined, 15 con-

Spreadsheets affected Total instances

Data-flow diamonds

if-problems

13

2

311

25

TABLE 6.1: Data-flow diamonds and instances of the if-problem were found in 15
of the 40 spreadsheets in our corpus.

tamed either data-flow or control-flow diamonds, creating 336 diamond sinks. The

remaining 25 spreadsheets did not contain diamonds, and could be processed with

Q-propagatlon.

6.2.2 When do the situations occur, and how might they be addressed?

In the 15 spreadsheets with diamonds, 336 diamonds were detected, 25 of which

were instances of the if-problem. Of the remaining 311 diamonds, 244 (78.5%)

were represented by expanded formulas that violated one of the restrictions in Sec-

tion 4.2.1. (Our prototype stops processing the expanded formula as soon as a vio-

lation is found.) Table?? presents the violations detected. Examination of this table

reveals that, aside from six instances of log, the only restrictions that had an effect

on /3-propagation's ability to propagate dynamic assertions were the restrictions on

discontinuous functions

CHAPTER 7

CONCLUSION AND FUTURE WORK

We have presented an incremental and interactive approach to dynamic asser-

tions to improve program correctness in end-user programming environments, and

we have evaluated this approach in regard to four properties: Reliability, Correct-

ness, Responsiveness and Usefulness.

Reliability: In order to provide an approach that is reliable, every cell whose an-

cestors have assertions must also have an assertion. We have identified two

situations that pose difficulties for propagationshared data-flow dependen-

cies, and the if-problem. Based on previous work, we have provided an al-

gorithm, 3-propagation, that is capable of propagating dynamic assertions

through spreadsheets with instances of the shared data-flow problem. We

have also proven a lower bound on the classification of the general if-problem,

demonstrating that it is at least as difficult as the problem of Satisfiability.

Correctness and Responsiveness: We have proven the correctness of /3-propagation,

ensuring that when assertions are propagated, they are correct. Thus, we have

shown that our approach to dynamic assertions is correct, fulfilling Property

2. To fulfill the third ploperty, Responsiveness, we placed restrictions on the

types of formulas through which we would attempt to propagate assertions.

We then conducted an examination of real-world spreadsheets to determine

'S

the impact of these restrictions. In this examination, propagation (using a

combination of cr-propagation and /3-propagation) succeeded in 70% of the

spreadsheets considered.

Usefulness: Dynamic assertions have been previously evaluated with regard to

Usefulness through empirical evaluations1. Empirical results show that not

only do dynamic assertions improve correctness, but end users are able to

make use of dynamic assertions with no prior training.

We have also presented open questions regarding the area of dynamic assertion

propagation. These questions were suggested by the findings from our examination

of real-world spreadsheets. These questions also lead to the possibility of approx-

imations that "smooth over" discontinuities in assertions. This would involve ad-

justing the tradeoff between Correctness, Reliability and Responsiveness to further

increase the ability to generate useful dynamic assertions for end-user programmers.

These empirical user studies were conducted by A. Wilson, M. Burnett, L. Beckwith, 0. Granatir,
L. Casburn, C. Cook, M. Durham, G. Rothermel, 0. Pendse, J. Summet and C. Wallace.

67

BIBLIOGRAPHY

[11 N.H. Able. Beweis der unmoglichkeit, algebraische gleichungen von hoheren
graden als dem vierten allgemein aufzulosen. In L. Sylow and S. Lie, editors,
Oeuvres Completes, pages 66-87. Johnson Reprint Corp., New York, 1988.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Aca-
demic Press, New York, NY, 1983.

[3] M. Auguston, S. Banerjee, M. Mamnani, G. Nabi, J. Reinfelds, U. Sarkans,
and I. Strnad. A debugger and assertion checker for the awk programming
language. In International Conference on Software Engineering, 1996.

[4] Y. Ayalew and R. Mittermeir. Spreadsheet debugging. In Proceedings of
the European Spreadsheet Risks Interest Group, Dublin, Ireland, July 24-25,
2003.

[5] G. Birkhoff and S. MacLane. A Survey of Modern Algebra. The Macmillan
Company, New York, NY, 1941.

[6] N. Bjørner, A. Browne, E. Chang, A. Colon, A. Kapur, H.B. Sipma, T.E.
Uribe, and Z. Manna. STeP: The Stanford Temporal Prover, User's Man-
ual. Technical Report STAN-CS- TR-95- 1562. Computer Science Departemnt,
Stanford University, November 1995.

[7] N. BjØrner, A. Browne, and Z. Manna. Automatic generation of invariants
and intermediate assertions. Theoretical Computer Science, 173(1):49-87,
February 1997.

[8] B. Boehm and V. Basili. Software defect reduction top 10 list. Computer,
34(1):135-137, 2001.

[9] A. Borning. The programming language aspects of ThingLab, a constraint-
oriented simulation library. ACM Transactions on Programming Languages
and Systems, 3(4):353-387, October 1981.

[10] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and S. Yang.
Forms/3: A first-order visual language to explore the boundaries of the spread-
sheet paradigm. Journal ofFunctional Programming, 11(2):155-206, March
2001.

[11] M. Burnett, C. Cook, 0. Pendse, G. Rothermel, J. Summet, and C. Wallace.
End-user software engineering with assertions in the spreadsheet paradigm.

In Proceedings ofthe 25th International Conference on Software Engineering,
pages 93-103, Portland, OR, May 3-10, 2003.

[12] M. Burnett and H. Gottfried. Graphical definitions: Expanding spreadsheet
languages through direct manipulation and gestures. ACM Transactions on
Computer-Human Interaction, 5(1): 1-33, March 1998.

[13] C. Corritore, B. Kracher, and S. Wiedenbeck. Trust in the online environment.
In HCI International, volume 1, pages 1548-1552, New Orleans, LA, August
2001.

[14] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. Ph.D.,
University of Washington Department of Computer Science and Engineering,
Seattle, Washington, August 2000.

[15] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27(2):1-25, February 2001. A
previous version appeared in ICSE '99, Proceedings of the 21st International
Conference on Software Engineering, pages 2 13-224, Los Angeles, CA, USA,
May 19-21, 1999.

[16] W. M Faucette. A geometric interpretation of the solution of the general quar-
tic polynomial. American Mathmatical Monthly, 103(1):51-57, January 1996.

[17] M. Fisher, M. Cao, G. Rothermel, C.R. Cook, and M.M. Burnett. Automated
test case generation for spreadsheets. In Proceedings of the 24th International
Conference on Software Engineering, pages 141-15 1, Orlando, Florida, May
19-25, 2002.

[18] S. Hangal and M. Lam. Tracking down software bugs using automatic
anomoly detection. In Proceedings of the International Conference on Soft-
ware Engineering, pages 291-301, Orlando, FL, May 2002.

[19] R. Jeffords and C. Heitmeyer. Automatic generation of state invariants from
requirements specifications. In Proceedings of the ACM SIGSOFT '98 Sym-
posium on the Foundations of Software Engineering, pages 56-69, Orlando,
Florida, November 1998.

[20] R. B. King and E. R. Cranfield. An algorithm for calculating the roots of a
general quintic equation from its coefficients. Journal of Math and Physics,
(32):823-825, 1991.

[21] W. Leler. Constraint Programming Languages. Addison-Wesley, 1988.

[22] K. Marriott and P. J. Stuckey. Programming With Constraints: An Introduc-
tion. The MIT Press, Cambridge, Massachusetts, 1998.

[23] B. Meyer. Design by contract. Computer, 25:40-51, October 1992.

[24] R.C. Miller and B.A. Myers. Outlier finding: Focusing user attention on possi-
ble errors. In Proceedings of the ACM Symposium on User Interface Software
and Technology, pages 8 1-90, November 2001.

[25] Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ,
1966.

[26] P. Norvig. Paradigms ofArti/icial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, San Francisco, CA, 1992.

[27] R. Panko. Finding spreadsheet errors: Most spreadsheet errors have design
flaws that may lead to long-term miscalculation. Information Week, page 100,
May 1995.

[28] R. Panko. What we know about spreadsheet errors. Journal on End User
Computing, pages 15-21, Spring 1998.

[29] R. Panko and R. Halverson. Spreadsheets on trial: A survey of research on
spreadsheet risks. In Proceedings ofthe 29' Hawaii International Conference
on System Sciences, January 1996.

[30] 0. Raz, P. Koopman, and Shaw M. Semantic anomaly detection in online
data sources. In Proceedings of the International Conference on Software
Engineering, pages 302-312, Orlando, FL, May 2002.

[31] D. Rosenblum. A practical approach to programming with assertions. IEEE
Trans. Soft. Eng., pages 19-3 1, Janurary 1995.

[32J D. Rosenblum, S. Sankar, and D. Luckham. Concurrent runtime checking of
annotated ada programs. In Conf Foundations of Software Technology and
Theoretical Computer Science, pages 10-35, December 1986.

[33] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov. A methodol-
ogy for testing spreadsheets. ACM Transactions on Software Engineering and
Methodology, 10(1): 110-147, January 2001.

[34] G. Rothermel, L. Li, C. Dupuis, and M. Burnett. What You See Is What You
Test: A methodology for testing form-based visual programs. In Proceedings
ofthe International Conference on Software Engineering, pages 198-207,
June 1998.

[35] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green, and G. Rother-
mel. An empirical evaluation of a methodology for testing spreadsheets. In
Proceedings of the 22nd International Conference on Software Engineering,
pages 230-239, June 2000.

70

[361 S. Sankar and M. Mandal. Concurrent runtime monitoring of formally speci-
fied programs. Computer, pages 32-41, March 1993.

[37] J. Summet and M. Burnett. End-user assertions: Propagating their implica-
tions. Technical Report 02-60-04, Oregon State University, Corvallis, OR,
August 2002.

[38] W. Wade. An Introduction to Analysis. Prentice Hall PTR, Upper Saddle River,
NJ, 1999.

[39] C. Wallace, C. Cook, J. Summet, and M. Burnett. Assertions in end-user
software engineering: a think-aloud study. In IEEE Symposium on Human-
Centric Languages and Environments, pages 63-65, September 2002.

[40] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, July 1984.

[41] E. W. Weisstein. C-k function. From MathWorldA Wolfram Web Re-
source, 1999. http: //mathworld.wolfram.com/CkFunction.
html, Last accessed: May 26, 2004.

[42] E. W. Weisstein. Quintic equation. MathWorldA Wolfram Web Resource,
1999. http: //mathworld.wolfram.com/QuinticEquation.
html, Last accessed: May 26, 2004.

[43] D. Welch and S. String. An exception-based assertion mechanism for C++.
Journal of Object Oriented Programming, 11(4):50-60, 1998.

[44] A. Wilson, M. Burnett, L. Beckwith, 0. Granatir, L. Casburn, C. Cook,
M. Durham, and G. Rothermel. Harnessing curiosity to increase correctness
in end-user programming. In Proceedings of the ACM Conference on Human
Factors in Computing Systems, pages 305-312, Fort Lauderdale, FL, April
5-b, 2003.

