152,516 research outputs found

    Identification of criticality in neuronal avalanches: I. A theoretical investigation of the non-driven case

    Get PDF
    In this paper, we study a simple model of a purely excitatory neural network that, by construction, operates at a critical point. This model allows us to consider various markers of criticality and illustrate how they should perform in a finite-size system. By calculating the exact distribution of avalanche sizes, we are able to show that, over a limited range of avalanche sizes which we precisely identify, the distribution has scale free properties but is not a power law. This suggests that it would be inappropriate to dismiss a system as not being critical purely based on an inability to rigorously fit a power law distribution as has been recently advocated. In assessing whether a system, especially a finite-size one, is critical it is thus important to consider other possible markers. We illustrate one of these by showing the divergence of susceptibility as the critical point of the system is approached. Finally, we provide evidence that power laws may underlie other observables of the system that may be more amenable to robust experimental assessment

    Approximation of the potential in scalar field dark energy models

    Get PDF
    We study the nature of potentials in scalar field based models for dark energy - with both canonical and noncanonical kinetic terms. We calculate numerically, and using an analytic approximation around a≈1a\approx 1, potentials for models with constant equation-of-state parameter, wϕw_{\phi}. We find that for a wide range of models with canonical and noncanonical kinetic terms there is a simple approximation for the potential that holds when the scale factor is in the range 0.6≲a≲1.40.6\lesssim a\lesssim 1.4. We discuss how this form of the potential can also be used to represent models with non-constant wϕw_{\phi} and, hence, how it could be used in reconstruction from cosmological data.Comment: 17 pages, 6 figures. Accepted by Phys. Rev.

    Approximated Lax Pairs for the Reduced Order Integration of Nonlinear Evolution Equations

    Get PDF
    A reduced-order model algorithm, called ALP, is proposed to solve nonlinear evolution partial differential equations. It is based on approximations of generalized Lax pairs. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the basis on which the solution is searched for evolves in time according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive front or wave propagation. Another difference with other reduced-order methods is that it is not based on an off-line / on-line strategy. Numerical examples are shown for the linear advection, KdV and FKPP equations, in one and two dimensions

    Reduced-Order Modeling based on Approximated Lax Pairs

    Get PDF
    A reduced-order model algorithm, based on approximations of Lax pairs, is proposed to solve nonlinear evolution partial differential equations. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the space where the solution is searched for evolves according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive waves or front propagation. Numerical examples are shown for the KdV and FKPP (nonlinear reaction diffusion) equations, in one and two dimensions

    Continuous variable entanglement dynamics in structured reservoirs

    Get PDF
    We address the evolution of entanglement in bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytic expression for the entanglement of formation without performing the Markov and the secular approximations and study in details the entanglement dynamics for various types of structured reservoirs and for different reservoir temperatures, assuming the two modes initially excited in a twin-beam state. Our analytic solution allows us to identify three dynamical regimes characterized by different behaviors of the entanglement: the entanglement sudden death, the non-Markovian revival and the non-secular revival regimes. Remarkably, we find that, contrarily to the Markovian case, the short-time system-reservoir correlations in some cases destroy quickly the initial entanglement even at zero temperature.Comment: 12 pages, 8 figure

    Continuous approximations of a class of piece-wise continuous systems

    Full text link
    In this paper we provide a rigorous mathematical foundation for continuous approximations of a class of systems with piece-wise continuous functions. By using techniques from the theory of differential inclusions, the underlying piece-wise functions can be locally or globally approximated. The approximation results can be used to model piece-wise continuous-time dynamical systems of integer or fractional-order. In this way, by overcoming the lack of numerical methods for diffrential equations of fractional-order with discontinuous right-hand side, unattainable procedures for systems modeled by this kind of equations, such as chaos control, synchronization, anticontrol and many others, can be easily implemented. Several examples are presented and three comparative applications are studied.Comment: IJBC, accepted (examples revised

    ROAM: a Radial-basis-function Optimization Approximation Method for diagnosing the three-dimensional coronal magnetic field

    Get PDF
    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 AËš\AA and 10798 AËš\AA lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analogue. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.Comment: 23 pages, 12 figures, accepted in Frontiers in Astronomy and Space Science
    • …
    corecore