6,176 research outputs found

    Enhancement of Epidemiological Models for Dengue Fever Based on Twitter Data

    Full text link
    Epidemiological early warning systems for dengue fever rely on up-to-date epidemiological data to forecast future incidence. However, epidemiological data typically requires time to be available, due to the application of time-consuming laboratorial tests. This implies that epidemiological models need to issue predictions with larger antecedence, making their task even more difficult. On the other hand, online platforms, such as Twitter or Google, allow us to obtain samples of users' interaction in near real-time and can be used as sensors to monitor current incidence. In this work, we propose a framework to exploit online data sources to mitigate the lack of up-to-date epidemiological data by obtaining estimates of current incidence, which are then explored by traditional epidemiological models. We show that the proposed framework obtains more accurate predictions than alternative approaches, with statistically better results for delays greater or equal to 4 weeks.Comment: ACM Digital Health 201

    A Comprehensive Review on Machine Learning Based Models for Healthcare Applications

    Get PDF
    At present, there has been significant progress concerning AI and machine learning, specifically in medical sector. Artificial intelligence refers to computing programmes that replicate and simulate human intelligence, such as an individual's problem-solving capabilities or their capacity for learning. Moreover, machine learning can be considered as a subfield within the broader domain of artificial intelligence. The process automatically identifies and analyses patterns within unprocessed data. The objective of this work is to facilitate researchers in acquiring an extensive knowledge of machine learning and its utilisation within the healthcare domain. This research commences by providing a categorization of machine learning-based methodologies concerning healthcare. In accordance with the taxonomy, we have put forth, machine learning approaches in the healthcare domain are classified according to various factors. These factors include the methods employed for the process of preparing data for analysis, which includes activities such as data cleansing and data compression techniques. Additionally, the strategies for learning are utilised, such as reinforcement learning, semi-supervised learning, supervised learning, and unsupervised learning. are considered. Also, the evaluation approaches employed encompass simulation-based evaluation as well as evaluation of actual use in everyday situations. Lastly, the applications of these ML-based methods in medicine pertain towards diagnosis and treatment. Based on the classification we have put forward; we proceed to examine a selection of research that have been presented in the framework of machine learning applications within the healthcare domain. This review paper serves as a valuable resource for researchers seeking to gain familiarity with the latest research on ML applications concerning medicine. It aids towards the recognition for obstacles and limitations associated with ML in this domain, while also facilitating the identification of potential future research directions

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c

    Detection and Localization of Leaks in Water Networks

    Get PDF
    Today, 844 million humans around the world have no access to safe drinking water. Furthermore, every 90 seconds, one child dies from water-related illnesses. Major cities lose 15% - 50% of their water and, in some cases, losses may reach up to 70%, mostly due to leaks. Therefore, it is paramount to preserve water as an invaluable resource through water networks, particularly in large cities in which leak repair may cause disruption. Municipalities usually tackle leak problems using various detection systems and technologies, often long after leaks occur; however, such efforts are not enough to detect leaks at early stages. Therefore, the main objectives of the present research are to develop and validate a leak detection system and to optimize leak repair prioritization. The development of the leak detection models goes through several phases: (1) technology and device selection, (2) experimental work, (3) signal analysis, (4) selection of parameters, (5) machine learning model development and (6) validation of developed models. To detect leaks, vibration signals are collected through a variety of controlled experiments on PVC and ductile iron pipelines using wireless accelerometers, i.e., micro-electronic mechanical sensors (MEMS). The signals are analyzed to pinpoint leaks in water pipelines. Similarly, acoustic signals are collected from a pilot project in the city of Montreal, using noise loggers as another detection technology. The collected signals are also analyzed to detect and pinpoint the leaks. The leak detection system has presented promising results using both technologies. The developed MEMS model is capable of accurately pinpointing leaks within 12 centimeters from the exact location. Comparatively, for noise loggers, the developed model can detect the exact leak location within a 25-cm radius for an actual leak. The leak repair prioritization model uses two optimization techniques: (1) a well-known genetic algorithm and (2) a newly innovative Lazy Serpent Algorithm that is developed in the present research. The Lazy Serpent Algorithm has proved capable of surpassing the genetic algorithm in determining a more optimal schedule using much less computation time. The developed research proves that automated real-time leak detection is possible and can help governments save water resource and funds. The developed research proves the viability of accelerometers as a standalone leak detection technology and opens the door for further research and experimentations. The leak detection system model helps municipalities and water resource agencies rapidly detect leaks when they occur in real-time. The developed pinpointing models facilitate the leak repair process by precisely determine the leak location where the repair works should be conducted. The Lazy Serpent Algorithm helps municipalities better distribute their resources to maximize their desired benefits

    A Comprehensive Survey on Rare Event Prediction

    Full text link
    Rare event prediction involves identifying and forecasting events with a low probability using machine learning and data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare events, it requires using specialized methods within each step of the machine learning pipeline, i.e., from data processing to algorithms to evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0, and is an active research area in statistical and machine learning. This paper comprehensively reviews the current approaches for rare event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches. Specifically, we consider 73 datasets from different modalities (i.e., numerical, image, text, and audio), four major categories of data processing, five major algorithmic groupings, and two broader evaluation approaches. This paper aims to identify gaps in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions, which can help guide practitioners and researchers.Comment: 44 page

    Process-Oriented Stream Classification Pipeline:A Literature Review

    Get PDF
    Featured Application: Nowadays, many applications and disciplines work on the basis of stream data. Common examples are the IoT sector (e.g., sensor data analysis), or video, image, and text analysis applications (e.g., in social media analytics or astronomy). With our work, we gather different approaches and terminology, and give a broad overview over the topic. Our main target groups are practitioners and newcomers to the field of data stream classification. Due to the rise of continuous data-generating applications, analyzing data streams has gained increasing attention over the past decades. A core research area in stream data is stream classification, which categorizes or detects data points within an evolving stream of observations. Areas of stream classification are diverse—ranging, e.g., from monitoring sensor data to analyzing a wide range of (social) media applications. Research in stream classification is related to developing methods that adapt to the changing and potentially volatile data stream. It focuses on individual aspects of the stream classification pipeline, e.g., designing suitable algorithm architectures, an efficient train and test procedure, or detecting so-called concept drifts. As a result of the many different research questions and strands, the field is challenging to grasp, especially for beginners. This survey explores, summarizes, and categorizes work within the domain of stream classification and identifies core research threads over the past few years. It is structured based on the stream classification process to facilitate coordination within this complex topic, including common application scenarios and benchmarking data sets. Thus, both newcomers to the field and experts who want to widen their scope can gain (additional) insight into this research area and find starting points and pointers to more in-depth literature on specific issues and research directions in the field.</p

    Collaborative environment to support a professional community

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresRecent manufacturing roadmaps stress current production systems limitations, emphasizing social, economic and ecologic consequences for Europe of a non-evolution to sustainable Production Systems. Hence, both academic institutions and enterprises are committed to develop solutions that would endow enterprises to survive in nowadays’ extremely competitive business environment. A research effort is being carried on by the Evolvable Production Systems consortium towards attaining Production Systems that can cope with current technological, economical, ecological and social demands fulfilling recent roadmaps. Nevertheless research success depends on attaining consensus in the scientific community and therefore an accurate critical mass support is required in the whole process. The main goal of this thesis is the development of a Collaborative Environment Tool to assist Evolvable Production Systems consortium in such research efforts and to enhance Evolvable Assembly Systems paradigm dissemination. This work resulted in EASET (Evolvable Assembly Systems Environment Tool), a collaborative environment tool which promotes EAS dissemination and brings forth improvements through the raise of critical mass and collaboration between entities

    Science-Technology Division

    Get PDF
    • …
    corecore