3 research outputs found

    Predicting Good Configurations for GitHub and Stack Overflow Topic Models

    Full text link
    Software repositories contain large amounts of textual data, ranging from source code comments and issue descriptions to questions, answers, and comments on Stack Overflow. To make sense of this textual data, topic modelling is frequently used as a text-mining tool for the discovery of hidden semantic structures in text bodies. Latent Dirichlet allocation (LDA) is a commonly used topic model that aims to explain the structure of a corpus by grouping texts. LDA requires multiple parameters to work well, and there are only rough and sometimes conflicting guidelines available on how these parameters should be set. In this paper, we contribute (i) a broad study of parameters to arrive at good local optima for GitHub and Stack Overflow text corpora, (ii) an a-posteriori characterisation of text corpora related to eight programming languages, and (iii) an analysis of corpus feature importance via per-corpus LDA configuration. We find that (1) popular rules of thumb for topic modelling parameter configuration are not applicable to the corpora used in our experiments, (2) corpora sampled from GitHub and Stack Overflow have different characteristics and require different configurations to achieve good model fit, and (3) we can predict good configurations for unseen corpora reliably. These findings support researchers and practitioners in efficiently determining suitable configurations for topic modelling when analysing textual data contained in software repositories.Comment: to appear as full paper at MSR 2019, the 16th International Conference on Mining Software Repositorie

    An Evolutionary Hyper-Heuristic for the Software Project Scheduling Problem

    Full text link
    Software project scheduling plays an important role in reducing the cost and duration of software projects. It is an NP-hard combinatorial optimization problem that has been addressed based on single and multi-objective algorithms. However, such algorithms have always used fixed genetic operators, and it is unclear which operators would be more appropriate across the search process. In this paper, we propose an evolutionary hyper-heuristic to solve the software project scheduling problem. Our novelties include the following: (1) this is the first work to adopt an evolutionary hyper-heuristic for the software project scheduling problem; (2) this is the first work for adaptive selection of both crossover and mutation operators; (3) we design different credit assignment methods for mutation and crossover; and (4) we use a sliding multi-armed bandit strategy to adaptively choose both crossover and mutation operators. The experimental results show that the proposed algorithm can solve the software project scheduling problem effectively
    corecore