38,450 research outputs found

    Hierarchical phylogeny construction

    Get PDF
    Construction of a phylogenetic tree for a number of species from their genome sequence is very important for understanding the evolutionary history of those species. Rapid improvements in DNA sequencing technology have generated sequence data for huge number of similar isolates with a wide range of single nucleotide polymorphism (SNP) rates, where the SNP rate among some isolates can be thousands of times lower than the others. This kind of genome sequences are difficult for the existing methods because the subtree(s) (or clade) consisting of species or isolates with very low SNP rates may have a very low level of resolution and their evolutionary history may not be accurately represented. Identification of the informative columns in the alignment containing important variations in the genome of those species is important in constructing their evolutionary history. Here we describe a method for selecting informative regions for a set of isolates based on the observation that the likelihood of informative columns are sensitive to changes in the tree topology. We show that these informative columns increase the correctness of the phylogenies constructed for the closely related isolates. Then we address the generalized version of this problem by developing a hierarchical approach to phylogeny construction. In this method, the construction is performed at multiple levels, where at each level, groups of isolates with similar levels of similarity are identified and their phylogenetic trees are constructed. We also detect those multiple levels of similarity in an automated manner. Our results show that this new hierarchical approach is much efficient and sometimes more accurate than existing approaches of building the phylogenetic tree with maximum likelihood from the whole alignment for all the isolates

    Testing robustness of relative complexity measure method constructing robust phylogenetic trees for Galanthus L. Using the relative complexity measure

    Get PDF
    Background: Most phylogeny analysis methods based on molecular sequences use multiple alignment where the quality of the alignment, which is dependent on the alignment parameters, determines the accuracy of the resulting trees. Different parameter combinations chosen for the multiple alignment may result in different phylogenies. A new non-alignment based approach, Relative Complexity Measure (RCM), has been introduced to tackle this problem and proven to work in fungi and mitochondrial DNA. Result: In this work, we present an application of the RCM method to reconstruct robust phylogenetic trees using sequence data for genus Galanthus obtained from different regions in Turkey. Phylogenies have been analyzed using nuclear and chloroplast DNA sequences. Results showed that, the tree obtained from nuclear ribosomal RNA gene sequences was more robust, while the tree obtained from the chloroplast DNA showed a higher degree of variation. Conclusions: Phylogenies generated by Relative Complexity Measure were found to be robust and results of RCM were more reliable than the compared techniques. Particularly, to overcome MSA-based problems, RCM seems to be a reasonable way and a good alternative to MSA-based phylogenetic analysis. We believe our method will become a mainstream phylogeny construction method especially for the highly variable sequence families where the accuracy of the MSA heavily depends on the alignment parameters

    Uncertainty in phylogenetic tree estimates

    Full text link
    Estimating phylogenetic trees is an important problem in evolutionary biology, environmental policy and medicine. Although trees are estimated, their uncertainties are discarded by mathematicians working in tree space. Here we explicitly model the multivariate uncertainty of tree estimates. We consider both the cases where uncertainty information arises extrinsically (through covariate information) and intrinsically (through the tree estimates themselves). The importance of accounting for tree uncertainty in tree space is demonstrated in two case studies. In the first instance, differences between gene trees are small relative to their uncertainties, while in the second, the differences are relatively large. Our main goal is visualization of tree uncertainty, and we demonstrate advantages of our method with respect to reproducibility, speed and preservation of topological differences compared to visualization based on multidimensional scaling. The proposal highlights that phylogenetic trees are estimated in an extremely high-dimensional space, resulting in uncertainty information that cannot be discarded. Most importantly, it is a method that allows biologists to diagnose whether differences between gene trees are biologically meaningful, or due to uncertainty in estimation.Comment: Final version accepted to Journal of Computational and Graphical Statistic

    Steps towards operationalizing an evolutionary archaeological definition of culture

    Get PDF
    This paper will examine the definition of archaeological cultures/techno-complexes from an evolutionary perspective, in which culture is defined as a system of social information transmission. A formal methodology will be presented through which the concept of a culture can be operationalized, at least within this approach. It has already been argued that in order to study material culture evolution in a manner similar to how palaeontologists study biological change over time we need explicitly constructed ‘archaeological taxonomic units’ (ATUs). In palaeontology, the definition of such taxonomic units – most commonly species – is highly controversial, so no readily adoptable methodology exists. Here it is argued that ‘culture’, however defined, is a phenomenon that emerges through the actions of individuals. In order to identify ‘cultures’, we must therefore construct them from the bottom up, beginning with individual actions. Chaîne opèratoire research, combined with the formal and quantitative identification of variability in individual material culture behaviour allows those traits critical in the social transmission of cultural information to be identified. Once such traits are identified, quantitative, so-called phylogenetic methods can be used to track material culture change over time. Phylogenetic methods produce nested hierarchies of increasingly exclusive groupings, reflecting descent with modification within lineages of social information transmission. Once such nested hierarchies are constructed, it is possible to define an archaeological culture at any given point in this hierarchy, depending on the scale of analysis. A brief example from the Late Glacial in Southern Scandinavia is presented and it is shown that this approach can be used to operationalize an evolutionary definition of ‘culture’ and that it improves upon traditional, typologically defined technocomplexes. In closing, the benefits and limits of such an evolutionary and quantitative definition of ‘culture’ are discussed

    SATCHMO-JS: a webserver for simultaneous protein multiple sequence alignment and phylogenetic tree construction.

    Get PDF
    We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/

    Innovation as Evolution

    Get PDF
    Cellular phone is one of the most developing technological artifacts today. The evolution occurs through random innovation. Our effort is trying to view the evolution of this artifact from memetic’s point of view. By constructing a phylomemetic tree based on cellular phone memes to infer or estimate the evolutionary history and relationship among cellular phone. We adopt several methods, which are commonly used in constructing phylogenetic tree, they are UPGMA algorithm and Parsimony Maximum algorithm to construct cellphone phylomemetic tree. Therefore we compare with the innovation tree, which is based on serial number and their appearance time. From phylomemetic tree, we then analyze the process of a cellular phone innovation through looking out on the cellular phone type lies in the same cluster. The comparison of the simulation tree result shows a generally different branching pattern, giving a presumption that innovation in cellular phone is not really relating with their serial number, but occurs merely because of random mutation of allomeme design and competes with its technological development
    corecore