11 research outputs found

    Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

    Get PDF
    The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing

    Metagrowth: a new resource for the building of metabolic hypotheses in microbiology

    Get PDF
    Metagrowth is a new type of knowledge base developed to guide the experimental studies of culture conditions of obligate parasitic bacteria. We have gathered biological evidences giving possible clues to the development of the axenic (i.e. ‘cell-free’) growth of obligate parasites from various sources including published literature, genomic sequence information, metabolic databases and transporter databases. The database entries are composed of those evidences and specific hypotheses derived from them. Currently, 200 entries are available for Rickettsia prowazekii, Rickettsia conorii, Tropheryma whipplei, Treponema pallidum, Mycobacterium tuberculosis and Coxiella burnetii. The web interface of Metagrowth helps users to design new axenic culture media eventually suitable for those bacteria. Metagrowth is accessible at http://igs-server.cnrs-mrs.fr/axenic/

    EcoCyc: a comprehensive database resource for Escherichia coli

    Get PDF
    The EcoCyc database (http://EcoCyc.org/) is a comprehensive source of information on the biology of the prototypical model organism Escherichia coli K12. The mission for EcoCyc is to contain both computable descriptions of, and detailed comments describing, all genes, proteins, pathways and molecular interactions in E.coli. Through ongoing manual curation, extensive information such as summary comments, regulatory information, literature citations and evidence types has been extracted from 8862 publications and added to Version 8.5 of the EcoCyc database. The EcoCyc database can be accessed through a World Wide Web interface, while the downloadable Pathway Tools software and data files enable computational exploration of the data and provide enhanced querying capabilities that web interfaces cannot support. For example, EcoCyc contains carefully curated information that can be used as training sets for bioinformatics prediction of entities such as promoters, operons, genetic networks, transcription factor binding sites, metabolic pathways, functionally related genes, protein complexes and protein–ligand interactions

    Multidimensional annotation of the Escherichia coli K-12 genome

    Get PDF
    The annotation of the Escherichia coli K-12 genome in the EcoCyc database is one of the most accurate, complete and multidimensional genome annotations. Of the 4460 E. coli genes, EcoCyc assigns biochemical functions to 76%, and 66% of all genes had their functions determined experimentally. EcoCyc assigns E. coli genes to Gene Ontology and to MultiFun. Seventy-five percent of gene products contain reviews authored by the EcoCyc project that summarize the experimental literature about the gene product. EcoCyc information was derived from 15 000 publications. The database contains extensive descriptions of E. coli cellular networks, describing its metabolic, transport and transcriptional regulatory processes. A comparison to genome annotations for other model organisms shows that the E. coli genome contains the most experimentally determined gene functions in both relative and absolute terms: 2941 (66%) for E. coli, 2319 (37%) for Saccharomyces cerevisiae, 1816 (5%) for Arabidopsis thaliana, 1456 (4%) for Mus musculus and 614 (4%) for Drosophila melanogaster. Database queries to EcoCyc survey the global properties of E. coli cellular networks and illuminate the extent of information gaps for E. coli, such as dead-end metabolites. EcoCyc provides a genome browser with novel properties, and a novel interactive display of transcriptional regulatory networks

    In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). RESULTS: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. CONCLUSION: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models

    Algorithms for reconstruction and analysis of metabolic networks, with an application to Neurospora crassa

    Full text link
    In this work, I have developed optimization-based algorithms to reconstruct and analyze metabolic network models, and I have applied them to the metabolism of the filamentous fungus Neurospora crassa. The developed algorithms are: (1) LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; (2) One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and (3) Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Together, these algorithms comprise Fast Automated Reconstruction of Metabolism (FARM). FARM was applied to reconstruct the first genome-scale model of N. crassa metabolism. This organism has played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. The N. crassa model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, it displays 93% sensitivity and specificity. The model was also used to simulate the biochemical genetics experiments originally performed on N. crassa by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and providing detailed pathway-based mechanistic explanations of the predictions. The model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in N. crassa, and the algorithms will enhance reconstruction and analysis of high-quality genome-scale metabolic models in general

    BIOMEDICAL ONTOLOGIES: EXAMINING ASPECTS OF INTEGRATION ACROSS BREAST CANCER KNOWLEDGE DOMAINS

    Get PDF
    The key ideas developed in this thesis lie at the intersection of epistemology, philosophy of molecular biology, medicine, and computer science. I examine how the epistemic and pragmatic needs of agents distributed across particular scientific disciplines influence the domain-specific reasoning, classification, and representation of breast cancer. The motivation to undertake an interdisciplinary approach, while addressing the problems of knowledge integration, originates in the peculiarity of the integrative endeavour of sciences that is fostered by information technologies and ontology engineering methods. I analyse what knowledge integration in this new field means and how it is possible to integrate diverse knowledge domains, such as clinical and molecular. I examine the extent and character of the integration achieved through the application of biomedical ontologies. While particular disciplines target certain aspects of breast cancer-related phenomena, biomedical ontologies target biomedical knowledge about phenomena that is often captured within diverse classificatory systems and domain-specific representations. In order to integrate dispersed pieces of knowledge, which is distributed across assorted research domains and knowledgebases, ontology engineers need to deal with the heterogeneity of terminological, conceptual, and practical aims that are not always shared among the domains. Accordingly, I analyse the specificities, similarities, and diversities across the clinical and biomedical domain conceptualisations and classifications of breast cancer. Instead of favouring a unifying approach to knowledge integration, my analysis shows that heterogeneous classifications and representations originate from different epistemic and pragmatic needs, each of which brings a fruitful insight into the problem. Thus, while embracing a pluralistic view on the ontologies that are capturing various aspects of knowledge, I argue that the resulting integration should be understood in terms of a coordinated social effort to bring knowledge together as needed and when needed, rather than in terms of a unity that represents domain-specific knowledge in a uniform manner. Furthermore, I characterise biomedical ontologies and knowledgebases as a novel socio-technological medium that allows representational interoperability across the domains. As an example, which also marks my own contribution to the collaborative efforts, I present an ontology for HER2+ breast cancer phenotypes that integrates clinical and molecular knowledge in an explicit way. Through this and a number of other examples, I specify how biomedical ontologies support a mutual enrichment of knowledge across the domains, thereby enabling the application of molecular knowledge into the clinics
    corecore