5 research outputs found

    A hybrid group-based movie recommendation framework with overlapping memberships

    Get PDF
    Recommender Systems (RS) are widely used to help people or group of people in finding their required information amid the issue of ever-growing information overload. The existing group recommender approaches consider users to be part of a single group only, but in real life a user may be associated with multiple groups having conflicting preferences. For instance, a person may have different preferences in watching movies with friends than with family. In this paper, we address this problem by proposing a Hybrid Two-phase Group Recommender Framework (HTGF) that takes into consideration the possibility of users having simultaneous membership of multiple groups. Unlike the existing group recommender systems that use traditional methods like K-Means, Pearson correlation, and cosine similarity to form groups, we use Fuzzy C-means clustering which assigns a degree of membership to each user for each group, and then Pearson similarity is used to form groups. We demonstrate the usefulness of our proposed framework using a movies data set. The experiments were conducted on MovieLens 1M dataset where we used Neural Collaborative Filtering to recommend Top-k movies to each group. The results demonstrate that our proposed framework outperforms the traditional approaches when compared in terms of group satisfaction parameters, as well as the conventional metrics of precision, recall, and F-measure

    On intelligible multimodal visual analysis

    Get PDF
    Analyzing data becomes an important skill in a more and more digital world. Yet, many users are facing knowledge barriers preventing them to independently conduct their data analysis. To tear down some of these barriers, multimodal interaction for visual analysis has been proposed. Multimodal interaction through speech and touch enables not only experts, but also novice users to effortlessly interact with such kind of technology. However, current approaches do not take the user differences into account. In fact, whether visual analysis is intelligible ultimately depends on the user. In order to close this research gap, this dissertation explores how multimodal visual analysis can be personalized. To do so, it takes a holistic view. First, an intelligible task space of visual analysis tasks is defined by considering personalization potentials. This task space provides an initial basis for understanding how effective personalization in visual analysis can be approached. Second, empirical analyses on speech commands in visual analysis as well as used visualizations from scientific publications further reveal patterns and structures. These behavior-indicated findings help to better understand expectations towards multimodal visual analysis. Third, a technical prototype is designed considering the previous findings. Enriching the visual analysis by a persistent dialogue and a transparency of the underlying computations, conducted user studies show not only advantages, but address the relevance of considering the user’s characteristics. Finally, both communications channels – visualizations and dialogue – are personalized. Leveraging linguistic theory and reinforcement learning, the results highlight a positive effect of adjusting to the user. Especially when the user’s knowledge is exceeded, personalizations helps to improve the user experience. Overall, this dissertations confirms not only the importance of considering the user’s characteristics in multimodal visual analysis, but also provides insights on how an intelligible analysis can be achieved. By understanding the use of input modalities, a system can focus only on the user’s needs. By understanding preferences on the output modalities, the system can better adapt to the user. Combining both directions imporves user experience and contributes towards an intelligible multimodal visual analysis

    Graphs behind data: A network-based approach to model different scenarios

    Get PDF
    openAl giorno d’oggi, i contesti che possono beneficiare di tecniche di estrazione della conoscenza a partire dai dati grezzi sono aumentati drasticamente. Di conseguenza, la definizione di modelli capaci di rappresentare e gestire dati altamente eterogenei è un argomento di ricerca molto dibattuto in letteratura. In questa tesi, proponiamo una soluzione per affrontare tale problema. In particolare, riteniamo che la teoria dei grafi, e più nello specifico le reti complesse, insieme ai suoi concetti ed approcci, possano rappresentare una valida soluzione. Infatti, noi crediamo che le reti complesse possano costituire un modello unico ed unificante per rappresentare e gestire dati altamente eterogenei. Sulla base di questa premessa, mostriamo come gli stessi concetti ed approcci abbiano la potenzialità di affrontare con successo molti problemi aperti in diversi contesti. ​Nowadays, the amount and variety of scenarios that can benefit from techniques for extracting and managing knowledge from raw data have dramatically increased. As a result, the search for models capable of ensuring the representation and management of highly heterogeneous data is a hot topic in the data science literature. In this thesis, we aim to propose a solution to address this issue. In particular, we believe that graphs, and more specifically complex networks, as well as the concepts and approaches associated with them, can represent a solution to the problem mentioned above. In fact, we believe that they can be a unique and unifying model to uniformly represent and handle extremely heterogeneous data. Based on this premise, we show how the same concepts and/or approach has the potential to address different open issues in different contexts. ​INGEGNERIA DELL'INFORMAZIONEopenVirgili, Luc
    corecore