7 research outputs found

    The convergence of quasi-Gauss-Newton methods for nonlinear problems

    Get PDF
    AbstractQuasi-Gauss-Newton methods for nonlinear equations are investigated. A Quasi-Gauss-Newton method is proposed. In this method, the Jacobian is modified by a convex combination of Broyden's update and a weighted update. The convergence of the method described by Wang and Tewarson in [1] and the proposed method is proved. Computational evidence is given in support of the relative efficiency of the proposed method

    Solving nonlinear equations by a tabu search strategy

    Get PDF
    Solving systems of nonlinear equations is a problem of particular importance since they emerge through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a metaheuristic, called Directed Tabu Search (DTS) [16], is able to converge to the solutions of a set of problems for which the fsolve function of MATLAB® failed to converge. We also show the effect of the dimension of the problem in the performance of the DTS.Fundação para a Ciência e a Tecnologia (FCT

    Self-adaptive combination of global tabu search and local search for nonlinear equations

    Get PDF
    Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methodsFundação para a Ciência e a Tecnologia (FCT

    Modular Simulation of Absorption Systems User's Guide (Windows Version 5.0)

    Full text link
    corecore