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Abs t r ac t - -Quas i -Gauss -Newton  methods for nonlinear equations are investigated. A Quasi- 
Gauss-Newton method is proposed. In this method, the Jacobian is modified by a convex combination 
of Broyden's update and a weighted update. The convergence of the method described by Wang and 
Tewarson in [1] and the proposed method is proved. Computational evidence is given in support of 
the relative efficiency of the proposed method. 

1. INTRODUCTI(~N 
In th is  pape r ,  we consider  me thods  for f inding a solut ion,  x* say, to  a nonl inear  sys t em of a lgebra ic  

equa t ions  

f ( x )  -- 0, (1) 

where  t he  funct ion f : R n ---* R n is nonl inear  in x E R n. 

The  classical  m e t h o d  to de t e rmine  x* for (1) is the  Newton  me thod ,  which a p p r o x i m a t e s  f i ,  

i = 1 , . . .  , n ,  by a l inear  funct ion.  Thus ,  

f ( x  + s) = f ( x )  + J (x )s  + 0 (lls][2) , 

where  J(x)  is the  J acob ian  a t  x. The  next  i t e ra t e  can be ob t a ined  from the  so lu t ion  of 

J(x)s = - f ( x ) ,  

or, equivalent ly ,  by  solving the  no rma l  equa t ion  

J(x)X J (x )s  = - J ( x ) X  f ( x )  (2) 

for s. I t  is ev iden t  t h a t  s is the  solut ion of the  l inear  l eas t - square  p rob lem 

minimize  ~ [ [ f (x  + s)[t~. 

*Author to whom all correspondence should be addressed. 
tResearch supported by Korean Ministry of Education, BSRI-94-1430 and Ewha Women's University, 1994. 
tResearch supported by NSF Grant DMS921664 and NIH Grant DK1759314. 

Typeset by A.h/~S-TEX 

27 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82568216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


28 S. KIM AND R.  P .  TEWARSON 

Equation (2) is usually computed by QR decomposition of J(x).  If B is an approximation to J(x) ,  
then (2) can be replaced by 

B T B s  = - - B T / ( x ) .  (3) 

One well-known approximation for J(x)  is by updating the initial Jacobian at each step with 
Broyden's  update. It  has been shown in [1] that  using L D L  r factorization of B T B  leads to more 

superior computat ional  results than the so-called S Q R T  method for a given set of test  problems. 
It  is also shown that ,  if the modified Cholesky factorization in [2] is used, the number of operations 

is reduced from O(n 3) to O(n 2) + n. In this paper, a convex combination of Broyden's  update  

and a weighted update  is used for the Jacobian approximation B in (3) instead of Broyden's 

update. This leads to a bet ter  convergence rate. We now describe Broyden's update  and its 

convex combination with another update. 

Jacobian Approximations 

Solving the systems of nonlinear equations (1) involves the computat ion of the Jacobian. It  is 
known that  the computat ion of the Jacobian is expensive, especially when functions are difficult 

to evaluate. The Jacobian approximations have been widely used to save time. One of the most 
successful approximations is known as Broyden's update [3,4]. 

Using linearization, we have 

0 = f (x*) = f ( x  + x* - x) ~ f ( x )  + J(x)  (x* - x ) .  

Let xk be an approximation to x*, Bk ~, the Jacobian at the k th step and x* = xk + s. Then the 
k th step is 

0 = . f  (xk) + J ( x k )  (x* - xk) 

= f (xk) + J ( x k )  s 

f (xk) + Bks. 

At the (k + 1) th step, 

X* ,~  X k + l  : -  2:k Jr- 8 

o r  

X k = X k +  1 - -  S 

f ( x k )  = f (xk+l) - J (xk+l )  s ~ f (xk+l) - Bk+ls. 

Since Bk+lS can be written as (Bk + AB) s ,  from the last equation, we have 

A B s  = f (xk+l).  (4) 

AB has been determined in many ways. One of them is Broyden's update, 

f (Xk+l) s T 
AB1 - sT s (5) 

Since - B T f ( x )  in (3) is the steepest descent direction computed at each iteration, we will 
utilize this information in approximating the Jacobian to get a bet ter  estimate. A solution of (4) 

is 
sT BT B t T 

AB2 = f ( x k + l )  s r B T B s  - f (xk+l) sT t,  

where t = - B T f .  
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We now combine two updates to approximate the update  A B  to the Jacobian. It  was shown 

in [5] tha t  this leads to a bet ter  u p d a t e  The convex combination of the updates is 

A B  = (1 - #)AB1 + # AB2  (6) 

where # is chosen from 

[IABII[F blAB211F = ~ II~B211F, IIABIlIF- [[~B2[[F 

s T t )  
therefore, p = 7 - / i ~ '  

Next, we describe how the equation (3) can be solved effectively when the update  is given 

by (5). 

2 .  Q U A S I - G A U S S - N E W T O N  M E T H O D S  

In this section, we describe how the L D L  T factorization in [2] can be utilized for solving (3) 

with the Jacobian approximation given in the previous section. 
The method uses an algorithm in [2], which is for a symmetric matr ix  A modified by a sym- 

metric matr ix  of rank one, 
= A + azz  r (7) 

and finds the Cholesky factors of A = LD---L T from the factors of A = L D L  T. If A is replaced 
by B T B  in (7) and B T B  is modified by a rank one update, then 

--~r--~ = BT B + Oezz T = L (D + app T) L T, (8) 

where Lp = z, and p is obtained from z. If we factor 

D + cepp T = LDL T, 

the required modified Cholesky factors are of the form, 

B r  B = LLD~-CL r.  

Therefore, 
L :  LL, D =  [9. 

Initially, the orthogonal factorization of B is such that  B T B  = R T R  and initial L and D can be 
obtained from RTR.  The algorithm for updating L and D is: 

A L G O R I T H M  2 . 1 .  

Define c~l ----" O~, W (1) ~ Z. 

Do for j = 1 , . . .  n: 

pj = wJ j), 
2 dj = dj + ajpj ,  

aj 

ctj+ 1 = dj~-~j 

Do for 7 " = j + 1  . . . . .  n. 

W ( j + l )  ---- W} j )  -- pjlrj 

L-~ = z,., + ~j w (~ + ~) 
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m - - 8  T 

If B = B + ~ is used in (8), 

- -  - - T  

+ B + - -  , - s  
s? T ?sT 
8-78 s T s  " 

(9) 

Prom the above equation, we can see that  B T B  is modified by a rank-2 update and (9) can be 
rewritten as 

-~-c-~ = BT B + z l z [  - z~z~, 

where 

and 

B r  7 +  (1 f T 7 / 2 )  sT -- 

Z1 --  V'~ 

7- ;  
Z2 = X'~ 

The algorithm for Quasi-Gauss-Newton method [1] using Broyden's update is as follows. 

ALGORITHM 2 .2 .  

Given f : R n --+ R n, xo c R n, Bo E R nxn.  

Get QoRo = Bo 

L0 from /~T 

Do = (r121,...,r2nn). 

Do for 

Solve 

k = l ,  . . :  

LkDkL-dsk = -B[. f (xk) for sk, 

Xk+l :=  Xk + 8k~ 

Yk := f ( x k + l )  - f (xk), 

tk := - B J  f (xk).  

(Yk - Bksk)s-~ 
Bk+l  :=  Bk + T 8 k 8k 

Get LDL T, LDL r by Algorithm 2.1. 

In the next section, we will give a convergence analysis of Algorithm 2.2. 

A M e t h o d  U s i n g  t h e  C o n v e x  U p d a t e  

We will first describe the Quasi-Gauss-Newton method using the convex update: 

Therefore, where # = (sTs)(t+t). 

AB = (1 - #)AB~ + #AB2, 

m 

B = B + A B  

= B + (1 - #)AB1 + #AB2 

= B q - 7  zT,  

(10) 

where z = (1 - #);4-; + #F~"  If (10) is used for the Jacobian approximation in (8), then we are 

led to an updating scheme to get B T B  from B-CB as follows. 
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L E M M A  2.3. L e t  r = 7T7 and t = _-~r--], then, 

-~T-~ = B T  B _ ~z T _ zT{T _ r z z T "  
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(11) 

I f  we let  

then  

Z 1 = 
-~ - (i + ~/2)z - t + ( 1 - r / 2 ) z  and z2 = 

v~ v~ 

-~m-~ = B T  B + z iz •  - z2zT2 • 

PROOF. 

-~T-~ = (B  + A B ) m ( B  + AB) 

= B T B  + A B T B  + B T A B  + A B T A B .  

m 

Since B = ( B - AB),  

B T A B  = ( B -  AB)  T A B  

= ~ T T z T  _ A B T A B  

= - - t z  T --  TZZ T .  

Similarly, A B T B  = - z t  T - " l - z z  T .  From A B T A B  = r z z  m and the above equations, (11) follows. 
In view of 

and 

we have 

zlzT1 : 1 [--'tar- (~-- )  Z] [--tT q- (~ f - )  z T] 

z2z;=  + + + k- - -c- - )  zz j, 

Since the equation, 

Z l  z T  - -  Z 2 Z  T : - - t Z  T - -  z T t  T _ T Z Z  T 

B T B s  = - B S f  

must be solved for s and this involves O(n a) operations per iteration, we apply the techniques in 
Algorithm 2.2 for implementing this method. The initial L and D are obtained from 

B T  B = R T  QT Q R  = R T  R,  

by letting R T R  = L D L  T. This implies that  

D~,i = (r~i), 

then L is obtained from R T by dividing the i th  r o w  of R T by the i t h  diagonal element of R, 
i =  1 , . . . , n .  

Algorithm 2.1 is for rank-1 update and B T B  is rank-2, as shown in Lemma 2.3, hence, Algo- 
r i thm 2.1 will be applied twice. The algorithm for the proposed method is as follows. 
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ALGORITHM 2 .4 .  

Given 

Get 
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f : R n ~ R n , x o  E Rn,BO E R nxn. 

QoRo = t?o 

L0 from R T 

Do 0-1:1, = . . . ,  r n n )  • 

Do for 

Solve 

k = l , . . . :  

L k D k L ~ s k  T = - B  k f ( x k )  forsk,  

Xk+ 1 : =  X k 4" 8k~ 

Yk : =  f (Xk+l )  -- f ( X k ) ,  

tk := - B [ f ( x k ) .  
T 

1?k+l := 1?k + (1 -- #) (Yk -- BkSk) S k 
T s k 8k 

Get L b L  T, L D L  T by Algorithm 2.1. 

(yk - 1?ksk) t~  
+ #  T t k sk 

3. C O N V E R G E N C E  A N A L Y S I S  

In this section, we prove that  the methods defined by (9) and (11) are well defined and converge 
to a solution of (1). We also give a comparison of the convergence rates of two methods. 

Convergence of  QGN Method 

THEOREM 3.1. (THE BOUNDED DETERIORATION THEOREM). Let D C_ R '~ be an open convex 
T 

set containing x ,g ,  with x C x*. Let  f :  R n ~ R n, B E R  n x n , B  B defined by (9). I f  x* E D 

and J ( x )  obeys  the weaker Lipschitz condition, 

I I J ( x ) - J ( x * ) l l < _ 7 1 1 x - x * l l ,  forallxED, 

then, for both the k2robenius and 12 matr ix  norms, 

7 x,  ll~)] 2 (-~. _ j (~, ) )m (-~ _ J (x*) )  < [ l ib  - # (=*)11 + ~ (11~ - x*ll~ + I1:~ - (12) 

PROOF. 

-~ T -~ _ j T. -~ _ -~ T j + j r . j .  = 

Let J .  ~ J (x*) .  Adding _jT . -~  _ - ~ T j  + j T . j .  to the both sides of (9), we get 

B T  B _ jT. - ~ _ - ~ T j  + j r . j .  + B T  (Y - B s ) s  T 
S T 8  

+ s ( y  - B s )  s B + s ( y  - B s )  s (y  - B s ) s  s 

s T  s 8T s s T  s 

- - -  17 - z.  + (y : B s ) s s  ] 
8T8 sT8 J 

= ( l ? - J , )  I - s T s j  + sT s 

Then, it follows that  

(~- JO T (~- J.) < [ (17- ' . / [ i -  ~Sl - - ~ j  + 
Ib - J .d l~ ]  ~ 

T~X 

(i3) 
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Using 

and 

in [61, we have (12). 

-- sTs 2 = 1, 

7 
Ily - Y ,  sll2 -< 7 (11~ - z ,  l12 + I Ix - x . l l2 ) I ls l12  

T h e  linear convergence of the  Quas i -Gauss -Newton  me thod  can be proved by using T h e o r e m  3.1 

and induct ion to  show t h a t  [l(Bk - J , ) T ( B k  - J*)ll -< [(2 - 2-k)6] 2 and liek+lll _< ([]eki[/2), for 
k = 0, 1 , 2 , . . . ,  where  H B 0 -  J*ll < ~. 

We will now prove the  super l inear  convergence of the me thod  by showing t h a t  

(Bk - a (x*)) T (Bk - J (x*)) sk 
lim = 0. 

n-~o Ilsll 
(14) 

We need the  following l e m m a  for the  proof. 

LEMMA 3.2. Let s E R n be nonzero, E E R nxn, and let II • II denote the 12 vector norm,  then, 

__ ssT ~T ETE (1 88T ~ : (IIE..I.Eii, ~ ETE88T 2~(1/2) (, 
7 ; )  -  T ZlIF t, - F /  

1 (lls~ssll =) --<IIETEIIF 211ETEIIF\ Ilsll  2 - 

PROOF. We have 

(, sTs] ETE _ s T s ]  S --sms'] --sTsJ F= E(s--ssT'~ 8Ts) F 

and 

therefore,  

STS] + ETESs~s f '  

ETE ( I  ssTh = (NETEI[~ T H2 \ (1 /2 )  
- -8TS)  F -- ETESs-~s F) 

1 (llsTs~l] ~) <NETEIIF 21IETEIIF \ NsJl = ' 

T 88 T since IIE~EIIF _> liE E ~ I I F  --> 0 

THEOREM 3.3.  (SUPERLINEAR CONVERGENCE). Let a11 the ~sumptions o~ Theorem 3.1 hold. 
Then, the sequence (xk } generated by Algorithm 2.3 is well defined and converges superline~ly 
tO X*. 
PI~OOF. Define Ek = Bk -- J., and let II" II denote  the 12 vector  norm. From (13), 

+ (llYk--Y*sk[12~ 2 
IIskN~ ) 

29:$-D 
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Using Ily-J.s~ll2 < (3'/2)(1lek112 + Ilek+lH2), Lemma 3.2, and Ilek+111 < (1/2)llekll, IIs~l12 - 

T ~ 33' I IEklIF 93' 1 IIEkE s ll + Ilekll+ I lekl l  ~ IIET+,Ek+'IIF --< IIE/ : IIF 211ETE II F ,is ll= 2 

This can be rewritten as 

[ 3~/ ,[Ek,[ ,,ek[[ +99'  ] [[E:EkSk[[ 2 ~ 2 [[E[Ek[[ F HET Ek[IF --I[ET+IEk+I[[F + -~ -~ [[ek[[ 2 . 
I l sk l l  2 - 

From the proof of the linear convergence, I[ETEk[IF _< 452 and HEk[[ _< 25 for all k _> 

E~°=o Ilekll -< 2~, and ~-~°=o Ilekll 2 ___ (4/3)e, 

IIE~ E~skl l  < 452 I IE :Ek I I  ~ _ I IE /+ ,E~+ I I I  F + 35") ' l lekl l  + -]-~ IlekH 2 • 
i lskl l  2 - 

Summing for k = 0, 1 , . . . ,  i, 

£T2EHEkEkSkH ~ 93'k~=~0] <452 IIET EolIF - IIET,+,E +,IIF + 353",_., Ile II + I lekl l  2 
k = 0  I lsk l l  2 - k = 0  

which shows that 

, 

II E/E s II  
k=o  I Is~l l  2 

is finite. This implies (14). Therefore, the Quasi-Gauss-Newton method converges superlinearly. 

Conve rgence  of the  P r o p o s e d  M e t h o d  

Next, we show the convergence of the method defined by (11) by starting with the bounded 
deterioration theorem. 

THEOREM 3.4. (THE BOUNDED DETERIORATION THEOREM). Let an the assumptions of The- 
orem 3.1 hold and B E R nxn, ..~T-~ defined by (11). If x* E D and J(x) obeys the weaker 
Lipschitz condition, then, for both the Frobenius and 12 matrix norms, 

3" x*l12)] = (15) J(x*)) T ( B -  J(x*) )  F ~ [ l i b  - J(x*)IIF + ~ (11~-- x*l12 + Itx -- 

PROOF. Let J. -- J(x*). Adding _ j T ~  _ ~ T j  + j T j .  to the both sides of (11), 

-~T-~_ jm. -~_-~T j + jT  j .  = BT B _ jT-~_--~T j + jT. j ,  

_kBT[(I_#)(y--Bs)sT+#(Y--_Bs)I~TI [ (y-Bs) sT . (y--Bs)tT1 T 
sT s tT s j + (1 -- #)  + B sTs iTs J 

+ [(I_#)(y_Bs)STsT8 +#(y_Bs)tTtTs ] r j L( l_ i t ) (y  _ _ _ T  _Bs)STsTs +#(y  _Bs)tT.tT__ss ] 

= [B -- J. + (I -- #) (y -- Bs)sT + p (y -- Bs)tT1T s tTs j B - J . ( l  - it) (y -- Bs)STsT s 

T 

sT s sT s ' 

+ ~(Y - B~)t~ l 
tTs J 

(16) 
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where P = 85T [ ttT ] (1 - # ) I  + FrT]. Then, 

( ~  _ j , ) T  ( ~  _ j . )  F ~ [II(B - J , ) ( I  - P)IIF + 

Using 

and 

III - P Ib  = i, 

Ily - J, sll2] 2 
T~g 
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= II ETEII,~ - I I  ETEPII2~. 

II ETE(I - P)II~ -< II ETEII~ 

= II ETEII~ 

from IIETEIIr _ IIETEPIIF. 

i IIETEPII~ 
2 IIETEIIF 

1 -/,2 + # IIETE~II 2 
2 IIETEIIF Ilsll 2 

Since p2 = p ,  we have 

II ETE(z - P) 1[2~ 

7 
Ily- J ,  sll2 < ~ (113- x*l12 + IIx - x*l12)Ibl12, 

we have (15). 

We need the following lemmas to prove the convergence of the method defined by (11). 

88T [ LEMMA 3.5. I fP  = ~ (1 #)I+ tts] (sit)2 - t-~tJ, where t = --BTf and # = s-v-/T~, then ( I - P ) ( I - P )  T 
is a projector. 

PROOF. We first show that  [ ( I -  P ) ( I -  p)T]2 = ( I - -  P ) ( I -  p )T.  Using ppT  = (1 - #2 + #) ss T 7-;~, 

( I - - P ) ( I + p p T )  = ( I - p )  I + ( 1 - , 2 + # )  sTs] 

88 T 
: I - P +  (1-/~ 2+#) sT s ssT - (I - # 2 + # )  (l-#)s~ s+#~] sT s 

= I - P +  (1 _#2 +#)sT sssT- (1--# 2 +#)[(1--#)~'S +#SS~-~Ts] 
=I-P. 

Hence, 
(I - P)(I - p)T(l _ P)(I - p)T = (I -- P)(I - p)T + pTp( I _ p)T _ ppTp( I _ p)T 

= (I - P)(I - p )T  + (I -- P)PTp(I  - p )T  

= ( I -  P) ( I+ pTp)  ( I -  p )T  

= (I -- P)(I - p)T 

Therefore, (I - P)(I - p ) T  is a projector. 

LEMMA 3.6. I f P  is given as Lemma 3.5, then 

1 - . 2  + # IIETEsll 2 II(z-p)TETE(I-P)II~=IIETE(I-P)II~<-IIETEII~ 21IETEIIr ilsll 2 

PROOF. Using Lemma 3.5, 

H( I _  p ) T E  T E ( I _  P ) I ] ~  = ]l E T E ( I -  P)(I- P)Tl]~ 

= tr  ( E T E ( I -  P ) ( I -  p ) T ( I _  P ) ( I -  p)TETE) 

= tr ( E T E ( I -  P ) ( I -  p)TETE) 

-_ II ETE( I  - P)l12~. 
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The convergence theorem is given as follows. 

THEOREM 3.7. Let all the assumptions of Theorem 3.1 hold. Let E = Bk - J. .  Then, {xk} gen- 
erated by Algorithm 2.4 converges superlinearly. 

PROOF. From (16), 

IIEL~Ek+IIIF <-II(I- p)m E - ~ E k . ( I -  P)IIF + 2 l lEk(1- P)IIF 
II(Yk - J ,  sk)ll2 

llskll2 
/ ' l l (Yk- J, sk)ll2 2 ) + 

By I(yk-J.s,)ll= < (7/2)(11ek112 ÷ Ilek+lll2) and Ilek+lll < ~ ,  we have 
8 k  2 - -  

97 IIEL~Ek+IIIF <~ l l ( z -  p ) T  E [ E k (  I -- P)IIF ÷ ~ l lEk ( / -  P)IIF llekll ÷ ~ llekll 2 
97 

= I IE- :Ek(  z - P)IIF + ~ l lEk(  I -- P)IIF llekll + ~ llekll 2 

From Lemma 3.6, 

97 I - . 2 ÷ .  [lE[Ekskl[ 2 ÷ l lEkl lFl le~l l÷~l lekl l  2. IIE~÷IE~+~II~-<IIE~E~II~ 211E-[Zkll~ lls~II 2 

This can be rewritten as 

llE~E~s~ll < IIE[EklI~-IIE~\~E~+~II~+ llEkllFllekll+T~llekll 2.  
llskll ~ -- ~ - f - - ~  

Since IIEklIF < 26 for all k > O, ~-~k°°__o llekll _< 2e, and Ek°°__o llekll u ___ (4/3)e, 

E l IIE/E~s~II2 < IlE/E~II~ - I I E L I E k + I I I F  ÷ 30'6 llekll ÷ ~ llekll 2 • 
llskll 2 - ( 1 _ # 2 4 # )  

Summing for k = 0, 1 , . . . ,  i, 

T 2 462 

k=o llskll 2 - ( I - . 2 + , )  

462 
< 
- ( 1 _ # 2 + # )  

462 
< 
- (1 - t, 2 + t*) 

HE:EollF --HE~IEi+IHF + 376 E [tekH + ~-~ [[ek[[ 2 
k = 0  k = 0  

I1~:~o11~ + 667~ + ~ ]  (17) 

Equation (17) holds for all i, 
i 

Z 
k=O 

ll~/'kskll 2] 
Ilskll 2 

is finite. This implies (14). Therefore, Algorithm 2.4 converges superlinearly. Since (1--]~2-~-~) ~ 1, 
the bound for the new algorithm is smaller than that  of Theorem 3.4. 
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C o m p a r i s o n  o f  t h e  C o n v e r g e n c e  Rates 

We show that  the new algorithm's approximation to F'(xk) at each iteration is better  than 
that  of Broyden's. In the next lemma, we compare the bounds of the bounded deterioration 
theorems of the both methods. 

THEOREM 3.8. I!f Bk and Bk are, respectively, approximations for the Jacobians of the methods 
defined by (9) and (11), then, 

( B k - j , ) m ( - ~ k - g , )  F <- ( B k - j , ) T ( B k - J , )  F" 

PROOF. Let Ek = Bk - J ,  and Ek = Bk - J , ,  then, from Theorem 3.1, we have 

IIE:EklIF ~ [ EkL1Ek_ 1 ( I -  "ssT'~sT8 ] F -[- II(Yk-1][~2- J,~),,~1 ~j , 
and for the method of (11) from Theorem 3.4, 

II (Yk-1- J.s)l l2] 2 

From Lemmas 3.2 and 3.6, 

and 

II ETE(I- P)I[  = ISEI[  - (1 - ; +.) :{. IIET Esll 
\ 

:E (I II  Esll 

S i n c e # ~  l a n d  1 - # 2 + # > _ l ,  wehave  

lie TEII~ - (l -; + .) < II~ TEII~F - 

- -  II E-I- E : -- 88T which proves H ET E ( I  - P)  H F ~/ ~ )  ]] F- Therefore, we get lIE E k H F <-- N Ek liE. E~- 

Computational Results 

Results of computational experiments are summarized in Table 1. The computations were 
done on a Sun Sparc II. All the nonlinear nonsymmetric problems in the set of test problems [7,8] 
were utilized. The problems are numbered as in [7] and Problem 31 was modified as in [1]. Initial 
Jacobians were evaluated numerically by finite differences. In Table 1, the performance of the 
proposed method is compared with Quasi-Gauss-Newton method when n = 100. It is clear from 
Table 1, that  the proposed method shows better performance than Quasi-Gauss-Newton method. 
This agrees with the proof in the previous section. It may appear that  the number of operations 
for the proposed method is larger than that  of Quasi-Gauss-Newton method, since it combines the 
two updates for the Jacobian approximation, however, Quasi-Gauss-Newton method also includes 
the operations to compute t = - B r f  according to (3). Hence, the number of operations for the 
two methods is almost same. For all problems tested, the proposed method has the same or 
bet ter  rate of convergence and run time than Quasi-Gauss-Newton method. For Problem 31, the 
proposed method performs better  than Quasi-Gauss-Newton method as the scaling gets worse. 
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Table 1. Proposed Method vs. Quasi-Gauss-Newton Method. 

Problem Quasi-Gauss-Newton Method Proposed Method 

Number No. of Iterations Time in Seconds No. of Iterations Time in Seconds 

21 

22 

26 

27 

28 

29 

30 

31(1) 

32(2) 
31(3) 
31(4) 
31(5) 

31(6) 

31(7) 

Diverged 

19 

83 

Diverged 

2 

4.900 

20.740 

2.390 

Diverged 

19 

82 

Diverged 

2 

4 2.810 

8 3.230 

14 5.840 

18 6.500 

28 8.110 

30 8.440 

6 9.420 

55 12.520 

139 26.280 

4 

8 

14 

18 

18 

22 

30 

37 

44 

4.900 

20.630 

2.390 

2.810 

3.230 

5.830 

6.490 

6.510 

7.140 

8.450 

9.600 

10.870 
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