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Abstract—Quasi-Gauss-Newton methods for nonlinear equations are investigated. A Quasi-
Gauss-Newton method is proposed. In this method, the Jacobian is modified by a convex combination
of Broyden’s update and a weighted update. The convergence of the method described by Wang and
Tewarson in [1] and the proposed method is proved. Computational evidence is given in support of
the relative efficiency of the proposed method.

1. INTRODUCTION

In this paper, we consider methods for finding a solution, z* say, to a nonlinear system of algebraic
equations

f(z) =0, (1)
where the function f : R™ — R™ is nonlinear in z € R™.

The classical method to determine z* for (1) is the Newton method, which approximates f;,
i=1,...,n, by a linear function. Thus,

flz+s)=flx) + J(x)s+ O (|sl?),

where J(z) is the Jacobian at x. The next iterate can be obtained from the solution of

J(a)s = — f(z),
or, equivalently, by solving the normal equation
J(z)"J(z)s = —J(z)7 f(z) (2)

for s. It is evident that s is the solution of the linear least-square problem

minimize %Hf(:c + 8)|12.
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28 S. Kim AND R. P. TEWARSON

Equation (2) is usually computed by QR decomposition of J(z). If B is an approximation to J(zx),
then (2) can be replaced by
BTBs=—-BT f(z). (3)

One well-known approximation for J(z) is by updating the initial Jacobian at each step with
Broyden’s update. It has been shown in [1] that using LDLT factorization of BT B leads to more
superior computational results than the so-called SQRT method for a given set of test problems.
It is also shown that, if the modified Cholesky factorization in [2] is used, the number of operations
is reduced from O(n?®) to O(n?) + n. In this paper, a convex combination of Broyden’s update
and a weighted update is used for the Jacobian approximation B in (3) instead of Broyden’s
update. This leads to a better convergence rate. We now describe Broyden’s update and its
convex combination with another update.

Jacobian Approximations

Solving the systems of nonlinear equations (1) involves the computation of the Jacobian. It is
known that the computation of the Jacobian is expensive, especially when functions are difficult
to evaluate. The Jacobian approximations have been widely used to save time. One of the most
successful approximations is known as Broyden’s update [3,4].

Using linearization, we have

0=f(z")=flz+z"—2) = f(z) + J(z) (" —2).

Let zx be an approximation to z*, By & the Jacobian at the k*" step and z* = zx +s. Then the
kY™ step is

0= f(zx)+ J(zx) (2" — )
= f(zx) + J (zk) s
= f(xk) + Bus.
At the (k + 1)t0 step,
Tr R T =1k + 8
or

Tk = Th+1 — S

flxr) = fxre1) = J (zk+1) s = f (Tp41) — Brras.
Since Bgy1$ can be written as (By + AB)s, from the last equation, we have
ABs = f(Zk41) - (4)
AB has been determined in many ways. One of them is Broyden’s update,
f@rsa)s’
AB; = ———————, 5
sTs (5)

Since —BT f(z) in (3) is the steepest descent direction computed at each iteration, we will
utilize this information in approximating the Jacobian to get a better estimate. A solution of (4)
is

s'B"B tT

B Es - )

ABy = f(Tr41) r

where t = —BT f.
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We now combine two updates to approximate the update AB to the Jacobian. It was shown
in {5] that this leads to a better update. The convex combination of the updates is

AB = (1—-p)AB; + uABs (6)
where p is chosen from
[AB1|ip
AB = = ||AB = p||ABs| »,
“ IHF “AB2HF H 2“F u‘“ 2“F

(s7t)

therefore, y = Jr47.
Next, we describe how the equation (3) can be solved effectively when the update is given

by (5).

2. QUASI-GAUSS-NEWTON METHODS

In this section, we describe how the LDLT factorization in [2] can be utilized for solving (3)
with the Jacobian approximation given in the previous section.
The method uses an algorithm in [2], which is for a symmetric matrix A modified by a sym-
metric matrix of rank one,
A=A+az’ (7

and finds the Cholesky factors of A = LDLT from the factors of A = LDLT. If A is replaced
by BT B in (7) and BT B is modified by a rank one update, then

B B=B"B+az' =1 (D+app™) LT, (8)
where Lp = z, and p is obtained from z. If we factor
D+ appT = f/f)f/T,
the required modified Cholesky factors are of the form,
B'B=LIDLLT.
Therefore, _ o
L=LL,D=D.
Initially, the orthogonal factorization of B is such that BT B = RT R and initial L and D can be

obtained from RT R. The algorithm for updating L and D is:
ALGORITHM 2.1.

Define a; = a,w® = 2.

Do for j=1,...n
Py =w,
d; = d; + a;p3,
s
B = py 2,
j dej
o
Qi =di=>
J+1 de
Doforr=54+1,...,n.
(7+1) (4)

Wy =uy —py l’"j

er = lrj + ﬁﬂuﬁ”“
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If B=B+ ;LT-T; is used in (8),

-7 =T = +
L5 gy st Is (9)

BB T Tfs’
B B=B'B+B'— .
TP TS T TS sTssTs
From the above equation, we can see that BT B is modified by a rank-2 update and (9) can be
rewritten as T
E PZBTB'FZlZ;r —222;—,
where e . .
B'7+(1-77/2) 5
Z1 =
' V2

and
B'F- (147 7/2) &
29 = \/5

The algorithm for Quasi-Gauss-Newton method [1] using Broyden’s update is as follows.

ALGORITHM 2.2.

Given f:R"™— R",z9¢€ R",Byc R™*".
Get QoRo = By
Lo from RT

Dy = (r%l,...,rin).

Dofor k=1,...:
Solve  LgDiL] sy = —Bj f (zx) for s,
Tk+1 := Tk + Sk,
yk = f (zh41) — f (zk)
tr = —B;crf (:Ek) .
(yx — Brsk)sg
sy Sk '
Get LDL",LDLT by Algorithm 2.1.

Byyy:= B +

In the next section, we will give a convergence analysis of Algorithm 2.2.

A Method Using the Convex Update

We will first describe the Quasi-Gauss-Newton method using the convex update:

AB = {(1- u)ABl + uABs,

T,\2
where u = (—3%—) Therefore,

B=B+AB
=B+ (1 - p)AB; + pAB, (10)
=B+ fz27,

where z = (1 — p) % + p+5. If (10) is used for the Jacobian approximation in (8), then we are

led to an updating scheme to get B' B from BT B as follows.
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LEMMA 2.3. Let 7= Fandi= B f, then,

B B=B"B-fT -:"f —rz2". (11)
If we let - ) _
Zl:w and zF:E;(}\/;T_/?)Z,
then .
B B=B'B+ 212 — 22, .
PrOOF.

B B=(B+AB)T(B+AB)
=B'"B+AB"B+BTAB+ ABTAB.

Since B = (B — AB),

B'AB=(B-AB) AB
—B'f:" - ABTAB

=—fz" — 722",

Similarly, ABTB = —2f' —7227. From ABTAB = 7227 and the above equations, (11) follows.

In view of
1 - 1-71 - 1-—
z1Z;r=-2-[—t+< 2 )z] —tT+< ZT)zT]
1! 1-7\. 1—7\ - 1-7)\2
zi[ttT—< 7—>tzT ( QT)th—i—( 27) zzT]
and )
1= 1-— _ 1- _ 1-—
202y =3 ttT+( 27’) t2| + ( 27> th+ <T) zzT] )
we have
212] — 22y =tz — ZTE -7z

Since the equation,
B"Bs=-B'f

must be solved for s and this involves O(n3) operations per iteration, we apply the techniques in
Algorithm 2.2 for implementing this method. The initial L and D are obtained from

B'"B=R"Q"QR=R'R,
by letting RT R = LDL". This implies that
D;; = (7121) ,

then L is obtained from R' by dividing the i*" row of RT by the it" diagonal element of R,
1=1,...,n.

Algorithm 2.1 is for rank-1 update and BT B is rank-2, as shown in Lemma 2.3, hence, Algo-
rithm 2.1 will be applied twice. The algorithm for the proposed method is as follows.
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ALGORITHM 2.4.

Given f:R"™— R" x9€ R", By € R™*"™,
Get Q()Ro = Bo
Lo from RT

Do = (T%l,...,sz).

Dofor k=1,...:

Solve LkaL,Isk = —B,If(zk) for sg,
Tkl := Tk + Sk,
Yk = f (@+1) — F (@) s
ty = =By f(zx).

Biy1 =Bk + (1 - p

) (yk — Brsk) s 4 M(yk — Bysp)t]
S,—crsk t;—sk

Get LDL",LDLT by Algorithm 2.1.

3. CONVERGENCE ANALYSIS

In this section, we prove that the methods defined by (9) and (11) are well defined and converge

to a solution of (1). We also give a comparison of the convergence rates of two methods.

Convergence of QGN Method

THEOREM 3.1. (THE BOUNDED DETERIORATION THEOREM). Let D C R™ be an open convex
set containing z,T, with x # z*. Let f : R* — R", B ¢ R"*", B' B defined by (9). Ifz* € D

and J(z) obeys the weaker Lipschitz condition,
|J(z) — J (&) <~vllz -z, for all x € D,

then, for both the Frobenius and ls matrix norms,

|(B-76) (B-v@)| < [1B-T@)+LiE -2, + e —271)] .

ProOF. Let J, = J(z*). Adding —J] B — B'J + J J. to the both sides of (9), we get

. (y — Bs)s"

B B-JB-BJ+JJ.=B"B-JB-B J+J J.+B"

(y BS) gL SW- Bs)T (y - Bs)s'

Then, it follows that

2
i+ny—me]
llsll2

<[fie-mfr-]

S

(13)
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Using

=1
sTs ’

H SST
2

and
ly — Juslly <

22

(17 = zully + |z — zl5) lIs]l2

in {6], we have (12).

The linear convergence of the Quasi-Gauss-Newton method can be proved by using Theorem 3.1
and induction to show that ||(Bx — Ju)T (B — Ju)|| < [(2 —27%)8]? and [lexs1]l < (Jlexl/2), for
k=0,1,2,..., where | By — J.| < 6.

We will now prove the superlinear convergence of the method by showing that

|(Be =7 @) (B = T (") s

lim =0. 14
nere ol )
We need the following lemma for the proof.
LEMMA 3.2. Let s € R™ be nonzero, E € R™*™, and let || - || denote the l3 vector norm, then,
TN T T T2 (1/2)
8 T ss _ T 2 T .88
(I—;—T—;) E E(I—Eﬁ)“ = <||E E||F—’E B+ F)
F
2
1 |ETEs||
<||ETE|, - )
15" Elle = 57E7aT, ( EE

Proor. We have

SST T SST
I-=_) ETE|I-=—
( sTs) ( sTs>

ssT ss’ T
;WE@‘?Q(LGﬁ>E

ssT T
F%P@“?QE

F
and T (2
-
2 ss 88
IETE|]% = ’ 57e(1-%) + HETEE R
therefore,
. NG
T _38 - Tel: _|lgTESS
o7z (1= ), - (1 - 2353 )
1 ]|ETE3|]2
<||ETE||, - ,
<UE" Bl 2||ETE||F< T

since [|ETE|r > |[ETES~|r > 0.

THEOREM 3.3. (SUPERLINEAR CONVERGENCE). Let all the assumptions of Theorem 3.1 hold.
Then, the sequence {z} generated by Algorithm 2.2 is well defined and converges superlinearly
to r*.

PRrROOF. Define Ey = By — J,, and let || - || denote the Iz vector norm. From (13),
T T T
Sk S T SkSy, SkSy “yk - J*Sknz
” k+1 +1HF szsk k s,l-sk F sZsk P ||Sk||2

n (Ilyk - J*SkHz)Q.
skl

CAMMA 29:8-0
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Using 127288l < (y/2)(legl2 + [lexsll2), Lemma 3.2, and flegrf] < (1/2)]lexll

o 1 |EEsd | 3vliBle 2

HEk+1Ek+1HF HEk Ek“p QHE,*CrEkHF ||3k”2 9 llexi 16 llexll”
This can be rewritten as

ET Eesil”

“ﬁfﬁf—” <2||E] EknF[nE;I Byl p = | Bl1 Brsa |l p + ||Ekn ||ek||+ L el ]
From the proof of the linear convergence, |EJ Ex|lr < 462 and ||Ey| < 26 for all k& > 0,
S llewll < 26, and 3.7 llexl® < (4/3)e,

ElEs
ﬂ*ﬁ—g}g’;ﬁ"—” <48 [ VBT Bl ~ |BLa Bl + 367 sl + 32 el ]
Summing for £k =0,1,...,1,
" || EL Besi® ' i 9y &
S IE Bl g2 | BT Bl — BT B+ 367 3 sl + 25 umf]
im0 skl L k=0 k=0

[ 3
<48 | |5 ol + 067e + nye}

[ 3
< 46% |46% + 66ve + Zve] ,

which shows that

Z B¢ Bisil|” EkSkII

k=0 lsk”
is finite. This implies (14). Therefore, the Quasi-Gauss-Newton method converges superlinearly.
Convergence of the Proposed Method

Next, we show the convergence of the method defined by (11) by starting with the bounded
deterioration theorem.

THEOREM 3.4. (THE BOUNDED DETERIORATION THEOREM). Let all the assumptions of The-

orem 3.1 hold and B € R™*", B'B defined by (11). If z* € D and J(x) obeys the weaker
Lipschitz condition, then, for both the Frobenius and Il matrix norms,

2
B-J@)|, <[IB-T@)lp+F(F- o+l -] . (15)
PROOF. Let J, = J(z*). Adding —JTB — B J + JT J, to the both sides of (11),
B B-JB-B J+J J.=B"B_JTB-B'J+JTJ.
T [( == Bs)s +M(y—Bs)tT] . [(1 =BT (y—Bs)tT]T

tTs sTs tTs
T
N BS)sT (y—Bs)t’ _ (y—=Bs)sT  (y—Bs)t’
+ [(1 2 s's + t's (1= sTs T
T
B (y—Bs)s”  (y—Bs}t" (y—Bs)s'  (y—Bs)t’
- [Borr @B P g PR B

= [(B—J*)[I~P]+@_—S‘Q5£]T[(B—J*)[I—PH(*y_SJT*—:)ST]’
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T T
where P = 24— [(1 - I+ %-;] . Then,

ly = Jusll; ]2

< 1E-ma- P

|(B-2)" (B-2)

Using
I - Pll2 =1,

and
ly = Juslly < 3 (1 = 2"l + o = 2°12) lsl,
we have (15).

We need the following lemmas to prove the convergence of the method defined by (11).
LEMMA 3.5. IfP = :—3% [(1 — ) I+ -ﬁ-%], wheret = ~B' fand u = g;?,;, then (I-P)(I-P)T
is a projector.

PROOF. We first show that [(I— P)(I—P)T]? = (I-P)(I-P)". Using PPT = (1—-pu +u)s P

(I-P)(I+PP")=(-P) <I+(1—u2+u)%>

=I—P+(1—u2+y)%—(1—u2+u)[(1—@2-% u%]%
=I—P+(1—u2+u)%—(1—u2+u)[(1—;1)2%4—#%]
=]-P

Hence,

I-PYI-PY'U-PI-P)'=(I-P)I-P)T+P"PI-P)T —PP"PU-P)T
=(I-P)I-P)T+{I-PP"P(I-P)T
=(I-P)(I+P"PY(I-P)T

)

=(I-P)(I-P)".
Therefore, (I — P)(I — P)7 is a projector.
LeMMA 3.6. If P is given as Lemma 3.5, then
1= 2+ p | BT EBs|’
2|ETElp  s]?

17 = PYTETE( - P)||p = |ETE(I = P)||p < | ETE|, -

Proor. Using Lemma 3.5,

(I - P\TETE(I - P)||% = |ETE(I - P)I - P)T|[%
=tr (ETE(I-P)(I~-P)"(I-P)I-P)'EE)
=tr (ETE(I - P)(I-P)"ETE)

=[BT B = P)||-

Since P? = P, we have
2 2 2
|ETE(I - P)|[z = |[ETE| - |ETEP|,.
1
2||ETE| g
L=y o BB
2HETE“F sz~

2
IETE( = P)||p < [|BTE|l5 - IE™EP||r

=IETE| - -

from ||ETE|]F > ||ETEP|IF.
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The convergence theorem is given as follows.

THEOREM 3.7. Let all the assumptions of Theorem 3.1 hold. Let E = By — J.. Then, {z;} gen-
erated by Algorithm 2.4 converges superlinearly.

PRrROOF. From (16),

Ik — Jusi) o
Hslc”z

+ (“(yk - J*sk)||2)2 .
llskllo

By L0srtotlls < (3/2)(lexla + lews1/l2) and flensa ]| < 151, we have

|Efv1Binr|lp < | = PYTEL Ex(I - P)| o + 21| Ex(I = P&

1Bf 1Bl p < (T = P) B BRI = P)|| o + IIEk(I P)l!p llexl + Ilekll

= | B Bx(I - P||F+—nEk<I P)||p||ekn+ ||ek||

From Lemma 3.6,

—p 4 p HEz;rEkSkH

2HETEku sk 2Bl el + 33 el
F

1B 1 Brsill p < | B Bl p —

This can be rewritten as

| Besll” _ 215 Bl

r : B o,
Foel < e I Bl NE Bl + 5 Bl e + 35 el ]

Since || Ex||r < 26 for all k>0, 3o, llexll < 26, and Y 5o llexl|* < (4/3)e,

”EJIEkSkH 4462 [ . ]
- E
ot < gy 1B B~ I Bl + 906 el + e
Summing for £ =0,1,...,1,
i 2 - ) 1
HE’“TEksku < 487 T T 9y 2
Ey Eo||p — || Eip1 B + 376 + 21
2 e ST | Bl BBl 4500 e + 55 ) e
45* T 3y
< (—I—Tm -HEO E()|’F+66’Y€+“4—6} (17)
452 [ 3y
S—_——(l——u2+u) .6 + 66ve + 46}.

Equation (17) holds for all 4,
i

HEJEkSqu

2
ll skl

k=0

is finite. This implies (14). Therefore, Algorithm 2.4 converges superlinearly. Since (1—u?+pu) <1,
the bound for the new algorithm is smaller than that of Theorem 3.4.
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Comparison of the Convergence Rates

We show that the new algorithm’s approximation to F'(xy) at each iteration is better than
that of Broyden’s. In the next lemma, we compare the bounds of the bounded deterioration
theorems of the both methods.

THEOREM 3.8. If By and By, are, respectively, approximations for the Jacobians of the methods
defined by (9) and (11), then,

|(Be-2)" (B )

‘F < H(Bk = J)" (B =) F

ProoF. Let E = B, — J, and E;, = By, — J,, then, from Theorem 3.1, we have

.
88
El \Ex (1 - ZT‘E)

gk — J*s>||2]2

stat, < |
” k kHF F lIsll2

and for the method of (11) from Theorem 3.4,
S0l T ll(we=1 = Ju8)ll5]°
|EE| < [||Ek_1Ek_1(I—P)|]F+————w—2 .

From Lemmas 3.2 and 3.6,

E"Es|\”
|70 Pl 1875 - - (L)

and

T ETEs||\
ETE<I—2->H —|ETE|? - 2" Es| .
gl |E" B o

Since p <1 and 1 —pu?+ p > 1, we have

2 2
HE"’EH?7 (1= g2+ p) (HE”TjSl') < HETEH; _ (H]-'?/I:'sz) |

which proves |ETE(I - P)||r < |ETE (I - 4) 7. Therefore, we get |, Exllr < || E] Eellr.

Computational Results

Results of computational experiments are summarized in Table 1. The computations were
done on a Sun Sparc II. All the nonlinear nonsymmetric problems in the set of test problems [7,8]
were utilized. The problems are numbered as in [7] and Problem 31 was modified as in [1]. Initial
Jacobians were evaluated numerically by finite differences. In Table 1, the performance of the
proposed method is compared with Quasi-Gauss-Newton method when n = 100. It is clear from
Table 1, that the proposed method shows better performance than Quasi-Gauss-Newton method.
This agrees with the proof in the previous section. It may appear that the number of operations
for the proposed method is larger than that of Quasi-Gauss-Newton method, since it combines the
two updates for the Jacobian approximation, however, Quasi-Gauss-Newton method also includes
the operations to compute t = —B" f according to (3). Hence, the number of operations for the
two methods is almost same. For all problems tested, the proposed method has the same or
better rate of convergence and run time than Quasi-Gauss-Newton method. For Problem 31, the
proposed method performs better than Quasi-Gauss-Newton method as the scaling gets worse.
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Table 1. Proposed Method vs. Quasi-Gauss-Newton Method.

Problem Quasi-Gauss-Newton Method Proposed Method
Number No. of Iterations Time in Seconds No. of Iterations Time in Seconds
21 Diverged - Diverged -
22 19 4.900 19 4.900
26 83 20.740 82 20.630
27 Diverged - Diverged -
28 2 2.390 2 2.390
29 4 2.810 4 2.810
30 8 3.230 8 3.230
31(1) 14 5.840 14 5.830
32(2) 18 6.500 18 6.490
31(3) 28 8.110 18 6.510
31(4) 30 8.440 22 7.140
31(5) 6 9.420 30 8.450
31(6) 55 12.520 37 9.600
31T 139 26.280 44 10.870
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