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Abstract 
Solving systems of nonlinear equations is a problem of 
particular importance since they emerge through the 
mathematical modeling of real problems that arise naturally in 
many branches of engineering and in the physical sciences. The 
problem can be naturally reformulated as a global optimization 
problem. In this paper, we show that a metaheuristic, called 
Directed Tabu Search (DTS) [16], is able to converge to the 
solutions of a set of problems for which the fsolve function of 
MATLAB® failed to converge. We also show the effect of the 
dimension of the problem in the performance of the DTS. 
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1   Introduction 
The numerical solution of some problems in engineering, chemistry, physics, 
medicine and economic areas, aims at determining the roots of a nonlinear 
system of equations. The modeling of these problems can lead to simple and 
almost linear systems, but mostly large, complex and difficult to solve systems 
of nonlinear equations arise. In this paper we consider solving the nonlinear 
system of equations 

                                                  ( ) 0=xF                                                    (1) 
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are continuously differentiable, using a metaheuristic. Probably the most famous 
techniques are based on Newton’s method [2,6,8,12,24,29]. They require 
analytical or numerical first derivative information. Newton’s method is the most 
widely used algorithm for solving nonlinear systems of equations. It is 
computationally expensive, in particular if n  is large, since a system of linear 
equations is required to be solved at each iteration. The Quasi-Newton methods 
use less expensive iterations than Newton, but their convergence properties are 
not very different. In general, Quasi-Newton methods avoid either the necessity 
of computing derivatives, or the necessity of solving a full linear system per 
iteration or both tasks [25]. In [13], a new technique for solving systems of 
nonlinear equations reshaping the system as a multiobjective optimization 
problem in proposed. The authors applied a technique of evolutionary 
computation to solve the problem obtained after the change. In [14], the authors 
propose techniques for computing all the multiple solutions in nonlinear systems. 
Another technique to solve systems of nonlinear equations is presented in [18], 
where a heuristic continuous global optimization GRASP is applied. A genetic 
algorithm is proposed in [4]. 

The problem of solving a nonlinear system of equations can be naturally 
formulated as a global optimization problem. Problem (1) is equivalent, in the 
sense that it has the same solution, to finding the globally smallest value of the 
l2-norm error function, related to solving the system of equations (1), defined by 

                                          ( ) ( )
2

min xFx
nx

≡Ψ
ℜ⊂Ω∈

.                                      (2) 

Here, the global minimum, and not just a local minimum, of the objective 
function ( )xΨ , in the set Ω , is to be found. The classical local search methods, 
like Newton-type methods, have some disadvantages, when compared to global 
search methods. In particular  

i) the final solution is heavily dependent on the the starting point of the 
iterative process;  

ii) they can be trapped in local minima;   
iii) they require differentiable properties of all the equations of nonlinear 

system. 
We use the Example 1 below to show this local trap behavior. 
Example 1: Consider the following system of nonlinear equations 
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Figure 1 shows the graphical representation of the l2-norm error function ( )xΨ . 
The multi-modal nature of ( )xΨ  makes the process of detecting a global 
minimum a difficult one. Nine different starting points were used to solve 
Example 1 by fsolve from MATLAB®.  In this MATLAB function, the default 
trust-region dogleg algorithm with no analytical Jacobian is used. Although all 
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the nine starting points are in the neighborhood of the solution, the method 
converges to the required solution only twice.  

 
Figure 1. Graphical representation of ( )xΨ  for Example 1. 

 
Table 1 shows the results obtained from MATLAB. The first column in the 

table presents the tested starting points, )0(x , as well as the value of the output 
parameter “exitflag” of MATLAB. The value “1” means that the method 
converged to a root where the first-order optimality  measure is less than a pre-
specified tolerance, and “-2” means that it converged to a point which is not a 
root where the sum-of-squares of the function values is greater than or equal to a 
pre-specified tolerance. 

 
Table 1. Solutions obtained by fsolve from MATLAB for different starting points. 

Starting point )0(x   
/“exitflag” 

( )21, ff  at solution  n. of iterations n. of function  
evaluations 

(0, 0)   /   “1” (-0.41e-12, -0.24e-12) 5 18 
(1, 1)   /   “1” (0.36e-8, 0.23e-8) 6 21 
(0, 1)   /  “-2” (-0.03, 0.94) 27 60 
(2, 2)   /  “-2” (0.11, 0.88) 31 70 
(-1, 1)   /  “-2” (-0.55, 0.65) 55 130 
(1, -1)   /  “-2” (0.01, -0.04) 24 57 
(-1, -1)  /  “-2” (-0.52, 0.10) 31 74 
(2, -2)   /  “-2” (-0.16, -0.57) 32 71 
(-2, -2)  /  “-2” (-0.17, -1.53) 34 77 

 
Thus, to be able to converge to a global solution, a global search strategy is 

required. The most important global search techniques invoke exploration and 
exploitation search procedures aiming at: 

i) diversifying the search in all the search space; 
ii) intensifying the search in promising areas of the search space. 
A well-known class of global search techniques, the metaheuristics, use 

random procedures that invoke artificial intelligence tools and simulate nature 
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behaviors. The word “metaheuristics” is used to describe all heuristics methods 
that are able to achieve a good quality solution in a reasonable time. Due to their 
random features, metaheuristics have, in general, slow convergence since they 
may fail to detect promising search directions in the neighborhood of a global 
minimum.  

There are two classes of metaheuristics. A population-based heuristic defines 
and maintains throughout the iterative process a set of solutions. The most 
known population-based heuristic is the Genetic Algorithm [10]. A point-to-
point heuristic defines just one solution at the end of each iteration which will be 
used to start the next iteration. Simulated Annealing (SA) [15] and Tabu Search 
[9] are two examples of point-to-point methods.  

The Tabu Search (TS) is a metaheuristic developed primary for solving 
combinatorial problems [9]. The TS introduced by Cvijović and Klinowski [5] 
for continuous optimization guides the local search out of local optima and has 
the ability to explore new regions. It is an iterative procedure that maintains a list 
of the movements most recently made, avoiding in subsequent iterations the 
execution of movements that lead to solutions already known to have been 
visited. Usually, the slow convergence of TS is overcame by incorporating a 
classical local search strategy into the main algorithm. In general, this type of 
hybridization occurs in the final stage of the iterative process when the solution 
is in the vicinity of the global solution. An example of such method is presented 
in [16]. The therein proposed method, called Directed Tabu Search (DTS), uses 
strategies, like the Nelder-Mead method [28] and the Adaptive Pattern Search 
[15], to direct a tabu search.  

This paper aims at assessing the performance of a tabu search method when 
solving a system of nonlinear equation (1), using the function ( )xΨ  as a measure 
of the progress of the algorithm towards the solution. According to the 
formulation (2), this means that the fitness of each trial solution x is assessed by 
evaluating the function Ψ at x. And a solution x~ is better than x if 
( ) ( )xx Ψ<Ψ ~ . In this paper, and due to the reported success when solving global 

optimization problems of the form (2), the DTS variant of the tabu search is 
extended to be able to solve nonlinear systems of equations. In particular, we 
aim at analyzing the behavior of the extended version of the DTS method when 
solving some difficult problems that are not solved by Newton-type methods. 

The organization of the paper is as follows. Section 2 describes the Directed 
Tabu Search method and the Section 3 reports the computational experiments. 
Finally, we summarize our conclusions in Section 4. 
  

2   The Metaheuristic Tabu Search  
2.1  Basic Tabu Search 
TS is an iterative process which operates in the following way. The algorithm 
starts with a randomly generated initial solution, x, and by applying pre-defined 
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moves in its neighborhood it generates a set Y of solutions. The objective 
function to be minimized is evaluated at all solutions in Y, and the best of all, y, 
becomes the current solution, x←y (even if it is worse than x). Accepting uphill 
moves, the algorithm avoids to get trapped in a local mínimum. The previous 
procedure is repeated until a given stopping condition is reached. Further, the 
algorithm also stops when the solution does not improve for Nmax iterations. To 
avoid cycling, since a point already visited may be generated again, a set of 
points already visited are stored in a list, called Tabu List (TL). The solutions in 
Y that belong to the TL are eliminated. This TS structure is called short-term 
memory TS. The use of this type of flexible memory is of great advantage in 
contrast to the rigid structures of large memory, like those present in Branch-
and-Bound methods, or the lack of memory that exists in the Simulated 
Annealing method [3]. To improve performance, long-term memory TS 
structures have been proposed to record important attributes like elite and 
frequently visited solutions. The Directed Tabu Search [16] implemented in this 
paper for solving nonlinear systems of equations contains long-term memory 
structures. This is important since the method is able to keep diversity, like 
population-based methods.  

 
 2.2  Directed Tabu Search 
The Directed Tabu Search method of Hedar and Fukushima [16] uses direct 
search methods  in order to stabilize the search especially in the vicinity of a 
local minimum. Two variants of the DTS are therein proposed: one is based on 
the Nelder-Mead (NM) method, as a local search, inside the exploration step of 
the algorithm, and the other uses the Adaptive Pattern Search (APS) strategy in 
the exploration step. Furthermore, the Kelley´s modification of the NM method 
[19] is still used in the therein called intensification search in the final stage of 
the process. We note that the DTS method can be classified as a multi-start 
method. The multi-start methods are designed to build powerful search 
procedures and guided by a global exploration and local search. These multi-start 
methods have been successfully applied either in nonlinear global optimization 
problems or in combinatorial optimization. 

The DTS method is based on three procedures: exploration, diversification 
and intensification search procedures. The structure of the DTS is shown below 
in Algorithm 1. 
Algorithm 1  (DTS method) 
Step 1  Randomly generate an initial solution  
Step 2  Exploration search procedure 
    Step 2.1  Neighborhood search 
    Step 2.2  Local search 
    Step 2.3  Solution update 
    Step 2.4  If  improvement criteria are reached, repeat from Step 2.1 

Step 3  Diversification search procedure 
Step 4  If  stopping criteria are not reached, repeat from Step 2 
Step 5  Intensification search procedure 
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The main loop (outer cycle) of the DTS method, consisting of the exploration 

and diversification search procedures, begins with an initial solution. A brief 
description of the procedures follows. Other mathematical details can be found 
in [16].  
 
2.2.1 Exploration Search 
The exploration search aims to explore the solution space. It uses direct search 
methods as neighborhood search and local search strategies to generate trial 
points. These may be based on either the simplex method of NM or on the APS 
strategy. Here, we use the APS variant. This variant of the DTS mainly focuses 
its strategy on the definition of an approximate descent direction (ADD), v, for 
the fitness Ψ , as proposed in [15]. Thus, based on a set of n trial points, yi, 
i=1,…,n, using the standard pattern directions, in the neighborhood of the current 
solution x, the descent direction is computed as follows: 
 
  ∑=

=
n

i iiuwv
1

  where  

∑ =
Ψ−Ψ

Ψ−Ψ
= n

j i

i
i

xy
xyw

1
)()(

)()(   and   
xy
xyu

i

i
i −

−
−=

)( , ni ,...,1= . 

Briefly, pattern directions are constructed parallel to the coordinate axes, and a 
set of points are generated in the neighborhood of the current solution x, along 
these directions with appropriate step length.  

Moreover, anti-cycling is prevented not only with the standard Tabu List but 
also with the inclusion of novel Tabu Regions (TR). The DTS method 
implements four new TS memory elements.  
• The multi-ranked Tabu List (r-TL) is a set of some visited solutions that are 

ranked and saved according to two features separately, namely: i) ranked in 
ascending order according to their recency,  ii) ranked in ascending order 
according to their Ψ  values.  

• Further, two types of regions, around each solution saved in the r-TL are 
defined: 
o the Tabu Region (TR) in which no new trial point is allowed to be 

generated,   
o the Semi-Tabu Region (STR), which is a surrounding region around TR, 

with a radius from its center greater than the radius of the TR, that aims 
to allow the generation of neighboring trial points when the trial solution 
lies inside STR.  

• Finally, the other memory element is the Visited Region List (VRL) that 
contains information concerned with the centers of the visited regions and the 
frequency of visiting these regions. This information is crucial to explore the 
space outside these visited regions.  
These new long-term memory structures are very important since they allow 

the method in the diversification search and intensification search procedures to 
behave as an intelligent search technique. 
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The exploration search procedure is repeatedly applied in order to generate n 
trial solutions using search strategies in the neighborhood of the current solution. 
If a better move between these raised solutions is found, the current solution is 
updated and the algorithm continues to the next iteration of this inner cycle 
(exploration search procedure). Otherwise, the current solution is still better than 
all the raised solutions in the neighborhood, and the local search strategy 
generates new local trial points and the current solution is updated with the best 
trial point generated. The multi-ranked Tabu List is updated and if a new region 
is reached, the Visited Regions List is updated with information about this 
region. When the number of iterations in the inner cycle exceeds a pre-specified 
value or improvement has not been obtained in some consecutive iterations (the 
improvement criteria in Step 2.4 of Algorithm 1), the diversification search 
procedure is applied to locate a new starting point, from which the exploration 
search procedure is repeated. 
 
2.2.2 Diversification Search 
A diversification procedure aims to generate a new initial trial point outside the 
visited regions. The information stored in the VRL is used to direct the search 
towards new regions. The VRL serves as a diversification tool in the search, with 
the aim of diversifying the search for areas that have not been visited in the 
solution space. 
 
2.2.3 Intensification Search 
When one of the best obtained trial solutions is sufficiently close to a global 
minimum, or its value has not been changed for Nmax iterations (stopping 
criteria in the Step 4 of Algorithm 1), then the intensification search procedure is 
applied at the final stage to refine the best solution visited so far. In this case, a 
local direct search method, the Kelley´s modification of the Nelder-Mead 
method [19] and [20], is used. A solution still closer to the global minimum is 
then obtained.  
  
3     Computational Experiments 
 
We selected, and coded in MATLAB®, 99 test problems from the literature and 
solved them using fsolve from MATLAB, the extended version of the DTS 
method [16], and a SA version for comparative purposes. The problems in our 
database are referred to as P1, P2, …, P99. They represent systems of nonlinear 
equations of different sizes and complexity. The results of the numerical 
experiments were obtained in a personal computer with an AMD Turion 2.20 
GHz processor and 3 GB of memory. Due to the stochastic nature of DTS and 
SA algorithms, each problem was run 30 times and the best of the 30 solutions, 
as well as the average of the 30 obtained solutions were registered. The DTS 
algorithm starts with an initial solution, which is randomly generated inside the 
range [l,u]. Although not all problems defined in the literature have a registered 
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[l,u], we selected a specific range for each problem, as shown in Table 4 in the 
Appendix. The lower and upper limits are the same for all the components of the 
solution. The parameters defined for the stopping criteria of the algorithm are 
Nmax = 10 n  and ε  = 10-8 (in Step 4 of Algorithm 1), where the condition that 
defines the closeness of the best solution to the global minimum is the following 

ε≤Ψ )( kx .  
The goal of this paper is twofold:   
i) to evaluate the effectiveness of the extended DTS to solve systems of 

nonlinear equations that are not solved by Newton´s method;     
ii) to analyze the effect of the dimension of the problem in the performance 

of the extended DTS algorithm. 
 

Table 2. Comparison of  fsolve, DTS and SA 
  fsolve  DTS   SA  
 n Ψ(x) nfe nit Ψavg a-nfe Ψmin Ψavg a-nfe Ψmin 

P6 2 0.0025 57 20 0.5747 327 0.019 0.6677 265 0.0715 

P9 2 6.9989 49 20 3.2664 242 1.8e-04 4.1994 243 2.9e-05 

P25 10 13.830 1001 90 0.1227 5101 0.0142 0.4112 1014 0.0049 

P26 3 0.6642 106 30 0.4195 482 9.5e-06 0.2428 303 1.3e-05 

P27 3 0.1008 109 30 0.0563 667 0.0011 0.0669 339 0.0015 

P44 33 2.1965 1170 47 1.5666 75246 0.6737 3.5248 3302 0.7079 

P45 33 0.3983 3306 104 5.7368 48664 3.5176 6.1427 3302 4.2613 

P50 2 0.2476 47 20 0.24 247 0.2476 0.2476 240 0.2476 

P52 5 0.0022 261 50 4.0e-02 1556 5.0e-04 8.2e-02 507 2.0e-04 

P53 6 2.8074 427 60 0.0015 1958 0.0001 0.0019 604 0.0001 

P55 6 138.42 385 60 4.6e+06 3634 122.84 8.0e+06 631 129.65 

P56 8 0.4919 609 80 1.1e+01 4355 0.4286 1.1439 802 0.4308 

P62 6 0.0467 379 60 5.4e+10 4512 45.353 5.1e+11 616 44.31 

P63 6 0.0062 427 60 0.0020 2030 5.4e-05 0.0177 602 0.0002 

P64 8 3.2592 657 80 0.4907 3216 5.1e-05 3.1581 887 0.0003 

P70 10 25.782 981 100 53.5830 5870 9.0034 47.1696 1002 9.0034 

P72 51 2.7307 1989 50 1.9574 151108 1.1470 2.0317 5102 1.4808 

P77 2 4.5632 45 20 0.8533 243 0.7377 1.0068 211 0.7377 

P80 3 0.0630 124 30 2.0e-05 516 5.2e-06 0.1139 325 3.9e-06 

P84 3 0.0005 124 30 3.1e-08 482 1.4e-09 5.0e-08 144 1.2e-09 

P88 10 0.7460 66 5 8.6e-03 4773 1.4e-03 8.8e-03 1002 7.7e-04 

P96 2 2.8098 47 20 0.1040 258 1.7e-05 0.4617 265 1.8e-05 

P99 2    0.0600 252 4.0e-06 9.6e-02 292 1.1e-05 

 
To resume the main achievements of our numerical experiments, we show in 

Table 2 the results of the 23 problems (from the database of 99 problems) that 
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were selected because fsolve was not able to converge to the required solution 
with a tolerance of ε  = 10-8 and within 10 n iterations (“exitflag” is “-2” for P44 
and P72 and is “0” for all the others). Here, we use the initial approximation 
provided in the literature. Problem P99 of our list is the Example 1 described in 
Section 1.  

The characteristics of the selected problems are listed in the Appendix of the 
paper (Table 4). Moreover, the results of a selection of other problems from our 
database with varied dimensions are shown in Table 3.  
 

Table 3. Comparison based on problems with varied dimensions 
  fsolve DTS  SA  
 n Ψ(x) nfe nit Ψavg a-nfe Ψmin Ψavg a-nfe Ψmin 

P14 2 2.8e-08 19 6 0.0092 251 4.4e-06 4.6e-05 287 2.3e-06 

 10 3.7e-08 55 4 0.93 4918 0.0023 0.8545 1022 0.0031 

 30 8.6e-14 155 4 5.8 50073 1.9910 5.2442 3002 1.3550 

P15 2 0 15 4 4.9e-05 246 5.6e-07 3.5e-05 258 1.6e-06 

 10 7.2e-07 101 10 0.7422 4731 4.7e-05 20.1567 1040 2.7e-05 

 30 4.1e-08 311 10 2.220 39478 0.0023 1.0e+07 3257 26.4957 

P16 2 3.5e-07 9 2 4.1e-05 250 8.8e-06 3.2e-05 232 3.8e-06 

 10 3.1e-08 33 2 0.006 4915 0.0006 0.005 1002 0.0009 

 30 5.1e-05 62 1 0.25 44379 0.1201 0.2868 3002 0.0934 

P17 2 3.5e-07 9 2 3.0e-05 249 3.7e-06 1.6e-05 246 1.9e-06 

 10 3.7e-07 33 2 4.8e-04 3978 8.3e-05 0.0003 1002 7.3e-05 

 30 6e-07 93 2 0.015 36010 0.0012 0.0045 3002 0.0009 

P18 2 5e-09 15 4 2.6e-02 252 1.4e-06 3.8e-05 223 1.1e-06 

 10 1.1e-09 55 4 1.00 5067 0.6301 1.0404 1002 0.9375 

 30 4.2e-14 186 5 1.2 40639 1.0569 1.322 3002 1.0568 

P19 2 2.6e-08 18 5 4.3e-05 259 6.8e-06 7.9e-05 212 1.0e-05 

 10 1.5e-08 66 5 1.6 5108 1.7e-05 1.6027 1002 0.0073 

 30 5e-12 217 6 1.9 50845 0.0026 1.753 3002 1.753 

P21 4 8.1e-15 41 8 4.4e-04 962 1.7e-04 6.7e-04 426 6.8e-05 

 52 1.7e-14 424 7 2.8884 156373 0.5985 6.8724 5202 3.4877 

P22 2 0.0001 6 1 8.4128 296 0.0722 18023.3 314 0.0793 

 50 0.0005 102 1 6.5e+07 98182 1.1e+04 3.3e+05 5002 7.5e+03 

P26 3 0.6642 106 30 0.4195 482 9.5e-06 0.2428 303 1.3e-05 

 33 2.1965 1170 47 1.5666 75146 0.6737 3.5248 3302 0.7079 

 
Tables 2 and 3 summarize the numerical results, where n represents the 

dimension (number of variables = number of functions in the system), Ψ(x) is the 
value of the l2-norm error function at the found solution, nfe is the number of 
function evaluations and nit the number of iterations, all provided by MATLAB; 
Ψavg represents the average of the obtained solutions over the 30 runs, a-nfe 
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gives the average number of function evaluations computed over the 30 runs 
(rounded to the nearest integer) and Ψmin is the best solution obtained during the 
30 runs. The best solutions found in these comparisons are printed in “bold”. We 
compare Ψ(x) of fsolve with Ψmin of  DTS and SA.  

4    Conclusions 
In this paper we show that nonlinear systems of equations can be effectively 
solved by implementing a global optimization method to a fitness function, 
which represents the l2-norm error function related to the solving of the system 
of equations. The application of an extended version of the metaheuristic 
Directed Tabu Search, proposed in [16], for solving complex and difficult 
nonlinear systems of equations has been analyzed and tested. From Table 2, we 
may conclude that DTS is mostly able to converge to the solutions of the 
selected systems that are not solved by a Newton-type method. However, the 
results of Table 3 are not so promising. As expected, when a Newton-type 
method converges, the accuracy of the found solution is higher than that 
obtained by a metaheuristic. Furthermore, the performance of both tested 
metaheuristics (DTS and SA) is greatly affected by the dimension of the 
problem. This suggest that a combination of global- and local-type search 
procedures, carried out in separate iterations, depending on the need for an 
exploration of the search space or an exploitation of a promising region in the 
search space, will improve performance. For the local-type iteration, a derivative 
local search method seems crucial, as long as analytical or numerical derivatives 
could be used. This issue will be addressed in the near future.  
 
Appendix – Problems used in numerical experiments 
 

Table 4. Characteristics of the problems 
 n [l,u] reference Problem name in cited paper 

P6 2 [-10,10] [27]  P3-Powell badly scaled function 
P9 2 [-10,15] [27] P2-Freudenstein and Roth function 

P14 2,10,30 [-10,10] [27]  P26-Trignometric function 
P15 2,10,30 [-10,10] [27]  P27-Brown almost-linear function 
P16 2,10,30 [-10,10] [27]  P28-Discrete boundary value function 
P17 2,10,30 [-10,10] [27]  P29-Discrete integral equation function 
P18 2,10,30 [-10,10] [27]  P30-Broyden tridiagonal function 
P19 2,10,30 [-10,10] [27]  P31-Broyden banded function 
P21 4,52 [-5,5] [8]  D2-Augmented Rosenbrock 
P22 2,50 [0,370] [8]  D3-Powell badly scaled 
P25 10 [10,50] [8] D6-Shifted and augmented trigonometric 

function with an Euclidian sphere 

P26/P44 3/33 [-10,10] [8]  D7-Diagonal of three variables premultiplied 
by a quasi-orthogonal matrix 

P27/P45 3/33 [-10,10] [8] 
D8-Diagonal of three variables premultiplied 

by an orthogonal matrix, combined with 
inverse trigonometric function 

P50 2 [-10,10] [18]  pp. 2004 

P52 5 [-20,20] [26]  Combustion of propane chemical equilibrium 
equations 

P53 6 [-3,3] [27]  14-Wood function 
P55 6 [-10,10] [29]  Semicoductor boundary condition 
P56 8 [-10,30] [1]  2.3-The human heart dipole 
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Table 4. Characteristics of the problems (cont.) 
 n [l,u] reference Problem name in cited paper 

P62 6 [0,60] [17]  Problem 2 
P63 6 [-10,10] [23]  Example 2 
P64 8 [-10,15] [7] Equation 3.1 
P70 10 [-100,100] [30] Example 4.1-Nonlinear resistive circuit 

P72 51 [-5,5] [8]  D7-Diagonal of three variables premultiplied 
by a quasi-orthogonal matrix 

P77 2 [0,3.5] [4]  Example 1 
P80 3 [0,4] [27]  5-Beale function 
P84 3 [0,1] [22]  Example 6.2 
P88 10 [-10,10] [21]  Example 2-The Beam problem 
P96 2 [-10,10] [12]  pp. 498 (Problem N4) 
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