3 research outputs found

    Supporting Domain Experts in Determining Viable User Interface Designs for Wearable Computers Used in AEC Work Situations

    Get PDF
    The design of mobile IT systems, especially the design of wearable computer systems, is a complex task that requires computer science knowledge, such as that related to hardware configuration and software development, in addition to knowledge of the domain in which the system is intended to be used. Particularly in the AEC sector, it is necessary that the support from mobile information technology fit the work situation at hand. Ideally, the domain expert alone can adjust the wearable computer system to achieve this fit without having to consult IT experts. In this paper, we describe a model that helps in transferring existing design knowledge from non-AEC domains to new projects in the construction area. The base for this is a model and a methodology that describes the usage scenarios of said computer systems in an application-neutral and domain-independent way. Thus, the actual design information and experience will be transferable between different applications and domains

    Application design for wearable and context-aware computers

    Full text link

    Cooperative Interactive Distributed Guidance on Mobile Devices

    Get PDF
    Mobiles device are quickly becoming an indispensable part of our society. Equipped with numerous communication capabilities, they are increasingly being examined as potential tools for civilian and military usage to aide in distributed remote collaboration for dynamic decision making and physical task completion. With an ever growing mobile workforce, the need for remote assistance in aiding field workers who are confronted with situations outside their expertise certainly increases. Enhanced capabilities in using mobile devices could significantly improve numerous components of a task\u27s completion (i.e. accuracy, timing, etc.). This dissertation considers the design of mobile implementation of technology and communication capabilities to support interactive collaboration between distributed team members. Specifically, this body of research seeks to explore and understand how various multimodal remote assistances affect both the human user\u27s performance and the mobile device\u27s effectiveness when used during cooperative tasks. Additionally, power effects are additionally studied to assess the energy demands on a mobile device supporting multimodal communication. In a series of applied experiments and demonstrations, the effectiveness of a mobile device facilitating multimodal collaboration is analyzed through both empirical data collection and subjective exploration. The utility of the mobile interactive system and its configurations are examined to assess the impact on distributed task performance and collaborative dialogue between pairs. The dissertation formulates and defends an argument that multimodal communication capabilities should be incorporated into mobile communication channels to provide collaborating partners salient perspectives with a goal of reaching a mutual understanding of task procedures. The body of research discusses the findings of this investigation and highlight these findings they may influence future mobile research seeking to enhance interactive distributed guidance
    corecore