4 research outputs found

    Beyond Normal: On the Evaluation of Mutual Information Estimators

    Full text link
    Mutual information is a general statistical dependency measure which has found applications in representation learning, causality, domain generalization and computational biology. However, mutual information estimators are typically evaluated on simple families of probability distributions, namely multivariate normal distribution and selected distributions with one-dimensional random variables. In this paper, we show how to construct a diverse family of distributions with known ground-truth mutual information and propose a language-independent benchmarking platform for mutual information estimators. We discuss the general applicability and limitations of classical and neural estimators in settings involving high dimensions, sparse interactions, long-tailed distributions, and high mutual information. Finally, we provide guidelines for practitioners on how to select appropriate estimator adapted to the difficulty of problem considered and issues one needs to consider when applying an estimator to a new data set.Comment: Accepted at NeurIPS 2023. Code available at https://github.com/cbg-ethz/bm

    Discovering robust dependencies from data

    Get PDF
    Science revolves around forming hypotheses, designing experiments, collecting data, and tests. It was not until recently, with the advent of modern hardware and data analytics, that science shifted towards a big-data-driven paradigm that led to an unprecedented success across various fields. What is perhaps the most astounding feature of this new era, is that interesting hypotheses can now be automatically discovered from observational data. This dissertation investigates knowledge discovery procedures that do exactly this. In particular, we seek algorithms that discover the most informative models able to compactly “describe” aspects of the phenomena under investigation, in both supervised and unsupervised settings. We consider interpretable models in the form of subsets of the original variable set. We want the models to capture all possible interactions, e.g., linear, non-linear, between all types of variables, e.g., discrete, continuous, and lastly, we want their quality to be meaningfully assessed. For this, we employ information-theoretic measures, and particularly, the fraction of information for the supervised setting, and the normalized total correlation for the unsupervised. The former measures the uncertainty reduction of the target variable conditioned on a model, and the latter measures the information overlap of the variables included in a model. Without access to the true underlying data generating process, we estimate the aforementioned measures from observational data. This process is prone to statistical errors, and in our case, the errors manifest as biases towards larger models. This can lead to situations where the results are utterly random, hindering therefore further analysis. We correct this behavior with notions from statistical learning theory. In particular, we propose regularized estimators that are unbiased under the hypothesis of independence, leading to robust estimation from limited data samples and arbitrary dimensionalities. Moreover, we do this for models consisting of both discrete and continuous variables. Lastly, to discover the top scoring models, we derive effective optimization algorithms for exact, approximate, and heuristic search. These algorithms are powered by admissible, tight, and efficient-to-compute bounding functions for our proposed estimators that can be used to greatly prune the search space. Overall, the products of this dissertation can successfully assist data analysts with data exploration, discovering powerful description models, or concluding that no satisfactory models exist, implying therefore new experiments and data are required for the phenomena under investigation. This statement is supported by Materials Science researchers who corroborated our discoveries.In der Wissenschaft geht es um Hypothesenbildung, Entwerfen von Experimenten, Sammeln von Daten und Tests. Jüngst hat sich die Wissenschaft, durch das Aufkommen moderner Hardware und Datenanalyse, zu einem Big-Data-basierten Paradigma hin entwickelt, das zu einem beispiellosen Erfolg in verschiedenen Bereichen geführt hat. Ein erstaunliches Merkmal dieser neuen ra ist, dass interessante Hypothesen jetzt automatisch aus Beobachtungsdaten entdeckt werden k nnen. In dieser Dissertation werden Verfahren zur Wissensentdeckung untersucht, die genau dies tun. Insbesondere suchen wir nach Algorithmen, die Modelle identifizieren, die in der Lage sind, Aspekte der untersuchten Ph nomene sowohl in beaufsichtigten als auch in unbeaufsichtigten Szenarien kompakt zu “beschreiben”. Hierzu betrachten wir interpretierbare Modelle in Form von Untermengen der ursprünglichen Variablenmenge. Ziel ist es, dass diese Modelle alle m glichen Interaktionen erfassen (z.B. linear, nicht-lineare), zwischen allen Arten von Variablen unterscheiden (z.B. diskrete, kontinuierliche) und dass schlussendlich ihre Qualit t sinnvoll bewertet wird. Dazu setzen wir informationstheoretische Ma e ein, insbesondere den Informationsanteil für das überwachte und die normalisierte Gesamtkorrelation für das unüberwachte Szenario. Ersteres misst die Unsicherheitsreduktion der Zielvariablen, die durch ein Modell bedingt ist, und letztere misst die Informationsüberlappung der enthaltenen Variablen. Ohne Kontrolle des Datengenerierungsprozesses werden die oben genannten Ma e aus Beobachtungsdaten gesch tzt. Dies ist anf llig für statistische Fehler, die zu Verzerrungen in gr  eren Modellen führen. So entstehen Situationen, wobei die Ergebnisse v llig zuf llig sind und somit weitere Analysen st ren. Wir korrigieren dieses Verhalten mit Methoden aus der statistischen Lerntheorie. Insbesondere schlagen wir regularisierte Sch tzer vor, die unter der Hypothese der Unabh ngigkeit nicht verzerrt sind und somit zu einer robusten Sch tzung aus begrenzten Datenstichproben und willkürlichen-Dimensionalit ten führen. Darüber hinaus wenden wir dies für Modelle an, die sowohl aus diskreten als auch aus kontinuierlichen Variablen bestehen. Um die besten Modelle zu entdecken, leiten wir effektive Optimierungsalgorithmen mit verschiedenen Garantien ab. Diese Algorithmen basieren auf speziellen Begrenzungsfunktionen der vorgeschlagenen Sch tzer und erlauben es den Suchraum stark einzuschr nken. Insgesamt sind die Produkte dieser Arbeit sehr effektiv für die Wissensentdeckung. Letztere Aussage wurde von Materialwissenschaftlern best tigt

    An Estimator of Mutual Information and its Application to Independence Testing

    No full text
    This paper proposes a novel estimator of mutual information for discrete and continuous variables. The main feature of this estimator is that it is zero for a large sample size n if and only if the two variables are independent. The estimator can be used to construct several histograms, compute estimations of mutual information, and choose the maximum value. We prove that the number of histograms constructed has an upper bound of O(log n) and apply this fact to the search. We compare the performance of the proposed estimator with an estimator of the Hilbert-Schmidt independence criterion (HSIC), though the proposed method is based on the minimum description length (MDL) principle and the HSIC provides a statistical test. The proposed method completes the estimation in O(n log n) time, whereas the HSIC kernel computation requires O(n3) time. We also present examples in which the HSIC fails to detect independence but the proposed method successfully detects it
    corecore