136,250 research outputs found

    Resource dimensioning through buffer sampling

    Get PDF
    Link dimensioning, i.e., selecting a (minimal) link capacity such that the users’ performance requirements are met, is a crucial component of network design. It requires insight into the interrelationship among the traffic offered (in terms of the mean offered load , but also its fluctuation around the mean, i.e., ‘burstiness’), the envisioned performance level, and the capacity needed. We first derive, for different performance criteria, theoretical dimensioning formulas that estimate the required capacity cc as a function of the input traffic and the performance target. For the special case of Gaussian input traffic, these formulas reduce to c=M+αVc = M + \alpha V, where directly relates to the performance requirement (as agreed upon in a service level agreement) and VV reflects the burstiness (at the timescale of interest). We also observe that Gaussianity applies for virtually all realistic scenarios; notably, already for a relatively low aggregation level, the Gaussianity assumption is justified.\ud As estimating MM is relatively straightforward, the remaining open issue concerns the estimation of VV. We argue that particularly if corresponds to small time-scales, it may be inaccurate to estimate it directly from the traffic traces. Therefore, we propose an indirect method that samples the buffer content, estimates the buffer content distribution, and ‘inverts’ this to the variance. We validate the inversion through extensive numerical experiments (using a sizeable collection of traffic traces from various representative locations); the resulting estimate of VV is then inserted in the dimensioning formula. These experiments show that both the inversion and the dimensioning formula are remarkably accurate

    Resource dimensioning through buffer sampling

    Get PDF
    Link dimensioning, i.e., selecting a (minimal) link capacity such that the users’ performance requirements are met, is a crucial component of network design. It requires insight into the interrelationship between the traffic offered (in terms of the mean offered load M, but also its fluctuation around the mean, i.e., ‘burstiness’), the envisioned performance level, and the capacity needed. We first derive, for different performance criteria, theoretical dimensioning formulae that estimate the required capacity C as a function of the input traffic and the performance target. For the special case of Gaussian input traffic these formulae reduce to C = M+V , where directly relates to the performance requirement (as agreed upon in a service level agreement) and V reflects the burstiness (at the timescale of interest). We also observe that Gaussianity applies for virtually all realistic scenarios; notably, already for a relatively low aggregation level the Gaussianity assumption is justified.\ud As estimating M is relatively straightforward, the remaining open issue concerns the estimation of V . We argue that, particularly if V corresponds to small time-scales, it may be inaccurate to estimate it directly from the traffic traces. Therefore, we propose an indirect method that samples the buffer content, estimates the buffer content distribution, and ‘inverts’ this to the variance. We validate the inversion through extensive numerical experiments (using a sizeable collection of traffic traces from various representative locations); the resulting estimate of V is then inserted in the dimensioning formula. These experiments show that both the inversion and the dimensioning formula are remarkably accurate

    Early Quantitative Assessment of Non-Functional Requirements

    Get PDF
    Non-functional requirements (NFRs) of software systems are a well known source of uncertainty in effort estimation. Yet, quantitatively approaching NFR early in a project is hard. This paper makes a step towards reducing the impact of uncertainty due to NRF. It offers a solution that incorporates NFRs into the functional size quantification process. The merits of our solution are twofold: first, it lets us quantitatively assess the NFR modeling process early in the project, and second, it lets us generate test cases for NFR verification purposes. We chose the NFR framework as a vehicle to integrate NFRs into the requirements modeling process and to apply quantitative assessment procedures. Our solution proposal also rests on the functional size measurement method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761 standard. We extend its use for NFR testing purposes, which is an essential step for improving NFR development and testing effort estimates, and consequently for managing the scope of NFRs. We discuss the advantages of our approach and the open questions related to its design as well

    Non-functional requirements: size measurement and testing with COSMIC-FFP

    Get PDF
    The non-functional requirements (NFRs) of software systems are well known to add a degree of uncertainty to process of estimating the cost of any project. This paper contributes to the achievement of more precise project size measurement through incorporating NFRs into the functional size quantification process. We report on an initial solution proposed to deal with the problem of quantitatively assessing the NFR modeling process early in the project, and of generating test cases for NFR verification purposes. The NFR framework has been chosen for the integration of NFRs into the requirements modeling process and for their quantitative assessment. Our proposal is based on the functional size measurement method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761 standard. Also in this paper, we extend the use of COSMIC-FFP for NFR testing purposes. This is an essential step for improving NFR development and testing effort estimates, and consequently for managing the scope of NFRs. We discuss the merits of the proposed approach and the open questions related to its design

    Estimating ToE Risk Level using CVSS

    Get PDF
    Security management is about calculated risk and requires continuous evaluation to ensure cost, time and resource effectiveness. Parts of which is to make future-oriented, cost-benefit investments in security. Security investments must adhere to healthy business principles where both security and financial aspects play an important role. Information on the current and potential risk level is essential to successfully trade-off security and financial aspects. Risk level is the combination of the frequency and impact of a potential unwanted event, often referred to as a security threat or misuse. The paper presents a risk level estimation model that derives risk level as a conditional probability over frequency and impact estimates. The frequency and impact estimates are derived from a set of attributes specified in the Common Vulnerability Scoring System (CVSS). The model works on the level of vulnerabilities (just as the CVSS) and is able to compose vulnerabilities into service levels. The service levels define the potential risk levels and are modelled as a Markov process, which are then used to predict the risk level at a particular time

    Informants in Organizational Marketing Research

    Get PDF
    Organizational research frequently involves seeking judgmental data from multiple informants within organizations. Researchers are often faced with determining how many informants to survey, who those informants should be and (if more than one) how best to aggregate responses when disagreement exists between those responses. Using both recall and forecasting data from a laboratory study involving the MARKSTRAT simulation, we show that when there are multiple respondents who disagree, responses aggregated using confidence-based or competence-based weights outperform those with data-based weights, which in turn provide significant gains in estimation accuracy over simply averaging respondent reports. We then illustrate how these results can be used to determine the best number of respondents for a market research task as well as to provide an effective screening mechanism when seeking a single, best informant.screening;marketing research;aggregation;organizational research;survey research
    corecore