409 research outputs found

    Infective flooding in low-duty-cycle networks, properties and bounds

    Get PDF
    Flooding information is an important function in many networking applications. In some networks, as wireless sensor networks or some ad-hoc networks it is so essential as to dominate the performance of the entire system. Exploiting some recent results based on the distributed computation of the eigenvector centrality of nodes in the network graph and classical dynamic diffusion models on graphs, this paper derives a novel theoretical framework for efficient resource allocation to flood information in mesh networks with low duty-cycling without the need to build a distribution tree or any other distribution overlay. Furthermore, the method requires only local computations based on each node neighborhood. The model provides lower and upper stochastic bounds on the flooding delay averages on all possible sources with high probability. We show that the lower bound is very close to the theoretical optimum. A simulation-based implementation allows the study of specific topologies and graph models as well as scheduling heuristics and packet losses. Simulation experiments show that simple protocols based on our resource allocation strategy can easily achieve results that are very close to the theoretical minimum obtained building optimized overlays on the network

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    A P2P Query Algorithm for Opportunistic Networks Utilizing betweenness Centrality Forwarding

    Get PDF

    Cyber physical systems dependability using cps-iot monitoring

    Get PDF
    Recently, vast investments have been made worldwide in developing Cyber-Physical Systems (CPS) as solutions to key socio-economic challenges. The Internet-of-Things (IoT) has also enjoyed widespread adoption, mostly for its ability to add “sensing” and “actuation” capabilities to existing CPS infrastructures. However, attention must be paid to the impact of IoT protocols on the dependability of CPS infrastructures. We address the issues of CPS dependability by using an epidemic model of the underlying dynamics within the CPS’ IoT subsystem (CPS-IoT) and an interferenceaware routing reconfiguration. These help to efficiently monitor CPS infrastructure—avoiding routing oscillation, while improving its safety. The contributions of this paper are threefold. Firstly, a CPS orchestration model is proposed that relies upon: (i) Inbound surveillance and outbound actuation to improve dependability and (ii) a novel information diffusion model that uses epidemic states and diffusion sets to produce diffusion patterns across the CPS-IoT

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Previous hop routing: exploiting opportunism in VANETs

    Get PDF
    Routing in highly dynamic wireless networks such as Vehicular Ad-hoc Networks (VANETs) is a challenging task due to frequent topology changes. Sustaining a transmission path between peers in such network environment is difficult. In this thesis, Previous Hop Routing (PHR) is poposed; an opportunistic forwarding protocol exploiting previous hop information and distance to destination to make the forwarding decision on a packet-by-packet basis. It is intended for use in highly dynamic network where the life time of a hop-by-hop path between source and destination nodes is short. Exploiting the broadcast nature of wireless communication avoids the need to copy packets, and enables redundant paths to be formed. To save network resources, especially under high network loads, PHR employs probabilistic forwarding. The forwarding probability is calculated based on the perceived network load as measured by the arrival rate at the network interface. We evaluate PHR in an urban VANET environment using NS2 (for network traffic) and SUMO (for vehicular movement) simulators, with scenarios configured to re ect real-world conditions. The simulation scenarios are configured to use two velocity profiles i.e. Low and high velocity. The results show that the PHR networks able to achieve best performance as measured by Packet Delivery Ratio (PDR) and Drop Burst Length (DBL) compared to conventional routing protocols in high velocity scenarios

    Recent Advances in Declarative Networking

    Get PDF
    Declarative networking is a programming methodology that enables developers to concisely specify network protocols and services, and directly compile these specifications into a dataflow framework for execution. This paper describes recent advances in declarative networking, tracing its evolution from a rapid prototyping framework towards a platform that serves as an important bridge connecting formal theories for reasoning about protocol correctness and actual implementations. In particular, the paper focuses on the use of declarative networking for addressing four main challenges in the distributed systems development cycle: the generation of safe routing implementations, debugging, security and privacy, and optimizing distributed systems

    Hunting the hunters:Wildlife Monitoring System

    Get PDF
    • …
    corecore