16,680 research outputs found

    Arhitektura sistema za prepoznavanje nepravilnosti u mrežnom saobraćaju zasnovano na analizi entropije

    Get PDF
    With the steady increase in reliance on computer networks in all aspects of life, computers and other connected devices have become more vulnerable to attacks, which exposes them to many major threats, especially in recent years. There are different systems to protect networks from these threats such as firewalls, antivirus programs, and data encryption, but it is still hard to provide complete protection for networks and their systems from the attacks, which are increasingly sophisticated with time. That is why it is required to use intrusion detection systems (IDS) on a large scale to be the second line of defense for computer and network systems along with other network security techniques. The main objective of intrusion detection systems is used to monitor network traffic and detect internal and external attacks. Intrusion detection systems represent an important focus of studies today, because most protection systems, no matter how good they are, can fail due to the emergence of new (unknown/predefined) types of intrusions. Most of the existing techniques detect network intrusions by collecting information about known types of attacks, so-called signature-based IDS, using them to recognize any attempt of attack on data or resources. The major problem of this approach is its inability to detect previously unknown attacks, even if these attacks are derived slightly from the known ones (the so-called zero-day attack). Also, it is powerless to detect encryption-related attacks. On the other hand, detecting abnormalities concerning conventional behavior (anomaly-based IDS) exceeds the abovementioned limitations. Many scientific studies have tended to build modern and smart systems to detect both known and unknown intrusions. In this research, an architecture that applies a new technique for IDS using an anomaly-based detection method based on entropy is introduced. Network behavior analysis relies on the profiling of legitimate network behavior in order to efficiently detect anomalous traffic deviations that indicate security threats. Entropy-based detection techniques are attractive due to their simplicity and applicability in real-time network traffic, with no need to train the system with labelled data. Besides the fact that the NetFlow protocol provides only a basic set of information about network communications, it is very beneficial for identifying zero-day attacks and suspicious behavior in traffic structure. Nevertheless, the challenge associated with limited NetFlow information combined with the simplicity of the entropy-based approach is providing an efficient and sensitive mechanism to detect a wide range of anomalies, including those of small intensity. However, a recent study found of generic entropy-based anomaly detection reports its vulnerability to deceit by introducing spoofed data to mask the abnormality. Furthermore, the majority of approaches for further classification of anomalies rely on machine learning, which brings additional complexity. Previously highlighted shortcomings and limitations of these approaches open up a space for the exploration of new techniques and methodologies for the detection of anomalies in network traffic in order to isolate security threats, which will be the main subject of the research in this thesis. Abstract An architrvture for network traffic anomaly detection system based on entropy analysis Page vii This research addresses all these issues by providing a systematic methodology with the main novelty in anomaly detection and classification based on the entropy of flow count and behavior features extracted from the basic data obtained by the NetFlow protocol. Two new approaches are proposed to solve these concerns. Firstly, an effective protection mechanism against entropy deception derived from the study of changes in several entropy types, such as Shannon, Rényi, and Tsallis entropies, as well as the measurement of the number of distinct elements in a feature distribution as a new detection metric. The suggested method improves the reliability of entropy approaches. Secondly, an anomaly classification technique was introduced to the existing entropy-based anomaly detection system. Entropy-based anomaly classification methods were presented and effectively confirmed by tests based on a multivariate analysis of the entropy changes of several features as well as aggregation by complicated feature combinations. Through an analysis of the most prominent security attacks, generalized network traffic behavior models were developed to describe various communication patterns. Based on a multivariate analysis of the entropy changes by anomalies in each of the modelled classes, anomaly classification rules were proposed and verified through the experiments. The concept of the behavior features is generalized, while the proposed data partitioning provides greater efficiency in real-time anomaly detection. The practicality of the proposed architecture for the implementation of effective anomaly detection and classification system in a general real-world network environment is demonstrated using experimental data

    Fake View Analytics in Online Video Services

    Full text link
    Online video-on-demand(VoD) services invariably maintain a view count for each video they serve, and it has become an important currency for various stakeholders, from viewers, to content owners, advertizers, and the online service providers themselves. There is often significant financial incentive to use a robot (or a botnet) to artificially create fake views. How can we detect the fake views? Can we detect them (and stop them) using online algorithms as they occur? What is the extent of fake views with current VoD service providers? These are the questions we study in the paper. We develop some algorithms and show that they are quite effective for this problem.Comment: 25 pages, 15 figure

    A performance study of anomaly detection using entropy method

    Full text link
    An experiment to study the entropy method for an anomaly detection system has been performed. The study has been conducted using real data generated from the distributed sensor networks at the Intel Berkeley Research Laboratory. The experimental results were compared with the elliptical method and has been analyzed in two dimensional data sets acquired from temperature and humidity sensors across 52 micro controllers. Using the binary classification to determine the upper and lower boundaries for each series of sensors, it has been shown that the entropy method are able to detect more number of out ranging sensor nodes than the elliptical methods. It can be argued that the better result was mainly due to the lack of elliptical approach which is requiring certain correlation between two sensor series, while in the entropy approach each sensor series is treated independently. This is very important in the current case where both sensor series are not correlated each other.Comment: Proceeding of the International Conference on Computer, Control, Informatics and its Applications (2017) pp. 137-14

    SENATUS: An Approach to Joint Traffic Anomaly Detection and Root Cause Analysis

    Full text link
    In this paper, we propose a novel approach, called SENATUS, for joint traffic anomaly detection and root-cause analysis. Inspired from the concept of a senate, the key idea of the proposed approach is divided into three stages: election, voting and decision. At the election stage, a small number of \nop{traffic flow sets (termed as senator flows)}senator flows are chosen\nop{, which are used} to represent approximately the total (usually huge) set of traffic flows. In the voting stage, anomaly detection is applied on the senator flows and the detected anomalies are correlated to identify the most possible anomalous time bins. Finally in the decision stage, a machine learning technique is applied to the senator flows of each anomalous time bin to find the root cause of the anomalies. We evaluate SENATUS using traffic traces collected from the Pan European network, GEANT, and compare against another approach which detects anomalies using lossless compression of traffic histograms. We show the effectiveness of SENATUS in diagnosing anomaly types: network scans and DoS/DDoS attacks
    • …
    corecore