2 research outputs found

    An Enhanced Security-Constrained Unit Commitment Model with Reserve Response Set Policies

    Get PDF
    Security-constrained unit commitment (SCUC) is a classical problem used for day-ahead commitment, dispatch, and reserve scheduling. Even though SCUC models acquire reserves, N-1 reliability is not guaranteed. This paper presents an enhanced security-constrained unit commitment formulation that facilitates the integration of stochastic resources and accounts for reserve deliverability issues. In this formulation, the SCUC is modified to incorporate a reserve response set model. The enhanced reserve model aims to predict the effects of nodal reserve deployment on critical transmission lines so as to improve the deliverability of reserves post-contingency. The enhanced reserve policies are developed using a knowledge discovery process as a means to predict reserve activation. The approach, thus, aims to acquire reserve at prime locations that face fewer reserve deliverability issues. The results show that the proposed approach consistently outperforms contemporary approaches. All numerical results are based on the IEEE 73-bus test case

    Enhanced Reserve Procurement Policies for Power Systems with Increasing Penetration Levels of Stochastic Resources

    Get PDF
    abstract: The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model reserve requirements within the conventional security-constrained unit commitment (SCUC) models may not be satisfactory with increasing penetration levels of stochastic resources; such conventional models pro-cure reserves in accordance with deterministic criteria whose deliverability, in the event of an uncertain realization, is not guaranteed. Smart, well-designed reserve policies are needed to assist system operators in maintaining reliability at least cost. Contemporary market models do not satisfy the minimum stipulated N-1 mandate for generator contingencies adequately. This research enhances the traditional market practices to handle generator contingencies more appropriately. In addition, this research employs stochastic optimization that leverages statistical information of an ensemble of uncertain scenarios and data analytics-based algorithms to design and develop cohesive reserve policies. The proposed approaches modify the classical SCUC problem to include reserve policies that aim to preemptively anticipate post-contingency congestion patterns and account for resource uncertainty, simultaneously. The hypothesis is to integrate data-mining, reserve requirement determination, and stochastic optimization in a holistic manner without compromising on efficiency, performance, and scalability. The enhanced reserve procurement policies use contingency-based response sets and post-contingency transmission constraints to appropriately predict the influence of recourse actions, i.e., nodal reserve deployment, on critical transmission elements. This research improves the conventional deterministic models, including reserve scheduling decisions, and facilitates the transition to stochastic models by addressing the reserve allocation issue. The performance of the enhanced SCUC model is compared against con-temporary deterministic models and a stochastic unit commitment model. Numerical results are based on the IEEE 118-bus and the 2383-bus Polish test systems. Test results illustrate that the proposed reserve models consistently outperform the benchmark reserve policies by improving the market efficiency and enhancing the reliability of the market solution at reduced costs while maintaining scalability and market transparency. The proposed approaches require fewer ISO discretionary adjustments and can be employed by present-day solvers with minimal disruption to existing market procedures.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore