6,439 research outputs found

    A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems

    Get PDF
    The use of artificial intelligence (AI) is increasing in various sectors of photovoltaic (PV) systems, due to the increasing computational power, tools and data generation. The currently employed methods for various functions of the solar PV industry related to design, forecasting, control, and maintenance have been found to deliver relatively inaccurate results. Further, the use of AI to perform these tasks achieved a higher degree of accuracy and precision and is now a highly interesting topic. In this context, this paper aims to investigate how AI techniques impact the PV value chain. The investigation consists of mapping the currently available AI technologies, identifying possible future uses of AI, and also quantifying their advantages and disadvantages in regard to the conventional mechanisms

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Advancements in Arc Fault Detection for Electrical Distribution Systems: A Comprehensive Review from Artificial Intelligence Perspective

    Full text link
    This comprehensive review paper provides a thorough examination of current advancements and research in the field of arc fault detection for electrical distribution systems. The increasing demand for electricity, coupled with the increasing utilization of renewable energy sources, has necessitated vigilance in safeguarding electrical distribution systems against arc faults. Such faults could lead to catastrophic accidents, including fires, equipment damage, loss of human life, and other critical issues. To mitigate these risks, this review article focuses on the identification and early detection of arc faults, with a particular emphasis on the vital role of artificial intelligence (AI) in the detection and prediction of arc faults. The paper explores a wide range of methodologies for arc fault detection and highlights the superior performance of AI-based methods in accurately identifying arc faults when compared to other approaches. A thorough evaluation of existing methodologies is conducted by categorizing them into distinct groups, which provides a structured framework for understanding the current state of arc fault detection techniques. This categorization serves as a foundation for identifying the existing constraints and future research avenues in the domain of arc fault detection for electrical distribution systems. This review paper provides the state of the art in arc fault detection, aiming to enhance safety and reliability in electrical distribution systems and guide future research efforts

    Bridging Machine Learning for Smart Grid Applications

    Get PDF
    This dissertation proposes to develop, leverage, and apply machine learning algorithms on various smart grid applications including state estimation, false data injection attack detection, and reliability evaluation. The dissertation is divided into four parts as follows.. Part I: Power system state estimation (PSSE). The PSSE is commonly formulated as a weighted least-square (WLS) algorithm and solved using iterative methods such as Gauss-Newton methods. However, iterative methods have become more sensitive to system operating conditions than ever before due to the deployment of intermittent renewable energy sources, zero-emission technologies (e.g., electric vehicles), and demand response programs. Efficient approaches for PSSE are required to avoid pitfalls of the WLS-based PSSE computations for accurate prediction of operating conditions. The first part of this dissertation develops a data-driven real-time PSSE using a deep ensemble learning algorithm. In the proposed approach, the ensemble learning setup is formulated with dense residual neural networks as base-learners and a multivariate-linear regressor as a meta-learner. Historical measurements and states are utilized to train and test the model. The trained model can be used in real-time to estimate power system states (voltage magnitudes and phase angles) using real-time measurements. Most of current data-driven PSSE methods assume the availability of a complete set of measurements, which may not be the case in real power system data acquisition. This work adopts multivariate linear regression to forecast system states for instants of missing measurements to assist the proposed PSSE technique. Case studies are performed on various IEEE standard benchmark systems to validate the proposed approach. Part II: Cyber-attacks on Voltage Regulation. Several wired and wireless advanced communication technologies have been used for coordinated voltage regulation schemes in distribution systems. These technologies have been employed to both receive voltage measurements from field sensors and transmit control settings to voltage regulating devices (VRDs). Communication networks for voltage regulation can be susceptible to data falsification attacks, which can lead to voltage instability. In this context, an attacker can alter multiple field measurements in a coordinated manner to disturb voltage control algorithms. The second part of this dissertation develops a machine learning-based two-stage approach to detect, locate, and distinguish coordinated data falsification attacks on control systems of coordinated voltage regulation schemes in distribution systems with distributed generators. In the first stage (regression), historical voltage measurements along with current meteorological data (solar irradiance and ambient temperature) are provided to random forest regressor to forecast voltage magnitudes of a given current state. In the second stage, a logistic regression compares the forecasted voltage with the measured voltage (used to set VRDs) to detect, locate, and distinguish coordinated data falsification attacks in real-time. The proposed approach is validated through several case studies on a 240-node real distribution system (based in the USA) and the standard IEEE 123-node benchmark distribution system.Part III: Cyber-attacks on Distributed Generators. Part III of the dissertation proposes a deep learning-based multi-label classification approach to detect coordinated and simultaneously launched data falsification attacks on a large number of distributed generators (DGs). The proposed approach is developed to detect power output manipulation and falsification attacks on DGs including additive attacks, deductive attacks, and combination of additive and deductive attacks (attackers use the combination of additive and deductive attacks to camouflage their attacks). The proposed approach is demonstrated on several systems including the 240-node and IEEE 123-node distribution test system. Part IV: Composite System Reliability Evaluation. Traditional composite system reliability evaluation is computationally demanding and may become inapplicable to large integrated power grids due to the requirements of repetitively solving optimal power flow (OPF) for a large number of system states. Machine learning-based approaches have been used to avoid solving OPF in composite system reliability evaluation except in the training stage. However, current approaches have been utilized only to classify system states into success and failure states (i.e., up or down). In other words, they can be used to evaluate power system probability and frequency reliability indices, but they cannot be used to evaluate power and energy reliability indices unless OPF is solved for each failure state to determine minimum load curtailments. In the fourth part of this dissertation, a convolutional neural network (CNN)-based regression approach is proposed to determine the minimum amount of load curtailments of sampled states without solving OPF. Unavoidable load curtailments due to failures are then used to evaluate power and energy indices (e.g., expected demand not supplied) as well as to evaluate the probability and frequency indices. The proposed approach is applied on several systems including the IEEE Reliability Test System and Saskatchewan Power Corporation in Canada

    AI-driven approaches for optimizing the energy efficiency of integrated energy system

    Get PDF
    To decarbonize the global energy system and replace the unidirectional architecture of existing grid networks, integrated and electrified energy systems are becoming more demanding. Energy integration is critical for renewable energy sources like wind, solar, and hydropower. However, there are still specific challenges to overcome, such as their high reliance on the weather and the complexity of their integrated operation. As a result, this research goes through the study of a new approach to energy service that has arisen in the shape of data-driven AI technologies, which hold tremendous promise for system improvement while maximizing energy efficiency and reducing carbon emissions. This research aims to evaluate the use of data-driven AI techniques in electrical integrated energy systems, focusing on energy integration, operation, and planning of multiple energy supplies and demand. Based on the formation point, the main research question is: "To what extent do AI algorithms contribute to attaining greater efficiency of integrated grid systems?". It also included a discussion on four key research areas of AI application: Energy and load prediction, fault prediction, AI-based technologies IoT used for smart monitoring grid system optimization such as energy storage, demand response, grid flexibility, and Business value creation. The study adopted a two-way approach that includes empirical research on energy industry expert interviews and a Likert scale survey among energy sector representatives from Finland, Norway, and Nepal. On the other hand, the theoretical part was from current energy industry optimization models and a review of publications linked to a given research issue. The research's key findings were AI's significant potential in electrically integrated energy systems, which concluded AI's implication as a better understanding of energy consumption patterns, highly effective and precise energy load and fault prediction, automated energy management, enhanced energy storage system, more excellent business value, a smart control center, smooth monitoring, tracking, and communication of energy networks. In addition, further research directions are prospects towards its technical characteristics on energy conversion

    An overview of artificial intelligence applications for power electronics

    Get PDF

    Data Analytics and Machine Learning to Enhance the Operational Visibility and Situation Awareness of Smart Grid High Penetration Photovoltaic Systems

    Get PDF
    Electric utilities have limited operational visibility and situation awareness over grid-tied distributed photovoltaic systems (PV). This will pose a risk to grid stability when the PV penetration into a given feeder exceeds 60% of its peak or minimum daytime load. Third-party service providers offer only real-time monitoring but not accurate insights into system performance and prediction of productions. PV systems also increase the attack surface of distribution networks since they are not under the direct supervision and control of the utility security analysts. Six key objectives were successfully achieved to enhance PV operational visibility and situation awareness: (1) conceptual cybersecurity frameworks for PV situation awareness at device, communications, applications, and cognitive levels; (2) a unique combinatorial approach using LASSO-Elastic Net regularizations and multilayer perceptron for PV generation forecasting; (3) applying a fixed-point primal dual log-barrier interior point method to expedite AC optimal power flow convergence; (4) adapting big data standards and capability maturity models to PV systems; (5) using K-nearest neighbors and random forests to impute missing values in PV big data; and (6) a hybrid data-model method that takes PV system deration factors and historical data to estimate generation and evaluate system performance using advanced metrics. These objectives were validated on three real-world case studies comprising grid-tied commercial PV systems. The results and conclusions show that the proposed imputation approach improved the accuracy by 91%, the estimation method performed better by 75% and 10% for two PV systems, and the use of the proposed forecasting model improved the generalization performance and reduced the likelihood of overfitting. The application of primal dual log-barrier interior point method improved the convergence of AC optimal power flow by 0.7 and 0.6 times that of the currently used deterministic models. Through the use of advanced performance metrics, it is shown how PV systems of different nameplate capacities installed at different geographical locations can be directly evaluated and compared over both instantaneous as well as extended periods of time. The results of this dissertation will be of particular use to multiple stakeholders of the PV domain including, but not limited to, the utility network and security operation centers, standards working groups, utility equipment, and service providers, data consultants, system integrator, regulators and public service commissions, government bodies, and end-consumers
    corecore