1,271 research outputs found

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    Improvement of strength and water absorption of Interlocking Compressed Earth Bricks (ICEB) with addition of Ureolytic Bacteria (UB)

    Get PDF
    Interlocking Compressed Earth Brick (ICEB) are cement stabilized soil bricks that allow for dry stacked construction. This characteristic resulted to faster the process of building walls and requires less skilled labour as the bricks are laid dry and lock into place. However there is plenty room for improving the interlocking bricks by increase its durability. Many studies have been conducted in order to improve the durability of bricks by using environmentally method. One of the methods is by introducing bacteria into bricks. Bacteria in brick induced calcite precipitation (calcite crystals) to cover the voids continuously. Ureolytic Bacteria (UB) was used in this study as a partial replacement of limestone water with percentage of 1%, 3% and 5%. Enrichment process was done in soil condition to ensure the survivability of UB in ICEB environment. This paper evaluates the effect of UB in improving the strength and water absorption properties of ICEB and microstructure analysis. The results show that addition of 5% UB in ICEB indicated positive results in improving the ICEB properties by 15.25% in strength, 14.72% in initial water absorption and 14.68% reduction in water absorption. Precipitation of calcium carbonate (CaCo3) in form of calcite can be distinguish clearly in microstructure analysis

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    WSN simulators evaluation: an approach focusing on energy awareness

    Get PDF
    The large number of Wireless Sensor Networks (WSN) simulators available nowadays, differ in their design, goals, and characteristics. Users who have to decide which simulator is the most appropriate for their particular requirements, are today lost, faced with a panoply of disparate and diverse simulators. Hence, it is obvious the need for establishing guidelines that support users in the tasks of selecting a simulator to suit their preferences and needs. In previous works, we proposed a generic and novel approach to evaluate networks simulators, considering a methodological process and a set of qualitative and quantitative criteria. In particularly, for WSN simulators, the criteria include relevant aspects for this kind of networks, such as energy consumption modelling and scalability capacity. The aims of this work are: (i) describe deeply the criteria related to WSN aspects; (ii) extend and update the state of the art of WSN simulators elaborated in our previous works to identify the most used and cited in scientific articles; and (iii) demonstrate the suitability of our novel methodological approach by evaluating and comparing the three most cited simulators, specially in terms of energy modelling and scalability capacities. Results show that our proposed approach provides researchers with an evaluation tool that can be used to describe and compare WSN simulators in order to select the most appropriate one for a given scenarioComment: 20 Page

    Methodology to Evaluate WSN Simulators: Focusing on Energy Consumption Awareness

    Get PDF
    ISBN: 978-1-925953-09-1International audienceNowadays, there exists a large number of available network simulators, that differ in their design, goals, and characteristics. Users who have to decide which simulator is the most appropriate for their particular requirements, are today lost, faced with a panoply of disparate and diverse simulators. Hence, it is obvious the need for establishing guidelines that support users in the tasks of selecting and customizing a simulator to suit their preferences and needs. In previous works, we proposed a generic and novel methodological approach to evaluate network simulators, considering a set of qualitative and quantitative criteria. However, it lacks criteria related to Wireless Sensor Networks (WSN). Thus, the aim of this work is three fold: (i) extend the previous proposed methodology to include the evaluation of WSN simulators, such as energy consumption modelling and scalability; (ii) elaborate a study of the state of the art of WSN simulators, with the intention of identifying the most used and cited in scientific articles; and (iii) demonstrate the suitability of our novel methodology by evaluating and comparing three of the most cited simulators. Our novel methodology provides researchers with an evaluation tool that can be used to describe and compare WSN simulators in order to select the most appropriate one for a given scenario

    StreetlightSim: a simulation environment to evaluate networked and adaptive street lighting

    No full text
    Sustaining the operation of street lights incurs substantial financial and environmental cost. Consequently, adaptive lighting systems have been proposed incorporating ad-hoc networking, sensing, and data processing, in order to better manage the street lights and their energy demands. Evaluating the efficiency and effectiveness of these complex systems requires the modelling of vehicles, road networks, algorithms, and communication systems, yet tools are not available to permit this. This paper proposes StreetlightSim, a novel simulation environment combining OMNeT++ and SUMO tools to model both traffic patterns and adaptive networked street lights. StreetlightSim’s models are illustrated through the simulation of a simple example, and a more complex scenario is used to show the potential of the tool and the obtainable results. StreetlightSim has been made open-source, and hence is available to the community
    • …
    corecore