956 research outputs found

    Optimization of depth-based routing for underwater wireless sensor networks through intelligent assignment of initial energy

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are extensively used to explore the diverse marine environment. Energy efficiency is one of the main concerns regarding performance of UWSNs. In a cooperative wireless sensor network, nodes with no energy are known as coverage holes. These coverage holes are created due to non-uniform energy utilization by the sensor nodes in the network. These coverage holes degrade the performance and reduce the lifetime of UWSNs. In this paper, we present an Intelligent Depth Based Routing (IDBR) scheme which addresses this issue and contributes towards maximization of network lifetime. In our proposed scheme, we allocate initial energy to the sensor nodes according to their usage requirements. This idea is helpful to balance energy consumption amongst the nodes and keep the network functional for a longer time as evidenced by the results provided

    Cross-layer Balanced and Reliable Opportunistic Routing Algorithm for Mobile Ad Hoc Networks

    Full text link
    For improving the efficiency and the reliability of the opportunistic routing algorithm, in this paper, we propose the cross-layer and reliable opportunistic routing algorithm (CBRT) for Mobile Ad Hoc Networks, which introduces the improved efficiency fuzzy logic and humoral regulation inspired topology control into the opportunistic routing algorithm. In CBRT, the inputs of the fuzzy logic system are the relative variance (rv) of the metrics rather than the values of the metrics, which reduces the number of fuzzy rules dramatically. Moreover, the number of fuzzy rules does not increase when the number of inputs increases. For reducing the control cost, in CBRT, the node degree in the candidate relays set is a range rather than a constant number. The nodes are divided into different categories based on their node degree in the candidate relays set. The nodes adjust their transmission range based on which categories that they belong to. Additionally, for investigating the effection of the node mobility on routing performance, we propose a link lifetime prediction algorithm which takes both the moving speed and moving direction into account. In CBRT, the source node determines the relaying priorities of the relaying nodes based on their utilities. The relaying node which the utility is large will have high priority to relay the data packet. By these innovations, the network performance in CBRT is much better than that in ExOR, however, the computation complexity is not increased in CBRT.Comment: 14 pages, 17 figures, 31 formulas, IEEE Sensors Journal, 201

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Horizontal trajectory based mobile multi-sink routing in underwater sensor networks

    Get PDF
    Scientific, commercial, exploration, and monitoring applications of underwater sensor networks have drawn the attention of researchers toward the investigation of routing protocols that are robust, scalable, and energy efficient. This has brought significant research in network layer routing protocols. Irrespective of the field of application it is desirable to increase network lifetime by reducing energy consumed by sensor nodes in the network or by balancing energy in the entire network. Energy balancing refers to the uniform distribution of the network’s residual energy such that all nodes remain alive for a long time. It requires uniform energy consumption by each sensor node in the network instead of the same node being involved in every transmission. In this paper, we discuss two routing methods for three-dimensional environments in which the water region under monitor is divided into subregions of equal height and each subregion has a sink. Nodes in the subregion send data to the sink designated for that subregion. The first method called static multi-sink routing uses static sinks and the second method called horizontal trajectory-based mobile multi-sink routing (HT-MMR) uses mobile sinks with a horizontal trajectory. Simulation results show that the proposed HT-MMR reduces average energy consumption and average energy tax by 16.69% and 16.44% respectively. HT-MMR is energy efficient as it enhances network lifetime by 11.11%

    Review on Localization based Routing Protocols for Underwater Wireless Sensor Network

    Get PDF
    Underwater Wireless Sensor Network (UWSN) can enable many scientific, military, safety, commercial and environmental applications. Majority of the network models has been introduced for the deployment of sensor nodes through routing schemes and methodologies along with different algorithms but still the design of routing protocol for underwater environment is a challenging issue due to distinctive characteristics of underwater medium. The majority of the issues are also needed to fulfill the appropriate approach for the underwater medium like limited bandwidth, high bit error rates, propagation delay, and 3D deployment. This paper focuses the comparative analysis of the localization based routing protocols for UWSN. This comparative analysis plays a significant attention to construct a reliable routing protocol, which provides the effectual discovery of the route between the source node and the sink node. In addition this comparative analysis also focuses the data packets forwarding mechanism, the deployment of sensor nodes and location based routing for UWSN in different conditions
    • 

    corecore