487 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Integration of Cutting-Edge Interoperability Approaches in Cyber-Physical Production Systems and Industry 4.0

    Get PDF
    Interoperability in smart manufacturing refers to how interconnected cyber-physical components exchange information and interact. This is still an exploratory topic, and despite the increasing number of applications, many challenges remain open. This chapter presents an integrative framework to understand common practices, concepts, and technologies used in trending research to achieve interoperability in production systems. The chapter starts with the question of what interoperability is and provides an alternative answer based on influential works in the field, followed by the presentation of important reference mod4els and their relation to smart manufacturing. It continues by discussing different types of interoperability, data formats, and common ontologies necessary for the integration of heterogeneous systems and the contribution of emerging technologies in achieving interoperability. This chapter ends with a discussion of a recent use case and final remarks

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    Agent-based manufacturing — review and expert evaluation

    Get PDF
    The advent of smart manufacturing and the exposure to a new generation of technological enablers have revolutionized the way manufacturing process is carried out. Cyber-Physical Production Systems (CPPS) are introduced as main actors of this manufacturing shift. They are characterized for having high levels of communication, integration and computational capabilities that led them to a certain level of autonomy. Despite the high expectations and vision of CPPS, it still remains an exploratory topic. Multi-Agent Systems (MAS) have been widely used by software engineers to solve traditional computing problems, e.g., banking transactions. Because of their high levels of distribution and autonomous capabilities, MAS have been considered by the research community as a good solution to design and implement CPPS. This work first introduces a collection of requirements and characteristics of smart manufacturing. A comprehensive review of various research applications is presented to understand the current state of the art and the application of agent technology in manufacturing. Considering the smart manufacturing requirements and current research application, a SWOT analysis was formulated which identifies pros and cons of the implementation of agents in industry. The SWOT analysis was further validated by an industrial expert evaluation and the main findings and discussion of the results are presented

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Investigation of spacecraft cluster autonomy through an acoustic imaging interferometric testbed

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1999.Includes bibliographical references (p. 169-173).The development and use of a novel testbed architecture is presented. Separated spacecraft interferometers have been proposed for applications in sparse aperture radar or astronomical observations. Modeled after these systems, an integrated hardware and software interferometry testbed is developed. Utilizing acoustic sources and sensors as a simplified analog to radio or optical systems, the Acoustic Imaging Testbed's simplest function is that of a Michelson interferometer. Robot arms control the motion of microphones. Through successive measurements an acoustic image can be formed. On top of this functionality, a layered software architecture is developed. This software creates a virtual environment that mimics the command, control and communications functions appropriate to a space interferometer. Autonomous spacecraft agents interact within this environment as the logical equivalent of distributed satellites. Optimal imaging configurations are validated. A scalable approach to cluster autonomy is discussed.by John Enright.S.M
    • …
    corecore