32 research outputs found

    Choosing a Better Algorithm for Matrix Multiplication

    Get PDF
    Matrix multiplication is a basic operation of linear algebra, and has numerous applications to the theory and practice of computation. Many applications can be solved fast if the algorithm of matrix multiplication is fast because it is a substantial part of these applications. This thesis conducts the study of three algorithms; the straightforward algorithm, Winograd's algorithm, Strassen's algorithm, their time complexities, and compares the three algorithms using graphs. The thesis also briefly describes two asymptotic improvements: Pan's of 1983 and Strassen's of 1986

    Randomized word-parallel algorithms for detection of small induced subgraphs

    Get PDF
    Induced subgraph detection is a widely studied set of problems in theoretical computer science, with applications in e.g. social networks, molecular biology and other domains that use graph representations. Our focus lies on practical comparison of some well-known deterministic algorithms to recent Monte Carlo algorithms for detecting subgraphs on three and four vertices. For algorithms that involve operations with adjacency matrices, we study the gain of applying word parallelism, i.e. exploiting the parallel nature of common processor operations such as bitwise conjunction and disjunction. We present results of empirical running times for our implementations of the algorithms. Our results reveal insights as to when the Monte Carlo algorithms trump their deterministic counterparts and also include statistically significant improvements of several algorithms when applying word parallelism

    Even faster integer multiplication

    Full text link
    We give a new proof of F\"urer's bound for the cost of multiplying n-bit integers in the bit complexity model. Unlike F\"urer, our method does not require constructing special coefficient rings with "fast" roots of unity. Moreover, we prove the more explicit bound O(n log n K^(log^* n))$ with K = 8. We show that an optimised variant of F\"urer's algorithm achieves only K = 16, suggesting that the new algorithm is faster than F\"urer's by a factor of 2^(log^* n). Assuming standard conjectures about the distribution of Mersenne primes, we give yet another algorithm that achieves K = 4

    Fast multiplication of multiple-precision integers

    Get PDF
    Multiple-precision multiplication algorithms are of fundamental interest for both theoretical and practical reasons. The conventional method requires 0(n2) bit operations whereas the fastest known multiplication algorithm is of order 0(n log n log log n). The price that has to be paid for the increase in speed is a much more sophisticated theory and programming code. This work presents an extensive study of the best known multiple-precision multiplication algorithms. Different algorithms are implemented in C, their performance is analyzed in detail and compared to each other. The break even points, which are essential for the selection of the fastest algorithm for a particular task, are determined for a given hardware software combination

    Computationally efficient search for large primes

    Get PDF
    To satisfy the speed of communication and to meet the demand for the continuously larger prime numbers, the primality testing and prime numbers generating algorithms require continuous advancement. To find the most efficient algorithm, a need for a survey of methods arises. Concurrently, an urge for the analysis of algorithms\u27 performances emanates. The critical criteria in the analysis of the prime numbers generation are the number of probes, number of generated primes, and an average time required in producing one prime. Hence, the purpose of this thesis is to indicate the best performing algorithm. The survey the methods, establishment of the comparison criteria, and comparison of approaches are the required steps to find the best performing algorithm. In the first step of this research paper the methods were surveyed and classified using the approach described in Menezes [66]. Wifle chapter 2 sorted, described, compared, and summarized primality testing methods, chapter 3 sorted, described, compared, and summarized prime numbers generating methods. In the next step applying a uniform technique, the computer programs were written to the selected algorithms. The programs were installed on the Unix operating system, running on the Sun 5.8 server to perform the computer experiments. The computer experiments\u27 results pertaining to the selected algorithms, provided required parameters to compare the algorithms\u27 performances. The results from the computer experiments were tabulated to compare the parameters and to indicate the best performing algorithm. Survey of methods indicated that the deterministic and randomized are the main approaches in prime numbers generation. Random number generation found application in the cryptographic keys generation. Contemporaneously, a need for deterministically generated provable primes emerged in the code encryption, decryption, and in the other cryptographic areas. The analysis of algorithms\u27 performances indicated that the prime nurnbers generated through the randomized techniques required smaller number of probes. This is due to the method that eliminates the non-primes in the initial step, that pre-tests randomly generated primes for possible divisibility factors. Analysis indicated that the smaller number of probes increases algorithm\u27s efficiency. Further analysis indicated that a ratio of randomly generated primes to the expected number of primes, generated in the specific interval is smaller than the deterministically generated primes. In this comparison the Miller-Rabin\u27s and the Gordon\u27s algorithms that randomly generate primes were compared versus the SFA and the Sequences Containing Primes. The name Sequences Containing Primes algorithm is abbreviated in this thesis as 6kseq. In the interval [99000,1000001 the Miller Rabin method generated 57 out of 87 expected primes, the SFA algorithm generated 83 out of 87 approximated primes. The expected number of primes was computed using the approximation n/ln(n) presented by Menezes [66]. The average consumed time of originating one prime in the [99000, 100000] interval recorded 0.056 [s] for Miller-Rabin test, 0.0001 [s] for SFA, and 0.0003 [s] for 6kseq. The Gordon\u27s algorithm in the interval [1,100000] required 100578 probes and generated 32 out of 8686 expected number of primes. Algorithm Parametric Representation of Composite Twins and Generation of Prime and Quasi Prime Numbers invented by Doctor Verkhovsky [1081 verifies and generates primes and quasi primes using special mathematical constructs. This algorithm indicated best performance in the interval [1,1000] generating and verifying 3585 variances of provable primes or quasi primes. The Parametric Representation of Composite Twins algorithm consumed an average time per prime, or quasi prime of 0.0022315 [s]. The Parametric Representation of Composite Twins and Generation of Prime and Quasi Prime Numbers algorithm implements very unique method of testing both primes and quasi-primes. Because of the uniqueness of the method that verifies both primes and quasi-primes, this algorithm cannot be compared with the other primality testing or prime numbers generating algorithms. The ((a!)^2)*((-1^b) Function In Generating Primes algorithm [105] developed by Doctor Verkhovsky was compared versus extended Fermat algorithm. In the range of [1,10001 the [105] algorithm exhausted an average 0.00001 [s] per prime, originated 167 primes, while the extended Fermat algorithm also produced 167 primes, but consumed an average 0.00599 [s] per prime. Thus, the computer experiments and comparison of methods proved that the SFA algorithm is deterministic, that originates provable primes. The survey of methods and analysis of selected approaches indicated that the SFA sieve algorithm that sequentially generates primes is computationally efficient, indicated better performance considering the computational speed, the simplicity of method, and the number of generated primes in the specified intervals

    Feasible arithmetic computations: Valiant's hypothesis

    Get PDF
    An account of Valiant's theory of p-computable versus p-definable polynomials, an arithmetic analogue of the Boolean theory of P versus NP, is presented, with detailed proofs of Valiant's central results

    Unreliable and resource-constrained decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 185-213).Traditional information theory and communication theory assume that decoders are noiseless and operate without transient or permanent faults. Decoders are also traditionally assumed to be unconstrained in physical resources like material, memory, and energy. This thesis studies how constraining reliability and resources in the decoder limits the performance of communication systems. Five communication problems are investigated. Broadly speaking these are communication using decoders that are wiring cost-limited, that are memory-limited, that are noisy, that fail catastrophically, and that simultaneously harvest information and energy. For each of these problems, fundamental trade-offs between communication system performance and reliability or resource consumption are established. For decoding repetition codes using consensus decoding circuits, the optimal tradeoff between decoding speed and quadratic wiring cost is defined and established. Designing optimal circuits is shown to be NP-complete, but is carried out for small circuit size. The natural relaxation to the integer circuit design problem is shown to be a reverse convex program. Random circuit topologies are also investigated. Uncoded transmission is investigated when a population of heterogeneous sources must be categorized due to decoder memory constraints. Quantizers that are optimal for mean Bayes risk error, a novel fidelity criterion, are designed. Human decision making in segregated populations is also studied with this framework. The ratio between the costs of false alarms and missed detections is also shown to fundamentally affect the essential nature of discrimination. The effect of noise on iterative message-passing decoders for low-density parity check (LDPC) codes is studied. Concentration of decoding performance around its average is shown to hold. Density evolution equations for noisy decoders are derived. Decoding thresholds degrade smoothly as decoder noise increases, and in certain cases, arbitrarily small final error probability is achievable despite decoder noisiness. Precise information storage capacity results for reliable memory systems constructed from unreliable components are also provided. Limits to communicating over systems that fail at random times are established. Communication with arbitrarily small probability of error is not possible, but schemes that optimize transmission volume communicated at fixed maximum message error probabilities are determined. System state feedback is shown not to improve performance. For optimal communication with decoders that simultaneously harvest information and energy, a coding theorem that establishes the fundamental trade-off between the rates at which energy and reliable information can be transmitted over a single line is proven. The capacity-power function is computed for several channels; it is non-increasing and concave.by Lav R. Varshney.Ph.D

    Non-parametric estimation of Range Value at Risk

    Get PDF

    On the complexity of evaluating multivariate polynomials

    Get PDF
    corecore