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ABSTRACT

A wide range of multivariate polynomials is considered and an
attempt made to explain the varying amounts of computational effort
required in their evaluation. Two approaches to this task are
documented. In the first, a completeness class of polynomial
families is introduced, the members of which are interrelated by
means of elegant algebraic reductions known as projections. It is
likely that no member of this completeness class may be evaluated
using a number of arithmetic operations (%,-,i,/) which is bounded
by a polynomial function of the number of indeterminates; the members
of the classgmay reasonably be termed intractablg.

Two polynomials arising in the study of the physical properties
of crystal lattices, namely the generating functions for monomer-diﬁer
arrangements on a 2-dimensional lattice and for the 3-dimensional Ising
problem, are shown to be intractable in this sense. Further
multivariate polynomials. concerned with network. reliability are
shown to be similatly intractéble, a particular example being the
probability that all stations of an unreliable network can communicate
with each other. For all the specific examples mentioned above
there was previously no explanation of their apparent computational
difficulty.

In the second of the two approaches, attention is restricted to
monotone computations, that is computations involving only the
arithmetic operations {+, X} and non-negative real constants. The
reward for restricting the domain of computation is that it becomes
possible to obtain exact bounds on the nuﬁber of multiplications
required ﬁo compute various polynomials. In this way, provably
optimal monotone algorithms can be exibited for computing the

permanent of a nxn matrix (which is shown to require nzn-l—n



‘ multiplications) and the'geﬁerating function for ﬁamiltonian
circuits in the complete graph of order n ((nll)(n-2)2n-3+(n—1)
multiplications). As a bonus, the results hold good for other
computational domains, including the minimax algebra (real numbers

with the operations of + and min). In particular, it will be
sthn that finding minimum weight matchings using a straight-line
program in this algebra takes exponential time, whereas known

"algorithms using branching solve the problem in polyncmial time.
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1. INTRODUCTION

This thesis is concerned with the computational properties of
multi&ariate polynomials. In the field of coﬁéuter science
such polynomials arise not only explicitly in nuﬁerical
computations, for example matrix multiplication, but alsé in
implicit forms. Problems in&olving the ;ounting éf certain
structures ih graphs for example, perhaps more often regardeé as
combinatorial enumeration, can be &iewed as the e&aluatioﬁ éfA
appropriate polynomial generating functions. It is natﬁ?al ﬁo
ask how difficult are these polynomials to e&aluaﬁé.

-The usual model 6f computation employed in such a study is
the straight line algorithm, which informally consists of a
lihear sequence of instructions each calliné for the‘éddition,
mulfiplication etc. of two previously- computed values or inputs.
The inputs to. the compﬁta;ion are indeterminates and;elementé
of the field hnderlying~the computation. The complexity of
- the computatidn is measured, perhaps in terms of the total nuﬁber
of arithmetic operations used, perhaps by the nuﬁber of
muitiplications required. There are two essential features of
the model. ‘Pirstly, the arithmetic operations, and the
elements of the underlying field, are atomic units of computation
and are considered indivisible. We are concerned neither with
the representation of field elements nor with the implementation
of the operations of a more fundamental leQel; furthermore, it -
is not considered important that the time taken to execute eacﬁ
step of the algorithm on a "reasonable" machine would be é
function of the length of the representations of the values being
manipulated. (It may be remarked in passing that this mirrors
the situation in real computers, where approximations to real

numbers are held in small, fixed multiples of words and are

~



operated upon as single entities.) The second feature of the
model is that it lacks uniformity of the kind possessed by Turing
machines. A separate straight linevalgorithm is provided for
each input size - in this context, input size is the number of
indeterminates in the polynomial being computed. A Turing
machine, on the other hand, is expected to act uniformly over

all input sizes.

Ideally, we would like to know good bounds on the number of
Ooperations required to compute specific polynomials in such a
model. Unfortunately, such bounds seem, in general, very
difficult or impossible to obtain. We must content ourselves
with results which are less cut and dried but still hopefully
informative.

In this thesis two distinct approaches are described to the
problem of determining the inherent complexity of evaluating
multivariate polynomialé. In chapter 2, a classification is
described which enables, subject to a reasonable assumptioﬁ, a
broad division between tractable and intractable polynomials to
" be made. A class of polynomial families is described whose
members may be informally characterised as having easily computable
specifications. A notion of reducibility between polynomial
families is éresented which enables a "completeness class" of
families to be identified. The members of the completeness class
are characterised as being at least as difficult to compute as
any member of the original class. (This situation mirrors the
more familiar, machine based completeness class in NP.) The
completeness ;lass has the property that either éil its ‘members
can be computed using a number of arithmetic operations which is
polynomial in the number of indeterminates, or éégé can be; The

heavy weight of circumstantial evidence points to the latter.



The aforementioned completeness class was introduced by
Valiant [43], who showed that several naturally occurring
polynomial families, including the permanent function and the
generating function for Hamiltonian circuits in a complete graph,
are contained within it. Perhaps the most interesting family
vto be classified in this way was the generating function for
dimer arrangehents on the 3-dimensional cubic lattice graph - a
problem which has its origin in the study of the physical
properties of crystal lattices. An efficient algorithm for
computing the generating function on 2-dimensional lattices had
been known for some time, and attempts had been made to extend
the method to 3—diménsional lattices. The significance of the
result was that it explained the failure of these attempts; since
the generating function for a particular 3-dimensional lattice is
a member of the above completeness class, it is unlikely that any
efficient algorithm exists which solves the problem in general.

A closely related problem is that of computing the generating
function of monomer-dimer arrangements on a crystal lattice. If
the lattice is taken to be the j—dimensional‘cubic lattice, the
intractability of the task follows easily from the completeness
result for dimer arrangements. It is tempting to suppose,
however, that some technique akin to that employed in the .
enumeration of dimer arrangements on 2-dimensional lattices might
be applicable to the related-monomer—dimer problem. In chapter
3, this is shown to be very unlikely, as the generating funqtion
for monomer-dimer arrangements on the 2-dimensicnal rectangular
lattice is also a member of the completeness class. In the same
chapter, another crystal lattice enumeration problem, the so-called
Ising problem, is shown to be intractable for 3-dimensional lattices;

again this contrasts with the 2~dimensional case for which an



efficient solution is known.

In chapter 4, the same classification is applied to the
study of reliability measures for communication networks. Such
networks have been intensively studied for some time and many, but
not all, of the natural reliability measures have been shown to
be computationally intractable. One measure, for which there
was previously no evidence of iﬁtractability, is the probability
that all stations of a network can communicate with each other.
This measure is treated in chapter 4, and is shown to be a member
of the algebraic completeness class.

The main observation to be made about chapters 3 and 4 is that
the framework described above, and which will be established in
chapter 2, enables problems to be treated which have escaped
classification in other formuiatioﬁs. This is suggestiﬁe of
the power andbutility of the algebraic reductions employed;

In the final éhapter, a number of precise bounds on the
number of arithmetic operations required to compute certain
polynomials are obtained, at the expense of limiting the model
of computation somewhat.. Computations are considered which
involve only the arithmetic operations {+,%}‘and non—negati&e
real constants, and lower bounds obtained using a combinatorial
argument. As a bonus, the results hold good for computationé
over a number of other domains - a ﬁotable example being the
minimax algebra (the real numbers with the operations of ﬁin
and +) which has been used, on a number of occasions; fof
specifyihg and solving combinatorial optimisation problemé:

This restricted form of computation, often terﬁed monotoﬁé
arithmetic, has been studied by other authors. Schnorr [32] ha§
presented an argument for bounding the number of additions

required in the computation of various multivariate polynomials.
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Shamir and Snir [34,35], in addition to obtaining lower bounds
on the formula depth of several polynomials, have determined
bounds on the number of multiplications required to compute
specific polynomials. Among the polynomials to which their
technique has been applied are the permanent function on n2
variables, for which a bound of 0(1.88n) exists, and the
generating function for Hamiltonian circuits in the complete
graph on n vertices, for which a similar bound applies. Although
exponential, these bounds are not tight, and chapter 5 will
present a technique for obtaining exact, that is to say
attainable, bounds for these and other multivariate polynomials.
In particular, we shall show that n2n_1—n muitiplicatiohs are
both necessary and sufficient for the monoténe computation of
the permanént of an nxn matrix, and thatXn—i)(n—2)2n—3+(n—1)
multiplications is optimal for the generating function for
Hamiltonian circuits on the complete graph of order n. In
addition, provably optimal monotone algorithms are presented for
iterated matrix multiplication and iterated convolution.

The results obtained in chapter 5 are interesting, even if
the computational model is rather weak, as exact bounds are a
rarity in the field of computational complexity. More
importantly, however, the results act as pointers to where ‘the seat
of power lies in less resﬁricted models. It is shown, for
example, that an exponential number of arithmetic operations are
necessary in any monotone computation of the generating function
for spanning trees in a complete graph, whereas the same polynomial
can be efficiently computed if:negation is allowed. ( The_
existeﬁce of such an exponential gap is not a new discovery - it
had been demonstrated by Valiant [42] in connection with the dimer

generating function on a particular 2-dimensional lattice.)



In the same vein, it is shown that for computations in the
minimax algebra an exponential speéd-up can be obtained by
introducing branching. Computing a maximum matching in a
bipartite graph, for example, requires an exponential number of
{max, +} operations, whereas known algorithms (see Lawler [16]
p. 205) accomplish this in a polynomial number of steps, if

branching is allowed.



2. AN ALGEBRAIC COMPLETENESS CLASS

2.1 Informal Description

In classical, machine based, complexity theory, the objects
of interest are computationally defined classes of languages, for
example the class NP of languages-accepted by non~-deterministic
Tufing machines which halt within a number of steps bounded by a
polynomial function of'input size, Iﬁ is a well-documented
phenomenon that, within such classes of languages, certain
naturally defined languages exist which are, in some sense, as
hard to compute as any in the class. These naturally defined
languages belong to a completenéss class which has the following
characterisation: for any language L in the cl;ss, and any LC in
the completeness class, there is an efficiently computable
function £ with the property that

we L<=> f(w) ¢ Lc.

By taking the class NP and drawing f from P, the class of
functions computable by polynomial time deterministic Turing
machines, the well known NP-completeness class is obtained (see;
for example, Karp [13]). Note that the class and the reductions
which establish the completeness class are both computationally
defined.

Following Valiant [43], we shall take an approach which
mirrors this, but does away with all computationgl refefences
(although the results obtained certainly retain computational
interest and implications). Rather than dealing with classés
of languages, we shall be considering classes whose elements afe
polynomial families. These families consist of polynomials in

several indeterminates, the polynomials being indexed by the

natural numbers. Our convention will be that the index of a

polynomial shall be equal to the number of indeterminates on which



it depends; in this sense the index corresponds to the notion of
input size. The classes of polynomial families which we shall
consider are defined in a way which is partly combinatorial,
partly algebraic, but makes no reference whatsoever to machine
models.

The reductions employed between polynomial families are
straightforward substitutions of indeterminates by other
indeterminates or constants. Considering the very simple
nature of the reductions it is rather ;urprising that many
naturally defined polynomial families (for example those déscribed
in chapters 3 and 4 of tﬂis thesis, or by Valiant in [43]) turn out
to be elements-of a completeness class defined in this algebréic |
way. It should be noted that if a polynomial family is a
projection of another, then polynomials in the first family can
be computed by evaluating elements of the second with suitable
assignments to ﬁhe indeterminates. This situation parallels thé
programming concept of package, since inputs are "plugged—ih"
without pre-computaﬁion.

The particular algebraically defined class we shall bé
dealing with is the class of "p.--def-inablé').polyn.o,md.als"f
Combinatorial enumeration problems are usually Qiewed in termé
of evaluating a certain polynomial called the generating funéfién;
for many natural enumeration problems this polynoﬁial is p-
definable. Moreover, for many "hard" enumeration probléﬁS‘the
associated generating function is complete in the algebfaic
sense. Note that if a polynomiai family is shown to be coméieéé,
then an algorithm for evaluating members of the faﬁil& Qéy bé
used as a "package" for evaluating members of any p—defiﬁable
family of polynomials. Since the class of p-definable

polynomial familes contains many families which, for empirical



reasons, are thought to be hard to compute, showing a polynomial
family to be complete is considered to be good evidence that

it is difficult to compute.

2.2 Notation and Definitions

Let F be a field and let F[xl,...,xn] be the ring of
polynomials over the indeterminates xl,...,xn with coefficients
drawn from F (see, for example, Godeq?ht [10]). We shall be
dealing extensively with families of polynomials, conventionally
represented by P and Q, of the following form
P = {pil P, € Flx,,...,x.1, i=1,2,..}.

If it is necessary explicitly to exhibit the arguments of Pi' we
do so by writing Pi(xl""'xi)'

The set of all formulae over F is defined recursively as follows:

"c", where ce P, is a formula.

"xi" where xi is an indeterminate, is a formula.

ll(f @ g)" i . .
where f and g are formulae, is a formula.

"(f ® g)u
The symbols & and & are intended, for the moment, to be

uninterpreted syntactié objects. The size, lfT, of a formula

f is an integer-which is also recursively defined:

]cl =0
x| =0
[(Ee )| = |£] + |g] + 1.
(£ @ g = |£] + [9| + 1.

Each formula represents a polynomial; the polynomial pf represented

by a formula £ is obtained as follows:



Pifog)

Png-

Pifeoaq
(On the right-hand side of the defining equations, we are
employing ordinary addition and multiplication of polynomials:)
Clearly a polynomial can be represented by several formulae,

for example the polynomial

By Ep TR X3

is represented both by the formula

of size 3, and by the formula

(x, ® (x ® X

1 2 3))

of size 2.

The formula size Pi} of the polynomial Pi is the minimum of

l f‘ over all formulae f which tepresent Pi'

We now introduce an important class, that of p-definable
polynomial families. A polyncmial family P over F.is
p-definable if there is a family Q and a one argument polynohial

t(.) such that for each.i there exists a j with the property that

Pi(xl,...,xi) = E Qj(xl""’xj)

-1i.

j
(x ,xj) e {0,1}.

iv1’" e
and Ileét(i).

In the next chapter a sufficient condition for a polynomial
family to be p-definable will be presented; for the present, let
it just be said that the class of p-definable families is very
rich and includes most of the generating functions associated
with classical enumeration problems.

Having introduced the class of polynomial families we shall

be working with, let us now consider a notion of reducibility

- 10 -



between members of the class. We shall say that Pie;F[xl,...,k 1
is a projection of Qje:F[xl,.;.,xj] iff there is a mapping

g: {xl"'f’xj} -+ {xl,...,xi}LJF
such that

Pi(xl""'xi) = Qj(c(xl),...,c(xj)).

The family P is a p-projection of-Q iff there is a one argument

polynomial t(.) such that for all i, Pi is a projection of Qj for
some jsSt(i). It should be noted that if two families P and Q
are p-projections of each other then they are Qf similar
computational difficulty, for P can be used as a "package" for
computing Q-and.vice_versa;_we need only make the correct
.assignﬁents to the indeterminates.

We can now establish thé*completeness class containing those

p-definable families which are "hardest to compute"”. A

polynomial family P over F is complete over F if{

(1) P-is .p-definable
'~(ii)' Every p;definable family’Q is a p—projeétion of P.
'Although it is notJimmediatelytapparent that ¢omplete famiiies
exist, we'shall see in the next section that the completeness

class is non-empty.

2.3 ~ Some Key Results

Pirstly, we introduce a useful, sufficient condition for a

pdlynomial family to be p-definable.

Theorem 2.1 Suppose P = {Pl’P s...} is a family of polynomials

2

over an arbitrary field F, in which every monomial of every
member polynomial has coefficient 0 or 1. Suppose also that

there is a polynomial time bounded Turing machine which can

determine for any vector v€_{0,1}j' whether the coefficient of

- 11 -



[1 x,
v.=1 3
J

in Pi is 1. Then P is p-definable over F.

Proof Due to Valiant (see proposition 4 of [43]) E]

This simple, yet powerful result. is sufficient to déﬁoﬁ#tf%té
the p-definability of all the generating functions introdﬁééd
in chapter 3. Each of the polynomial families considered théfe
has . easily computable 0-1 coefficients and the theorem ﬁay be
directly applied. Theorem 2.1 cannot, however, be difectly
applied to the reliability polynomials considered in chaptér‘4:

These polynomials are of the form

P.(P,,Pyr--,/P,) = z [C(Y_) I_I p. I_I'(]._P.)]
Lo T v efo,1}t v.=1 ij=o .

where c(v) an easily computable function mapping {0,1}1“ to {0,1}.

B§ theorem 2.1 the polynomial family

PL.(PyrecesPsedyreee,d,) = >
2171 i“™ i v e{0,1}

v.=1
J

e TT 2y T[] CI-]
* [ J v.=0 J
J
is p-definable, and hence, by the definition of p-definability, we
. . : . '
are assured of the existence of a polynomial Q 21+k(p1""’pi’
ql"”’qi'xl""'xk) with the propertles
P! (p,q) = > Q. . (P,g,x)
. q ek BrdrX
2i 5'3{0,1}k 2i+k

and !Q.2i+kl £t(i) for some polynomial t(.).

Now

P.(p) = 2 Q' 254k Pyr--/Pyr(1=p) s (1-p) )
i'= k
EE{O:].}

= z k Ql+k(pll'.'Pi’§)
x ¢{0,1}

where |Qi+k|§t(i)+i. Hence, by definition, P is p-definable.
When the polynomial families considered in chapters 3 and 4 are
introduced, it should be immediately apparent, from the above

discussion, that they are p-definable; no further comment will

- 12 -



be made about this point.
Let us now turn our attention to the completeness class
itself, i.e. the class of polynomial families which are complete

over F. IfX = {xij | 1£1i,55n} is a matrix of indeterminates,

then define the permanent function pernxn()(nxn) (or just per(xnxn)
where no confusion arises) by

per(X ) = Y x x v..X
nxn meS(n) 1,m(1)72,m(2) n,T(n)

where S(n) is the set of all‘permutations of the first n natural
numbers., It will be seen that the permanent is similar to the
more familiar determinant functiqn, and differs from it
formally onlf in the respect of the sign assigned to the
coefficients of the monomials. The permanent is of great:
significance in combinatorial mathematics, and a comprehensi&e
account of it is given by Miﬂc (19]. The following theorem
shows two things, firstly that the completeness class is non-—
empty, and secondly that thé determinant and the permanent,
despite definitional similarities, are apparently of widely

Separated computational complexities.

" Theorem 2.2 The family {per(xixi) |i=1,2,...} is complete over

any field not of characteristic 2.

Proof Due to Valiant (see theorem 2 of (43]). E]

The practical importance of theorem 2.2 springs from the
following considerations. Suppose P is a polynomial family
which is known to be complete over F. It is immediate from
the definition of p-projection that the relation "is a p-projection

of" is a transitive one. It follows that, in order to demonstrate’

that another family Q is complete over F, it is sufficient to

show that



(1) Q is p—defiﬁable

and . (ii) P is a p-projection of Q.
Theorem”2.27 by explicitly exhibiting a complete polynomial,
"gives us a starting point from which we can prove other families
complete.

We close this section by sho&ing the completeness of the
- partial permanent function. The method serves as an illustration
of the above technique, while the completeness result itself
serves as a useful base for the reductions of chapters 3 and 4.

*

if ann is as before, the partial permanent per nxn(xnxn)

is defined by

per*(xn_ ) = 2 [l

xn neS*(n) iedom () ETALEY

where S*(n) is the set of all injective (but not necessarily

- total) functions {1,2,...,n} ~>{1,2,...,n}, and dom(mw) is the
démain of w. (The null prodﬁct is taken to be 1; as a consequence,
per*(xnxn) has a term 1 of degree 0.) bNote that monomials of

*,
Per(anh) correspond to sets of indeterminates which are row-wise

and column-wise disjoint in ann.

" .
Lemma 2.3 The family {per (xixi)l i=1,2,...} is complete over

any field not of characteristic 2.

Proof Representing the nxn identity matrix by Inxn and the nxn

zero matrix by Onxn’ the following is an explicit expression of

the permanent function as a projection of the partial permanent:

By way of verification, we note that the right hand side of the

*
identity is a linear combination of monomials of per (anﬂ and,
moreover, that each such monomial of degree d occurs with

coefficient



per*<‘I(2n-2d)x(2n-2d) I o(2n-2d)x.d>

04 x(2n-2d) Oaxa

This coefficient is clearly 1 if d=n, but otherwise.is equal to

2n-2d 2n-24 2n-24 2 2n-24 ..2n-24
( : >+( ) )(-1) +< ; )(—1) +...+<2n_26>(—1)

= 0.

The result follows from the completeness of the permanent function

over such fields (theorem 2.2). D

- 15 -



3. FIRST APPLICATION: TWO PROBLEMS. FROM CRYSTAL PHYSICS

3.1 Enumeration Problems in Crystal Physics

The domain of crystal physics is one rich in combinatorial
enumeration problems. A crystal lattice, consisting of a regular
array of atoms and bonds joining them, is given, and we are asked
to find the number of distinct figures which can be inscribed on

.the lattice and which satisfy a certain given cqndit;on. Such
questions have been treéted by many aﬁthérs including Heilmann and
Lieb [12], Kasteleyn [14], Montroll [21] and Percus [26j. Two
problems of the above type are preéented here and analysed using
the methods introduced in chapter 2.

Our first example is motivated independently by two distinct
physical models. A two—dimensional version of the problem arises
in the mathematical treatment of the properties of a system of
diatomic molecules, or dimers, which are adsorbed on the surface
of a crystal. The dimers are attracted preferentially to pairs
of adjacent lattice sites which they then occupy. - The

- thermodynamic properties of the system are to some extent

determined by the number of ways in which the dimers can be

arranged on the crystal without overlap. The dimer problem is

the enumeration problem which arises if we insist that all

lattice sites be occupied, while the monomer-dimer. problem is

concerned with counting the arrangements which may occur if we
allow vacant sites or monomers. An analogous three-dimensional
version of the problem arises in the theories of binary mixtures
and cell-clusters.

The second example is concerned with the "Ising model" of a
crystalline system. In this model, each atom of a crystal can

be in one of two states ; adjacent atoms which are in different



states contribute a fixed amount of energy to the sjétem whereas
those in similar states contribute an amount which is equal but
opposite in sign. It can be shown, see Kasteleyn [14], that
computing the thermal properties of such a system is equivalent to

an enumeration problem of the type which we are considering.

3.2 Graphs and Lattices

In this and the next chapter we shall be drawing on several
concepts from graph theory. Here, for completeness, we include
some basic graphical definitions; others will be introduced as
and when required. It is intended that the terminology used
should, for the most part, be consistent wifﬁ that of Berge [(3].

A graph G is specified by a pair (V,E), where V = {Vl'v2""'vh}

is a set of vertices and E a set of edges. For a directed graph

the set E is composed of ordered pairs of vertices, i.e.

E<;{(u,v)| u,v eV}, and for an undirected graph E is a set of

unordered pairs, i.e. Ec{{u,v} lu,ve:V}. An edge (u,v) of a
directed graph has endpoints u and v, and is said to be incident

out of u and incident into v. The number of edges incident out

of u is the outdegree of u, the number of edges incident into v is

the indegree of v. An edge {u,v} of an undirected graph has
similar endpoints and is said to be incident at u and v. The

degree of u is .the number of edges incident at u. The degree of
an undirected graph is equal to that of a vertex of maximal degree
in the graph. The order of a graph G is the cardinality of its
vertex set V. the size of G, denoted by IGI, is the cardinality of
the edge set E. The term node is used as a synonym for vertex.

It will prove convenient to supply additional structure for

our graphs. A labelled graph is a graph G together with a mapping

A: E + A which takes edges of G into somellabel set A. The label



sets we shall use will be of the form A = FUX where F is a
field and X is a:set of indeterminates over F. We shall henceforth
assume that all graphs are iabelled graphs.

There are two graphs which we shéll have cause to refer to

frequently. The complete graph, Kn, on n nodes is defined in

the undirected case by the triple.

\'4 =V{v1,...v }
n
E={{v.,,v.}|[1gi<3jsn}
3 0T
A: E » X, {vi,vj}r->xij (ig3)

and in the directed case by

vV = {vl,...,vn}

E

{(v.,v,) | 154,55 n}.
S

A: E > X, (vi,vj)h+ xij

Here X = {xijl 1<i,j<n} is a set of indeterminates. The (undirected)

complete bipartite graph, Kn a’ on 2n nodes is defined by the
14
triple

v

{ui,...,un,v ,..:,vn}

1

=
I

{{ui,vj} | 1<i,5gn}

A: E > X, {ui,vj} > xij.

We shall, for the moment, restrict oui attention to
undirected graphs. TwO method§ of.deriving smaller graphs from
larger will interest us. If G = (V,E) is a graph then G'= (V',E'")
is said to be a subgraph of G iff V' ¢ V and E'= {{u,v}eE|u,vev'}.
(The subgraph G' is said to be induced by the set of vertices v'.)
In addition, if G is as before, and E' is ggz_subset of E, then

G' = (V,E') is said to be a partial graph of G.

For the purposes of the current chapter, in which we are

concerned with crystal lattices, we shall need to consider certain



graphs. with a zjegulair structure. Two such will be introduced
~here. R will denote the rectangular lattice graph whose n
vertices are arranged in two-dimensional Euclidean space according
to the Cartesian coordinates {(,3) | 0si,j=n-1}, and whose edges
consist of pairs of nodes which are separated by unit distance.
(It will be assumed that the edges are labelled with distinct
indeterminates over some field.) A ﬂmree—dimensional variant

of the above, the cubic lattice graph Cn, has 2n2 vertices placed
according to the coordinates {{i,5,k) | Q‘gi,_jg n-1, k=0,1}.

Again, edges consist of pairs of nodes which are separated by unit

distance.

3.3 Generating Functions and Polynomial Families

Suppose that S is a function which maps an arbitrary graph
G = (V,E) onto a subset of 2E, for example S (G) might be the set
of all perfect matchings of G. ' Recall that the graphs we are
considering are labelled and suppose that the label seﬁ is
A = FUX where F is a field and X = {xl,...,xn} is a set of
indeterminates over F. Denote by M the set of all monomials in

. ) . r r
the indeterminates X, i.e. M = {x, 1 ... x_ n | TiseeesT € N}.

1 n 1
Then the labelling ) on E extends to a function on the subsets
ACE in the following way:
E .
A:2 >F x M, A'—*egA)\(e).
(The product used here is the multiplication in the polynomial
ring.) The pair (S,G) specifies an enumeration problem, namely

evaluating the cardinality of S(G), and defines a corresponding

generating function (g.f.):

A(a) . (3.1)

GF (G,S) AezS(G)

(The sum used is the addition of the polynomial ring.) Note

that if A maps each edge of G onto a distinct indeterminate, then
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monomials of (3.1) correspond in a naturai'way.to the objects we
wish to enumerate.

In order to construct, from the.defining function S of the
enumeration problem, a polynomial family of the type considered
in chapter 2, we need only specify a family of graphsi the
generating functions fo; these graphs will comérise the polynoﬁial
family. As an example, fhe family of graphs {Knl n=1,2,...}
generates the polynomial familyf{GF(Kn,S)I n=1,2,...}. This
family is "universal" for the enumeration problem in the sense
that the g.f. for an arbitrary graph of order n can be cbtained
from the nth element of the family by a projection which maps
certain of the indeterminates xij onto 0 while leaving the others
fixed. Two éolynomial families which we will be considering are
the following:

{GF(R_,S)| n=1,2,...}
n

“{GF(C_,S)| n = 1,2,...}.
n

It will be recalled that Rn and Cn are the rectangular and cubic
»iattice graphs defined previously.

The generating function described above may be evaluated for
0,1 assignments to its indeterminates in order to yield solutions
to the corresponding enumeration. problem. In'addition, a component
of certain degree can be extracted from the polynomial in order
to yield the number of structures of given size which exist in the
lattice. The generating function also allows us to assign a
weighting to each lattice edge corresponding to some physical
quantity which is not uniform over all bonds. Kasteleyn [14]
lists several reasons why enumeration problems on lattice graphs
should be attacked via the corresponding generating function, and

the empirical evidence to support this view is very strong:
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generating functions consistute the only known method for solving
those non-trivial lattice problems which are known to be tractable.
We therefore argue that showing a g.f. to be complete for some
family of lattices is good evidence that the corresponding

enumeration problem on such lattices is intractable.

3.4 The ‘Monomer-Dimer Problem

In order to discuss dimer arrangement problems we need to
introduce the graph theoretic notion of matching. A partial
matching of a graph G = (V,E) is a subset M of E with the
property tha£ no pair of elements of M are incident at a common

node. A vertex v eV is said to be saturated by M if there

exists an ‘edge in M which is incident at v. A perfect matching
of G is a partial maﬁching,of G which saturates all the vertices
in V. The monomer-dimer problem is that of enumerating paitial
matchings in a'lattice graph, while the dimer problem is concerned
with the enumeration of perfect matchings.

Let SMD be the function which maps an arbitrary finite graph
onto the set of all partial matchings of the graph. W¢ may
write down the generating function for monomer-dimer arrangements
on a graph G as

MD(G) = GF(G,SMD) (3.2)

where GF is defined as in (3.1). Likewise, if SDI is the
function which maps a graph onto the set of all its perfect
matchings, then the g.f. for dimer arrangements may be written

DI(G) = GF(G,SDI) (3.3)

In the case of the rectangular and cubic lattice graphs
introduced earlier, in section 3.2, these g.f. yield the following

interesting polynomial families:
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{prr )| n=1,2,..} (3.4)
'{DI(,cn)l n=1,2,..} (3.5)
(R )| n=1,2,.03 (3.6)

{mo(c )| n=1,2,..} (3.7)

Kasteleyn [14] shows how the g.f. for dimer coverings of a
Planar graph (for a definition of planar see Berge [3]) can be
expressed as the square root of a determinant of size equal to the

order, k, of the graph; such a determinant can be evaluated in

O(k2'53) operations using the matrix multiplication method of
Schonhage [33] coupled with the LUP métrix decomposition algorithm
described in Aho et al. ([1] p. 235). Each member of the

family (3.4) can therefore be evaluated using O(nS.OS) arithmeti¢
operations.

It is interesting to observe that when we pass from 2-
dimensional to 3-dimensional lattices the g.f. becomes apparently
much more difficult to evaluate. The essence of this phenomenon
is captured by a result of Valiant [43] which asserts that the
family (3.5) is complete over any field not of characteristic 2.
It shéuld be noted that using even the merest degree of freedom
which 3-space allows (the cubic lattice Cn has only unit thickness)
enables us to convert a computationally tractable problem into an
intractable one. A second observation is that testing for the
existence of a perfect matching in an arbitrary, possibly non-
planar, graph of order k, can be achieved in time’@(kB) using a
method of Edmonds, which is described in Lawler [16 ] p. 233.

This is a typical example of the now well-documented gap which can
exist between the complexity of an existence problem and its

corresponding enumeration problem. (See Valiant [41].)

It is the aim of the following section to show that the family
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(3.6}, .and hence (3.7), is complete in the sense of chapter 2.
The consequence of this result is that it is unlikely that
enumeréting monomer-dimer arrangements on a rectangular lattice
is computationally feasible. It will afterwards be suggested
that the exact nature of the lattice is immaterial to the result
and that the generating function remains complete for a variety
of other lattice graphs. This result stands in stark contrast
to the tractability of the planar case of the dimer enumeration

problem.

3.5 The Completeness of the Family {MD(le}

Our starting point in this section is the familyA{MD(Kn,n5}
of g.f.'s for monomer-dimer-;rrangements on complete bipartite
graphs, the completeness of which .is almost immediate. The
bipartite graph will, for n 23, be non-planar, but we will provide
a sequence of transformations of the bipartite graph which result
in a planar graph of order CKn4). These transformations have
the property that they preserve the monomer-dimer g.£. of the
graph. In this way, we will have constructed a family of planar
graphs, the monomer-dimer gif.'s of which form a complete family.
Finally a space-efficient technique is used to embed the members

of this family of planar graphs, in instances Rk of the rectangular

lattice graph.

Lemma 3.1 The family {MD(Kn n)} is complete over any field

’

not of characteristic 2.

Proof The monomials of MD(Kn n) (see section 3.2) may be

characterised as products of elements of the matrix
X ='{xij[ 1<i,jsn} in which pairs of elements in the product

are row-wise and column-wise disjoint. There is thus a 1-1

correspondence between monomials of the above polynomial and those
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of per*(X). We deduce that MD(Kh'ﬁ) = per*(x), and the result
follows from Lemma 2.3. E]

The transformations we shall apply to the complete bipartite
graph to yield a planar graph are of the following form. Choose
a subset of the vertices of the graph, excise the subgraph :induced
by those vertices, and insert some prescribed replacement subgraph.
In order to make precise the notion that a transformation of a graph
preserves the monomer-dimer g.f. of that graph, we require some
new definitions. |

We introduce a restricted form of the monomer-dimer g.f..
Suppose H = (V,E) is a graph and Ug;Uog v. Define

%*
MD (H,U ,U) = > A(B) (3.8)
. © Ae—.S(H,UO,U)

where S(H,UO,U) is .the set of all partial matchings'on H which
saturate all the vertices in U but none of those in (UO-U). We
remark in passing that

*
MD(H) = U%U MD (H,U_,U),  {for any jucea( Uo,
o}

Suppose that H is as before , a simulation S of H consists of

vV +Vv_.

a graph HS = (VS, ES) together with an injective map ig: S

(Note that we allow the order of H_ to be strictly greater than

S
that of H.) We say that a simulation S of H is faithful iff,
for all U¢gV,

* *
MD (HS,lS(V),lS(U)) = MD (H,V,U).

It should be clear that the definition of faithful simulation
captures the notion of generating function preserving
transformation which we require. For if G is a graph which
contains H as a subgraph, we may excise H from G anq replace it

by H_ (identifying the nodes according to the injective map is)

S
without affecting the monomer-dimer g.f. on G. Three simulations,

which are claimed to be faithful, are now presented. The first
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FPigure 3.1

H=K,

Figure 3.2

@1

©

Figure 3.3
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two show between them that a single edge may be simulated by a
"chain" of edges of arbitrary length.

(S1) Simulation of K2: The,éimulation is described in fig. 3.1.

Here o= y= 1, B= 8= -1 and x is an indeterminate. Note that

the nodes labelled u and v in H are really i_, (u) and-i_, (v)

si ;

st s1

however, no .confusion should arise from this abuse of notation.

The following four observations establish that the simulation is
*

faithful. (For brevity, we let £(U) = MD (Hg,, {u,v},0)and

* .
g(u) =MD (B, {u,v},0))

£(@) =1 + B+ v+ 8+ BS=1 = g (@)

£({u}) 2u+ ab =0 = g({uh)

£{vh = x+8x =0 = g({vh

f({u,v}) =ax =x = g({u,v}).
(S2) Simulation of.K2: The simulation is described in fig. 3;2;
0 ==-1, 8 =8 =1 and v = -2. 'fhe four cases are listed as

. *
before. (For brevity, we let £(U) = MD (H {u,v},u) and

s2’
g() =MD" (H,{u,v},0))

£(@) =1 +B+ v+ & =1 = g(@)
£({ul) = a + oS+ ay =0 = g({uh
£{v}) = x + Bx + yx =0 = g({vh
f({u,¥)=ax + ayx =x = g({u,v}H.

(S3) Simulation of a crossover: Our aim is to construct a

planar graph which simulates the crossover of fig. 3.3. We
first remark that it is sufficient to treat the special case
when x,y = 1. To see this we note that the edges {s,t} and {u,v}
may be expanded using simulation S1 (see fig. 3.1), and the
crossover arranged to take place on the vy (=1) weighted edges.

We construct the simulating graph stepwise from simpler

components. First consider the graph Fl1, with distinguished
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Fl:

Figure 3.4

F2:

Figure 3.5
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noaes a,b,c, which is described by fig. 3.4. Here o and B are

2 -1/6
the distinct roots of the equation x2 +yYyx -y =0, and vy = 2 / .
(Note that ¢ and B are real, and have the properties
a + B8 =-y, 0B = —72.) The properties of F1 may be summarised

as follows, as before we employ the succinct notation

£,(A) = MD*(Fl,'{a,b,c},A):

£, =1
£,({ab) = £,({b}h = £, {ech
=a +8 +v
= -y +y
=0
£,{a,p}) = £, ({b,ch = £, ({a,c}) i

= o? + 8% + aB + 20y + 28y

= (o + 5)2 - aBf + 2y (o + R)

2 2 2
=y +vy -2

=0

fl({a,b,c}) = a3 + 83 + 3azy + 382y + 3aBy

(o + B)(a2 -a84+62) + 3y(a2 +82 +aB)

(@ + B)(a + 8)2 - 3a8] + 3y[(a + 8)2— aB]

‘Y(Yz + 3Y2) + 3Y(Y2 +72)

2Y3

Jz

The second stage of the construction combines two copies of

Fl into a single graph F2 as described in fig. 3.5. The
spbgraph Hl is a copy of Fl with vertices a,b relabelled 4,p,
and HZ2 is another copy with vertex c relabelled q. The scalars
o and B are set to -1 and 2 respectively. We use the following
abbreviated forms:

£,8) = mp” (F2, {a,b,c,d},d) (Ac{a,b,c,d})
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H;(a) =m0 (u1, {c,d,p}, A) (acfc,aph

hy(a) =MD (82, {a,b,q}, &) (a¢ {a,b,q}).

Only for two values of its argument does f assume a non-zero value,

these being

2

£,(8) = h (h, (@) [1 + 8 +2a + a

= 1.1.2

= 2,

1

and £,({a,b,c,d}) hl({c,d,p})hzua,b,q}) .1

V24/2.1

= 2

For all other arguments, £, is zero, a representative example being

2
hl(a)hz({a,b,q}) (1 + al

1.1/2.0

=0

fz({a,b})

]

The function f2 encapsulates the properties of the graph F2

which are relevant for the verification of the final stage of
the construction. In this, F2 is augmented to a graph F3,
described by fig. 3.6, which has the properties required of a
faithful simulation of the crossover of fig. 3.3. The
assignments to the scalars are a = 1/\/53 B = —1/Vﬂ5, Yy =—-1/2.
and we make the usual style of abbreviation:

f3(U) = MD*(F3, {s,t,u,v}, U) (ug{s,t,u,v}).

The verification of F3a&a a faithful simulation is purely mechanical:

£,(0) = £,(0) [1+ 4y + 2v*1 + £,({a,b,c,ah .1
= 2(-1/2) + 2.1
= 1

f3({s}) = ... = f3({v})

EJ(@) (@ + B8] (1 +2v]°

2.0.0

U}

= 0.
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f3({u,t}) = ... = f3({s,u})
= f2(¢) [a2. + GZY + 82 + 62Y + aB]
=2 [1/2 - 1/4 + 1/2 - 1/4 - 1/2])
=0

f3({s,t}) = f3({u,v})
= £, (o° + 8% + 208 + 2aBy]
=2 [1/2 + 1/2 - 1 + 1/2]
=1

'f3({s,u,t}) = ... = f3({v,s,u})

= £, @ + 8 + a8 + as?)

\ = 2(a + B) (a® + 8%
-0

£,(ls,t,u,vh) = £, 0f + 8%

]

2 [1/4 + 1/4]}
= 1.
We thus see ‘that F3 has exactly the properties réquired for a
faithful simulation. This completes the construction.
We are now in a position to prove a preliminary theorem.

which will lead to the main result of the section.

Theorem 3.2 There exists a family of graphs {Gn}, with the
following properties:
(1) Each Gn is planar,
- 4
(i) |6 | = om™),
(iii) {MD(Gn)} is a complete family over the real field R.
Proof Our starting point is the complete bipartite graph

Kn ; we know from Lemma.3.1 that MD(Kn h) is complete over R.

14 14

It will be shown that, using the simulations which we have

presented, Kn n may be transformed into a planar graph Gn' whose

14

size is O(n4). Since the simulations have the property that they
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are faithful, MD(G#) = MD(KAJA).and-the result follows.

[4

The construction of Gn proceeds as follows.  Each edge of
Kn n is expanded into a chain of n2 edges by recursively applying
7
the simulation Sl1. As there are only n2 edges in Kn n we may

14

arrange that each crossover in the transformed graph takes place
on a separate pair of edges. Each crossover is then transformed

using simulation S3 into a planar .subgraph; the resulting graph
is Gn. E]

We now arrive at the main theorem.

Theorem 3.3 ' The family {MD(Rn)} is complete over R.

Proof - The proof proceeds in two steps. The planar graph Gn
of the previous theorem is transformed by the *unfolding" of its
vertices'into‘a graph of degree 3. The resulting degree three
g;aph is then efficiently embedded in Rn using a known result on
planar embeddings. The result will follow from the observation
that both of these stepslpreserve the monomer-dimer g.f..

The first step, of unfolding vertices 6f degree greater than
3, is illustrated in fig. 3.7. Here we consider the unfolding
of a vertex v, of'degree d, with incident edgés labelled by

indeterminates xl,...,x into 4 vertices of degree less than

a’
or equal to 3 and one of degree a—l. Clearly the unfolding
may be repeated until all vertices have degree less than éf eéual
to 3. The values of the scalars used in the construction are
@ =1, B=-2, y=1and § = -1. |

Suppose that the graph of which v‘is a vertex is H and thaﬁ
the graph resulting from a single unfolding of the type shéwn in
fig. 3.7 is #H'. Denote by %) the original edge set of H, aﬁd

by E1 the set of added edges, i.e. those labelled a, B, Y, S.

We wish to show that MD(H') = MD(H). Now by definition,
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X(Ab) X(Al)XHr(AOLJAr)

E

A.CE A 1

0="0 1

@) = D>

where XH(A) is 1 if A is a partial matching of H, and 0 otherwise.
Separating the two sums we obtain:

MD(H')

fl
™M

A(AE(A)
0 0

where f(Ab) A(Ab)XH,(AOU aA)

1

1
nﬂb4

1 1
Our claim is that f(Ab) = xH(AO), from which we may deduce the
required identity MD(H') = MD(H).

The claim may be justified by a direct calculation consisting
of twp parts.
(a) Suppose that XH(AO) = 0. Then there exists a pair of
elements Qf AO which are incident at a common vertex of H. 1f
that common vertex is other than v, then XH,(AOU Al) = 0 for any
Cchoice of Al_and hence f(AO) = 0. We may suppose, therefore,
that the common wvertex is v and, moreover, that the two edges

incident at v in H are incident at distinct vertices of H';

suppose w.l.o.g. that the pair of edges in question are the x

1
and xd labelled edges. Then
f(AOF = XH,(AO)[I + B+ y] =0.
Thus we deduce that ( xH(AO) = 0=%>f(AO) = 0).
(b) Now assume, to the contrary, that XH(Ab) =1, Then each

pair of edges in A0 is vertex disjoint and thus at most one of

the xl""'%ﬂ labelled edges is a member of AO. There are

three cases to consider:

(i) No edge in Ao is incident at v, in which case

f(AO) = {1l +a+B+y+8+a8+B88]1 =1
(ii) Either the Xq.q ©OF the X4 labelled edge is incident

at v, in which case

f(%)) = [1 +B+y+8+B8] =1
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S 4

i labelled edges is incident at v,

(1ii) One of the x 3-2
in which case
f(AO) = [1 +a+B+y] =1
Taken together, these three cases yield that - ( XH(Ab) =1 =
f(Ab) =1). From (a) and (b) we deduce that XH(AD) = f(Ab),
which was our claim.

By unfolding all the vertices of Gn, in the manner described
above, we obtain an equivalent degree 3 graph which we shall
denote by G;B). We remark that lGé3)|< 9-[Gn|. . For the second
step, that of embedding the resulting degree three graph in the
rectangular lattice graph, we employ a variant of the method of
Valiant [44].

As Gé3) is planar, it hés a planar realisation. From such
. a realisation we may construct a sequence of vertices by
repeating the following procedure until all the Qertices of
'Gé3) are included in the sequence: Choose a vertex on the outer
boundary of the planar realisation, add it to the sequence, and
delete all edges which are incident at that vertex. Clearly,

the planar realisation of GéB)

may be reconstructed starting with
a single vertex, the.last in the above sequence, and adding
vertices, one by one, according to the reverse of the sequence;
Togéﬁher with each new vertex are added all the edges incident
at that vertex and with some other vertex previously placed.. The
construction of the sequence allows us ﬁo arrange that each edée
added lies within the exterior of the perimeter constructéd so faf.
The planar graph Gé3) may be embedded in a rectangular
lattice by a recursive method using this strategy. Suppése that

3
the first i vertices of G; ) have been embedded in the

rectangular grid R.,.  The method by which we embed the vertex
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Embedding of v
first i vertices  vertex i+l

Figure 3.8
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i+l and its incident edges is described in fig. 3.8. The lines

emanating from the newly added veftex in this figure correspond

to edges incident at vertex i+l in G;3) and are obtained by

recursively applying the simulations Si and S2 to the corresponding

single edge in G£3). We remark that the reason why two
different simulations are required is one of parity. Usiﬁg

only S1 we may construct only chains of odd length, while S1 and
S2 together may be used to construct a chain of any length éreétef
or equal to 3. From this consideration we see that the chains
of edges in fig. 3.8 need never be distant more than 3 fréﬁ the
perimeter of the embedding of the first i vertices. Hence the

first i+l vertices may be embedded ‘in R The fact that

6(i+1)° _ _
the embedding preserves the monomer-dimer g.f. is immediate from

the observation that S1 and S2 are faithful. O

3.6 Some Extensions and Observations

It will perhaps have been noticed that the constructién éf
the planar embedding of the last section does not rely hea&iiy
on the particular structure of the rectangular latticé and thaﬁ
the result should hold if Rn is replaced by a number of étﬁér
lattice graphs.

Two possible families of lattice graphs we might coﬁgidér
are the hexagonal, whose nth member has a vertex set definéd b}
the Cartesian coordinates

{( \/?,O)V1+(\/?/2,3/2)v2+(\/3_/2,1/2)v3 |osv, ,v,sn; {r3=o',"1}

and the triangular with vertex set

{(1,00v,+(1/2,/3/2)v, | 0 Sv,,v,Sn}.
In each case edges are considered to exist between pairs of

vertices which are distant 1 apart. Without going into detail,
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it should be clear that the construction given in fig. 3.8 may
be modified to yield an embedding in either of these lattices.
We therefore deduce analogues of theorem 3.3 which declare that
the monomer-dimer g.f.'s for these two lattice graphs are complete.
Another immediate corollary is the following: rather than
enumerating all monomer-dimer arrangements on Rn (say) we may
wish to enumerate those arrangements which have a certain number
4 of monomers (i.e. we insist on a fixed monomer density). The
g.f£f. for such an arrangement is simply a component of MD(Rn) of
specified degree. In ﬁhe case u = 0, the g.f. is exactly DI(Rn)
which is efficiently computable as we have already remarked.
However an efficient computational procedure for-evaluating the
g.f. for arbitrary values of U would imply the existence of an
efficient procedure for computing MD(Rn), (We would merely
sum over all values of u.). It is therefore unlikely that
counting monomer-dimer arrangements with specific monomer

density is computationally feasible.

3.7 The Ising Problem

The second of two examples drawn from crystal physics is
the so called Ising problem. Suppose that we have a crystal
lattice in which each atom can be in one of two states. The
state of an atom at vertex v of the lattice is described by a
variable o which can assume values from {-1,1}. T™wo adjacent
gtoms Vi'vj contribute an "interaction energy" - Jijdicj to
the system, where Jij is a constant; the total energy of the
system is given by

adj

-3 0.0, .-
i,5 ~ 3

The summation is over i and j with v:,L and vj adjacent. The
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thermodynamic properties of the system are described bf thé
"partition function"

; - : _ adj- .

z . exp < > Kijgigj> (3.11)
(0,,..,0.) e{-1,1} i3 :
S | N ,

where N is the number of vertices in the lattice and
Kij = Jlj/kT.The'symbols k and T represent physical constants.
The evaluation of the above partition function for particular
values of Jij constitutes the Ising problem.

It is shown by Kasteleyn ([14] p. 100) that there is a
close relationship between (3.11) and the g.f. fof closed
partial gréphs of the lattice gréph.‘ A graéh is said to be
closed if each of its vertices has even (possibly zerb)‘deéreé.

I1f G = (V,E) is a graph then let SIS(G) denote the set

{AcE | (V,n) is a closed graph}.
The g.f. for the Ising problem is simply:

IS(G) = GF(G,S () | (3.12)

The relationship, which is derived in the above reference,
between the Ising problem and the g.f. IS is the following. if
G is a lattice graph with vertices Vl""’VN and edges {vi,vj}

labelled xij then the expression (3.11) is equal to
N adj
27 1 cosh(x, [))IS(6)
s i
1r3
evaluated at the point‘xij = tanh( Jij/kT).
The generating function (3.12) applied to the rectangular
and cubic lattice graphs, introduced in section 3.2, yields two

polynomial families, viz.

1,2,...} _ (3.13)

{1s(rR)| n
n

{1stc)| n = 1,2,...} (3.14)
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The method used for computing the g.f. of dimer arrange@eﬁts

on planar lattice graphs can be modified (see Kasteleyn [14]

p. 101) to yield an algorithm for evaluating members of the
family (3.13) which uses a number of arithmetic operations which
is polynomial (O(ns'os))~in the index n. On the oﬁher hand,
the evaluation of members of (3.14) appears much more difficult,
and no efficient procedure is known. We throw some light on
this phenomenon by showing that the family (3.14) is complete

in the sense of chapter 2. We remark that this is another

example where moving from 2 to 3 dimensions introduces apparent .

intractability.

3.8 The Completeness of the Family {Is(c_ )}

We approach the main result via a series of lemmata. The
first of_these parallels lemma 3.1. Recall that DI is the dimer

generating function defined in equation (3.3).

Lemma 3.4 The family {DI(Kn n)} is complete over any field

!

not of characteristic 2.

Proof A typical monomial of DI(K ), say x, :.x. -, is
—_— n,n i i3
191 nJn

characterised by

i ,..,01 distinct and in the range [1,n]
1 n

jl""jn distinct and in the range [1,n]
i.e, i £ th e i m.
i.e. is of the form Xlﬂ(l) xnﬂ(n) for éome permutation
Moreover to each such permutation corresponds a monomial of

DI(K ). Hence DI (K )- = per(x,.,). - The result follows from
n,n n,n i]

theorem 2.2. O

Lemma 3.5 For any graph G, there exists a graph E with the

following properties:
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(i) DI(H) = DI(G)
(ii) H is of degree 3.

(iii) |H| < 5+|g|

Proof The graph G is transformed into H by "unfolding" vertices
éf degree greater than 3, a process analogous to that employed
in theorem 3.3. The unfolding is illustrated by fig. 3.9, where
we consider the case of a vertex of degree 4 with incident edges
labelled by indeterminates w,X,y,z; the extension to vertiées of
higher degree will be immediately apparent.  The scalars
al,...,a6 are all set to 1.

Suppose that H is obtained from G by applying this unfolding
to each of its vertices.  Any perfect matching of G may be
extended to a perfect matching of H in a unique way.v .For
example, a perfect matching of G which includes the x labelled
edge Qill extend to one of H which includes the x labelled edge

together with the edges labelled al,a4;a6.

Conversely'a perfect
matching on H must include exactly one of the edges w,x,y,z;‘hence,
éuch~a matching is the extension of some matching on G. From this
1-1 correspondence between perfect matchings of G agd H we deduce
. that DI(H) = DI(G). This shows that H meets condition (i)
conditions (ii)and (iii) are easily verified. O

It proves convenient to inttoduce a g.f; complementary to IS,

which we denote by Tg, defined as the g.f. of partiai graphs in

which each vertex has odd degree.

Lemma 3.6 For any graph G of degree 3, there exists a graph H
with the following properties:
(1) IS(H) = DI(G)

(ii) |u| s15]6].
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Proof H = (V,E) is constructed from G as follows. For each
vertex vi in G (we will suppose that G has n vertices Ql,...,§n)
there corresponds a set Vi of 5 vertices in H ; V.is then taken to
be the union le...uvn. The vertices within each Vi ére
interconnected by a ‘set Ei of 7 edges as described in fig. 3.10.
In addition, for each edge {Vi'vj} in G there is an edge in H
connecting a vertexbof Vi to one of Vj' Distinct edges of G,
incident at a common vertex A in G, correspond to edges of H
which are incident at distinct vertices of Vi, as suggested by

fig. 3.10. The set of edges of H which correspond 1-1 with the

edges of G is denoted by EO; E is then the union EOU Elu .o UEn.

Note that |H| £15+|G]|.

Now define y: 2V % 2% +{0,1} by X(U,8) = 1 iff for all
ue U the degree of the vertex u in the partial graph (V;A) ié odd.
Then by the definition of IS:

IS (H) AR L MBX(V,A UL UA )

1

5 > | AB) AR X(V,AJULLLUA L)

((3.15)

t

in M 0
>
B

As the edges of H which are in distinct Ei are vertex disjoint,

we may expand x(V,AbU...UAn) as

I‘[ X(Vi,AO U Ai) .

lgisn
Hence, substituting in (3.15), we obtain
— : t .
IS(H) = A )
(H) / (A, 1 [ 2 A@ap X(V; /A UA)
A.CE £i £n A.CE,
0= "0 i 1 - ( 3.16)
We claim that the sum
2 @) X(Vi'% U A,) S (3.17)
A.C E,
i="i

is 1 if exactly ! edge in AO is incident at Vi (we shall say that

an edge is incident at a set of vertices iff it is incident at
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some vertex in the set), and O otherwise. Hence the identity
(3.46) simplifies to
IS(H) = DI(G).

The claim may be demonstrated by direct calculation.
Firstly, we note that if exactly 0 or 2 edges of Aoﬂare incident
at Vi' then necessarily X(Vi'AOU Ai) = 0 for any choice of Ai'
and hence (3.17) is zero. (The number of odd degree vertices in
any graph is even, -see for example Even (8] p. 1.)4 If 3 edges
of AO are incident at Vi then the sum (3.17) is

oo $6162a3+818 o o +B.B.a +8.B.a.a

1 +
vl ®19%5%, R M R R S S ke

1B3%1 %3]

+8183d2+8
which evaluates to zero if we make the following assignment to

the scalars in the construction:

a =

, =9, =0ay=-1/3, B =8, =B, = V13/3 and y = 243/128.

1
(The terms in the expression correspond naturally to.partial graphs
of.(Vi,Ei);) If exactly one edge of AO (say the x labelled edge
in fig. 3.11) is incident at V, then (3.17) is

i
+B,B B, B30 0p0; +8, Byag B, By0 o]

ylog + ayaq+B Bia,+6, 850,05

which evaluates to one under the same assignment.

Lemma 3.7 For any graph G there exists a graph H such that:
(1) IS(H) = IS(G)
(ii) |H| s5]¢].

Proof rirstly, we note that if G has an odd order then Is = 0.

(The number of vertices of odd degree in a graph is even.) It

is trivial, in this case, to construct a suitable H; we might,
for example, take the complete graph on three vertices with edges
labelled 1,1 and -1. We may therefore suppose that the order

of G is even. Partition the 2n modes of G into two sets,
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u ;,, ua and v,,...,v_, in an arbitrary fashion. Construct

1 14 4 n 1 n
H = (V,E) by composing G with the n graphs described by fig. 3.11,
identifying the similarly labelled vertices. Denote the

original set of edges of G by E the set of vertices

OI
{ui,vi,ai,bi} by V. and the set of edges{{ui,ai},{ui,bi},{vi,ai},{vi,bi}}

by Ei. Note that V = V,U...UV and E = E.U E,U...UE Let

1 n oY BqY.--UE,.

2V x 2 5 {0,1} be defined by X(U,A) = 1 iff, in the partial

X:

graph (V,A), there are an even number of edges incident at u

for each vertex ue U. Then by definition:
IS(H) = > A(Aos...MAn)' X(V’AOU... UA )
cE ( <ign)
1 )
= > )\(AO) Z M@ A A X(V,AQU.. UA )
A CE (1£1i2n) .
0] 0 l
e (3.18)

In a manner similar to that used in the proof of lemma 3.6,
we may express x(V,AOu...LJAn) as the product

X{(V.,A UA.).
léIi—[*én io 1

Substituting in (3.18) we obtain:

IS(H) = > A@) I_] > A(A) x(v,,A UA.)]
Ay S E 0" 1 <icn A CE, * 10 1

e (3.19)
We now claim that the sum

X %E }\(Ai)x(Vi_,AO UA)) (3.20)
i= " ‘

is 1 if there are an odd number of edges incident at both u, and
Vi, and O otherwise. Hence the product in (3.19) is 1 if the
degree of each node of the partial subgraph ({ul,..,un,vl,..vn},A )
is odd, and O otherwise. Hence (3.19) simplifies to IS(H) = IS(G).

We justify the claim by direct calculation. Firstly, we

observe that if an odd number of edges in A are incident at vy

[ e, - -
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and an even. number -at ui (or vice versa) then (3.20) .is-
necessarily 0. (This arises. from the usual parity cénsidefation:)
If the number of edges in Ab incident at u, is e§en énd ét vy
is even then (3.20) is

1 + aBy$
which is zero under the assignment a=1, B=1, y= (1+\/§3/2;6 ='(1-\/§3/2;
On the other hand, if the number of edges in AO incident at ui ig
odd and at v, is odd then (3.20). is

ay + BO
which is,1 under the same assignment. This substantiates the
claim. E]

We can now.state and prove a theorem analogous to theorem 3.2.

Theorem 3.8  There exists a familyv{Gn} of graphs with the.
following properties:

(1) {IS(Gn)| = 1,2,..} is a complete family over the

real field R.

i le_| = om?)
EEESE Combining lemmata 3.5, 3,6, 3.7 we dedpce the existence
of a graph Gn with the property that IS(Gn) = DI(Kn,n)' It ié
clear from the statements of the lemmata that “%J §375.{Kn,n|_
The result follows from the completeness of {DI(Kn,n)} o§e£ R

(lemma 3.4). E]

The analogue of theorem 3.3 is

Theorem 3.9° The family {IS(Cn)I n=1,2,..}1is complete over

the real field R.

Proof The construction is in two steps:

(i) transformation of the graph Gn of the previous theorem

(3)

n

into a degree -3 graph G which satisfies

(3)
n

CIS(G ) = IS(Gn)
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(3)

(ii) embedding of the degree-3 graph G homeomorphically

in the cubic lattice Cp(n) for some polynomial p(.).

The construction of G;3) from Gn is effected by unfolding

the vertices of Gn in a fashion described by fig. 3.12, which

illustrates the degree-4 case. The extension to vertices of

higher degree and the fact that the g.f. is preserved should be

immediately apparent.

Suppose G£3) has k vertices v_,...v

1 and m edges el,...e .

k m

G(3)

n may be embedded in C as follows. The vertex v is mapped

3k

onto that vertex of C3k which has Cartesian coordinates
(3i-2,0,0). For each edge ej connecting vertices v, and Vi

in Gé3) there is a chain of edges in C Kk passing through the

3

following points and running in straight lines between them:
(3i-2+4,0,0), (3i-2+4,3,0), (3i-2+4,3j,1), (3i'-2+d4',3,1),
(3i'-2+4',3,0), (3i'-2+d',0,0); 4 and 4' take values in {-1,0,1}

and are chosen so that each of the three edges incident at a

(3)

vertex of the original graph G is mapped onto a distinct chain
n

of edges in C3k' Note that where chains cross in the x,y-plane,

they always do so at different "levels" i.e. their z-coordinates

differ.
Each edge of such a chain is labelled 1, except an arbitrary

distinguished one which is given the same label as the

(3)

- corresponding edge in Gn .

All the other edges of C are

3k

assigned weight O.

It will be apparent that the Ising g.f. of the embedded graph is

;3). The result follows from theorem 3.8.

O

the same as that of G
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4. SECOND APPLICATION : NETWORK RELIABILITY

4.1 An Introduction to Network Reliability

As a second example of the use of the ideas developed in
chaéter 2, we examine the problem of determining the reliability
of communication networks. Informally a communication network
is composed of a number of transmission stations which
communicate via links. The elements of the network (stations
and links) are unreliable and fail with known probabilities; the
- failures of distinct elements are assumed to be probabilistically
independent events. Two stations are said to be communicating
if they are connectéd by a chain of links and stations, none of

which has failed. It is of fundamental importance to designers

of communication networks that they be able to ascertain the
robustness of a proposed network to element failures. They are
thus led to consider various reliability measures for networks,

such as the probability that all stations can communicate with
each other, or the probability that two given stations can
communicate.

Such networks have been studied extensively by many authors,
for example Ball [2], Misra [20] and Rosenthal [30]; despite this
effort, no procedure is known which computes a non—tri?ial
reliability measure, which can be applied to arbitrary networks,
and which runs in time polynomial in the size of the network.
Polynomial time algorithms are known only for some very special
cases, for example the series-parallel networks which are
considered by Misra [20].

It would be pleasing to be able to make some.statement about
this apparent intractability. One way of doing this is to show

that some problem related to network reliability is NP-hard in the




seﬁse 6f Karp [13]. This is not a very natural or satisfying
method. It is not natural because an evaluatioﬁ or enumeration
problem is being translated into a decision problem: it is not
satisfying because we do not obtain a precise characterisation of
the complexity of the problem, only that it is harder than some
complexity class. However, this technique has been used by
Rosenthal [30] to show that some reliability measures are hard to
compute, assuming that both station and link failufes are allowed.
Another approach is to view the computation of a reliability
measure as the problem of enumerating all partial graphs of a
graph which possess a given property; in this way, Valiant [41]
has demonstrated the intractability of evaluating the probability
thét two given stations communicate, even if we assume that all
stations are perfectly reliable. In this chapter we use the
algebraic formulation develoéed in chapter 2, which forms a
natural framework in which to consider reliability problems.

The intractability of most reliability measures in the case
when stations as well as links are allowed to fail has alfeady
been established. It might be supposed that if we restrict our
attention to networks with perfectly reliable stations then
computation becomes much easier - -we shall show that this is not
the case. The aim of this chapter is to present proofs of the
intractability of several reliability measures. For one of
these measures, namely the probability that in an undirected
network all stations can éommunicate with each other, there wés
previously no evidence of intractability. The question of thé
computational difficulty of this measure was raised by Rosenthal

{30] and a solution has been particularly elusive.



4.2 Network Definitions

Although we may consider networks with links which are either
bidirectional or unidirectional (i.e. in which transmission can
take place in both directions or only in one), we will concentrgte
our attention first on the case of bidirectional links. The
completeness results for reliability measures on unidirectional
networks are usually easy corollories of the results for
bidirectional ones as will be shown in section 4 of this chapter.
Accordingly; we model a communication network.as an undirected
graph G = (V,E); the-vertex set V is taken to represent a number
of stations, E is the set of links joining them, and the edge
labellings represent the probabilities. that the éorresponding
edges are functioning. There are two points to be stressed:
firstly that the stations are thought of as perfectly.reliable,
and secondly that the link failure probabilities are assumed to
be probabilistically independent.

The notion of two stations of a network being able to
communicate carries over to the graph theoretic coneept of

connected components of a graph. Suppose that G = (V,E) is a

graph and ACE. The set of edges A defines a relation on V
whereby u,veV are related iff {u,v} e A; define the equi&alencé
relation «<>on V to be the reflexive, transitive closure of this.
The equivalence relation, <=, partitions V into equivalencé

classes; the subgraphs induced by the equivalence classes are

called the (connected) components of G. Two stations of a

network which can communicate correspond to vertices of G which
are in the same connected component.
In the usual manner of probability theory (see Rao [28] p. 80)

we associate with G a set of elementary events QG - in this case
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we simply take QG = 2, We-assume, as in chapter 3, that A is a
labélling of G taking values in FUX, where F is a field and

X = {Xl""xn} is a finite set of indeterminates over that field.

The labelling ) induces a probability distribution p : QG+ F[xl""’xnl
specified by

pa) = [] re T1 (1-A(e)) .
ecA ec (E-A)

Here addition and multiplication are those of the polynomial
ring PF[X].

Suppose now that S is an event, that is S QQG. The event S

has an associated probability of occurrence, a polynomial
specified by

Pr(s) = » p(a). (4.1)
AeS

We remark thét the probability of an event and its complement
are related by |

Pr(s) + Pr(g - s) = 1 | (4.2)
Using this notation, a few reliability measures for undirected
graphs are listed:

(i) CONNECTED(G)=Pr{A€:QA(Y,A) has exactly one connected
component}. _ (The probability that, in the network>
modelled by G, all stations can communicate.)

(ii) s—t—CONNECTED(G)=Pr{AE:QG‘S and t are in the same
connected component of (V,A)}. (Measures the
probability that s and t can communicate.)

Both the reliability polynomials so far defined have a natural
interpretation; the next is artificial, but serves as a useful
stepping-stone in our reductions:

(iii) s—t-PARTITION(G)=Pr{AE:QGI(V,A) has exactly two conﬁected

components, one containing s and the other f};
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The final polynomial is redundant in that it .is the complémént
of one previously defined, howe&er, it too ser&és as a concéptual
aid:

(iv) s-t-SEPARATED(G)=Pr{ac QG s and t are in distiﬁct

components of (V,A)}.

Note that, by identity (4.2),

S-t-SEPARATED (G) =1~ (s-t-CONNECTED (G) ) . (4.3).

By considering these reliability measures applied to the
complete graph Kn for increasing n, we generate the associatéd
polynomial families, for example:

{s-t-CONNECTED(K )| n=1,2,..}

and {CONNECTED (X ) | n=1,2,..}
Thé main results of section 4 of this chapter will be to show
that these two polynomial families are complete in the sense of
chapter 2. In section 4.5 the completeness of several
reliability measures for directed graphs will be deduced as

corollories.

4.3 Computing Reliability Measures of Synthesised Networks

In the proofs of the iain theorems of the next section Qé
will need to compute reliability polynomials for large gréphs
which are composed from small component graphs. In preparation
for these tasks, we introduce a method due to Rosenthal [31] f6£
simplifying such calculations.

Suppose-G = (V,E) is a graph constructed from a set of

component subgraphs, Hi = (Vi,Ei) (12ism), by identifying

certain of the vertices in distinct Hi. The identified vertices
will be termed external, and the remainder internal, vertices.

Suppose also that we wish to compute some reliability polynomial
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N

on G. For the sake of definiteness we shall work with thé
s—t—SﬁPARATED polfnémial, but the method can be applied to ény
natural measure of reliability.

Consider one of the component subgraphs Hi with extefnal'
vertices qi,...,uk. Any subset A of the edges Ei of Hi indﬁééé
a partition m of the external vertices of Hi, that is to say
divides {ul"’f'uk} intq a set of blocks such that each uj'is in
exactly one block of m; two vertices are in the same block éf T
- 1ff they are in the same connected component of (Vi,A). In this

way, to every partition m of the external vertices of Hi

corresponds a class of elementary events on H .
—_— i

C, =,{A§;Ei| A induces the partition m of the

external vertices of Hi}.

Each class has a class probability, namely

Pr(C_) = > Pr(a).
m- A e(%

We introduce a succinct notat;on for classes. A class is
specified by listing the external vertices of.é subgraph, say Hi'
enclosing in square brackets those vertices which belong to thé
same connected component. For ggamplé, when k=3, [ul,u3][u2]
is the class {A<;Eil u1 and u, are contained in a single connected
compongnt of (Vi’A)' which is distinct from that which contains
u2}.

If Hi and Hj,are distinct component subgraphs with classes
and cléss probabilities defined as above, we can combine theﬁ to
form a single, larger component, H say, by identifying certain of
the external vertices. The set of external .vertices of H contains
those vertices of Hi and Hj which are also shared by component

subgraphs other than these two.
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The classes of H are in 1-1 correspondence with partitions
of the external vertices of H. The important observation is
that the class probabilities of Hi and Hj encode exactly enough
information to enable the computation of the class probabilities
of H to proceed. Iﬁ particular it should be noted that each
class of H is a union of sets of the form

{a.un, A.eC,, A.eC.} (4.4)
i Jj i i Jj j

where Ci and Cj are classes of Hi and Hj respectively. Using
this observation it can be seen that a product of classes

C = Ci><Cj can be defined, where C is that. class of H which

contains the set (4.4). We can express the class probability of
C as
Pr(c) = > PT (C;) P (C)) (4.5)
C.xC, =¢C
1 J

By combining component subgraphs, using a repeated application of
this procedure, we may evaluate the class probabilities of the
synthesised graph G. The polynomial s~t-SEPARATED(G) is then
simply that class probability of G which corresponds to a
partition of s and t into separate blocks.

As a concrete example, consider the component subgraph of
fig. 4.1. It has 5 classes, corresponding to the 5 partitions
of the external vertices s,t,uij. The class probabilities are
listed assuming the assignments p1=1/2, p2=1/2 and pB=3/2. The

convention q_=&—pi—is used
1 -

(1) Pr([s,t,uij]) = p,P,P5 = 3/8
(ii) Pr([s,tl [uij]) = P,Pyd5 =-1/8
(iii) Pr([s,uij][t]) = plqu3 = 3/8
(iv) Pr(lt,u  J(s]) = 94PPs = 3/8

v Pr([(s]t]{u ‘ =
(v) ([s1ltll 13107 949937P9593%q Pyd3*+d 9y Py = O
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In this example, it will be noted that .the classes [s,t,u ] and
: S
[S't][uij] may, in the present context, be neglected as they already

place s and t in the same connected component - we shall call such

classes inconsistent. In addition the class [s][t][uij]jcan be
neglected as it has associated probability O - we shall call such
Classes null. This leaves only two classes which are neither

null nor inconsistent - such classes will be termed contributory.

By working with the 2 contributory classes instead of the 8
elementary events, the computational effort is substantially
reduced.

We are now prepared for the main results of the chapter.

4.4 Completeness Results

Theorem 4.1 There exists a family of graéhs {Gn}, with
distinguished vertices s and t,.which possesses the following
properties:
(1) le | = o).
n

2
(ii) s-t-SEPARATED(Gn)=(3/8)n'per*(X)

Proof The graph Gn is constructed by composing the component

<

subgraphs Kij,-Lij (1£4i,3%n) and M, . (1£i,5,i',3" $n,

ji'j!
i=i' ® j=3') of figs. 4.1, 4.2, 4.3 respectively. The symbol &
is here used to denote "exclusive or". Similarly labelled
vertices are identified in the composition, while separate
occurrences exist of the unlabelled vertices. We considéer the
classes of each of the component subgraphs and compute their
respective class probabilities, in preparation for e&aluating the

required reliability measure on G
n

(i) The components Kij have 3 external vertices, s,t,uij,

and hence 5 classes. The scalars are assigned values
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pl=1/2, p2=1/2, p3=3/2. The class probabilities
were computed in the last section but are repeated

here for convenience:

Pr([s,t,uij]) = 3/8 (inconsistent).
Px([s,t][uij]) =-1/8 (inconsistent) .
Pr({s,u_  1[t]) = 3/8.
ij
Pr({t,u, 1([s]) = 3/8.
ij 4
= 0 . (null).

Pr((s]l[t]llu,.])
ij

(ii) The components Lij have 2 external vertices t and uij
and hence only 2 classes. The scalars are assigned

values p1=1/2, p2=2, p3=2.

Pr([t.uij]> Xij(pIPZP3 + PyPydy * plqus)

+ (1-x_)
(1-x; )b p,Py + PiPyay)

xij(2—1-1) + (1-xij)(2-1)

= (1-x ),
ij
Pr([t][uijl)= xij (by identity 4.2)
(iii) ' The components M., .,., have 3 external vertices u, ,u,,.
1313 ijf ity
and t and 5 classes. The scalars are assigned values

Pf‘7/5, pz=1/2, p3=1/2, p4=4/3.

Pr([uij,u....,t})

ity PPyP3Py + qyPyP3P, *

-+

Pd,P3P, * P1Pyd3Py

= =-3/5.

1]

Pr([u
(Tufouy g 008D = @ypypya, + Pid,d5d, +

+

PiPyd3q, + PdyP3q, +

+

P1993P4 ¥ PyPyP3y
= -1/5.
Pr([uij,t][ui...])= Q4 P,93P,

= 4/5
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Px ( [ui|j_. ] [uij])» = 4,9,PsP,

4/5
Pr([u . =
ij][ui.j.][t]) q1q2q3q4 + qlpzq3q4 +
q1q2p3q4 + q1q2q3p4
='1/5

Having analysed each of the component subgraphs, let us now
proceed to apply the method of the previous section. Firstly
each pair of component subgraphS’Kij, Lij is qombined to form a
single component Hiﬁ with external vertices {s,t,ui.}. as has
been noted, Kij has only two contributory classes, namely
[s,u,.][t) and [t,uij][s], both of which have associated

i3
probability 3/8. Hij thus has two contributory classes:

(1) [s'uij][t]' formed by producting the class

{s,u. ][t] of K,, with the class [t]lu,.] of L,..
ij ij 1] i3

By equation 4.5 the associated class probability
is" (3/8)x, ..
1]
(ii) ‘[t,uij][s], formed by producting the class

[t,uij][s] of Kij with either class of Lijm By

equation 4.5 the associated class probability

is (3/8)[Xij +(1-xi.)] = 3/8.
Next, the component subgraphs Hij thus produced are combined

into one component H with external vertices, {s,t,u

t

llfu12""'uhn}

Each Hij has exactly two contributory classes - one which placés
uij in the connected éomponent containing s and another which
places it in that containing t. Each contributory class of

H corresponds to a partition of the external nodes into two
blocks, one containing s and the other t, i.e. each such

class of H is of the form
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Cg = [S,uij((i,j)ES)][t,uij((i,j)¢S)]

for some Sg{(i,j){léi,éh}; The class Cs is formed by producting
together the classes [s,uij][t] of Hij for (i,j)eS and the classes

[t,u,.1[s] of H,. for (i,3j)gS. Thus:
ij ij :

Pr(CS) (3/8)xij (3/8)

(i,j)es
2
(3/8)

(i,3)¢s

(i,9res *ij-

Finally, we combine the above class probabilities with those

of the component subgraphs Mij'

, ., in order to compute
13

X
s—t—SEPARATED(Gn). The 2™ " class probabilities of H correspond
% .
precisely to the 2" ? possible linear monomials in the

indeterminates {x

11""’xnn}; the function of the subgraphs

131t is to pick out those monomials which occur in the
expansion of per*(X), while annihilating others.

We investigate which classes of M . .,.,, when producted with
i'j '
the class CS of H, produce the class ([s][t] of Gn' There are

four cases:

(1) If (i,j)¢S and (i',3')¥S then any of the classes of

Miji'j' will combine. The factor contributed by

such subgraphs is thus 1.
(ii) If (i,j)esS and (i',j')¢S then the classes which
combine are [t][uij][ui'j'] and [uij][u.,.,,t].

13

The factor contributed is Pr([t][uij][ui'j“]) +

Pr({u, 1[u,,.,,t]) =1/5 + 4/5 = 1.
ij i3

(iii) The case when (i,j)#S and (i',j')eS is similar to (ii)

by symmetry.
(iv) ‘If (i,3j)eS and (i',j')eS then the classes which combine

are [t]{u s . ‘
1 ij][ui'jf] and [t][ulj,ui,j,] The factor
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ij 1]

Figure 4.4

Figure 4.6
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contributed is Pr([tl{u, 1([u,,.,]) + Pr([t][u,.;u.,.,l)
ij 1] 1]

i']
=1/5 - 1/5 = 0.

A component subgraph M
ijl‘j'
(i=i') @ (j=3'). Hence

exists for all 1£i,j,i',j'Sn with

s-t—SEPARATED(Gn)

S X (S)Pr (Cg)
Sc(i,3)|1si, i),

where
" x(8)=1 if every pair of elements in S differs in
both components, and

=0 otherwise.
i.e.  s-t-SEPARATED(G ). S '
i, > [(3/8)n x() T[] xi.]
selti,3) |1si,jsn} C (i,9)es M
2
(3/8)" per*(x) O

Theorem 4.2 There exists a family of graphs'{Gn}, with
distinguished vertices s and t; which possesses the following
properties:
. _ 3
(1) e | = otn™)

2
(ii) s—t—PARTITIONED(Gn)=(1/2)n per* (X) .

Proof The proof of this theorem is analogous to that of
theorem 4.1. The graph Gn is constructed by composing the
component subgraphs Kij’Lij (1§i,j§n) and Miji'j' (1§i;j,i',j'én,
i=i' ® j=j'), described by figs. 4.4, 4.5 and 4.6, which aré
modified versioné of those employed in the last construction. -
To accommodate the s-t-PARTITION reliability measure we must
slightly redefine the notion of class. Suppose Hi = (Vi, Ei) is

a component subgraph with external vertices ul,...,uk. As

before, any subset of the edges Ei of Hi induces a partition w
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of the vertices u_,...,u

1 To each such partition corresponds

K °
a class, CW, of elementary events on Hi:
Cﬂ = {AW;Eil(A induces the partition m of the external

vertices of Hi) A (every connected component of

(Vi,A) contains an external vertex of Hi)}

The classes are in 1-1 correspondence with those defined for the
sS-t-SEPARATED measure; the only difference is that we insist
that no internal vértex is isolated from all the external vertices.
With the redefined classes it is clear that s—t—PARTITIONED(Gn)
may be expfessed as the class probability Pr([s][t]) of Gn'
Although the classes have been redefined, the rules for
computing class probabilities when component subgraphs are
combined remain gnchanged. " The altered classes require thaﬁ the
component‘subnetworks be modified from those used in theorem
4.1, however each performs essentially the same function in
both constructions. We shall therefore content ourselves with
computing the class probabilities of the component subgraphs
and appending a sketch of how they combine.
The class probabilities of the component subgraphs are
now listed:
(i) The components Kij have 3 external vertices, s,t,u,.

1]
and 5 classes. The scalars are assigned values pl=1/2,

p2=1/2, p3=2. The class probabilities are

Pr([s,t,uij]) = P;P,P3 = 1/2 (inconsistent)
Pr([s,t][uij]) = Plp2q3 =-1/4 (inconsistent)
Pr([S,uij][t]) = Pia,py = 1/2
Pr([t,uij][s]) = q,p,py = 1/2

Pr([s][t][uij]) P1q2q3 + qlpzq3 + 4,9.P;
= -1/4-1/4+1/2

=0 (null)
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(ii) The components Lij have 2 external Qertices s and uij;
‘and. 2 classes. The scalars are assigned values pls;l; §2=l/2;
py=-1.

Prilsiuy gl = x;5(p1PyP3 + Pyd,P3 + P13 *+ q1PP3 +
‘ q,9,P3 + q;P,d4)+ (l—xij)(P1P2P3 +

qu2P3 + P{Pydy * q192P3)

Xij(1/2+1/2—1-1-1+2) + (l—xij)(1/2+1/2-1¥1)

=X, -1

P = ' - f
wllslloy 0= x5 (P1apa3 + 4y9yd5) *+ (1-%;5) (Pyayd3 + q4Pydy)

]

xij(-1+2)_+ (l-xij)(—1+2)

= 1.

(iii) The components Miji'j' have 3 external vertices
uij' ui.j,,.s and 5 classes. The scalars are assigned values

P1=4/9r p2="7/2r P3=1/2r P4=1/2r PS="3~

P =
r(lssu; 00y, 4010= Py (PyP3P4Py + PydsPyPy + PpP3duPs + I,P3P,Ps)

4/9(21/8+21/8+21/8-27/8)
= 2,

. Pyd33,4Pg + ;P3P ,qg)

1]

4/9(~-7/2-7/2=7/2+21/8+9/2)
==3/2.
= -3/2.

Pr(ts,ui.j.][uij]) = Py9,93P,Pg
= =3/2.

Pr([S] [u =
131 0930500 = Py (Q,P3a,dg + 993,05 + A,T394P5)
= 4/9(9/2+9/2+:27/8)

= 5/2.

- 66 -



Let us now combine the component subgraphs, as in the proof
of the previous theorem, computing the class.:probabilities as we

proceed. Firstly each pair of component subgraphs Kij' L'j
] - L
is combined to form a single component H A with external vertices
1]

{s't'uij}' The class prébabilities of Hij are

Pr(ls,u_ Jtl= 1/2[(x, . -1)+1]
ij i3

= (1/2)x
ij

and Pr([t,uij]ﬁvb 1/2+1

= 1/2.

Next, the H A are combined into a single component H with
i3

external vertices {s,t,ull,
o

" where C_ = [s,u,_((i,§)eS)]{t,u,.((i,5)¢S)]. The class
S ij ij

...,unn} and classes {Cslsg{(i,j)llgi,jgn}}

probabilities of H are given by

2
_ n ||
PrCg) = (1/2)7 (4 Syes *i5

Finally combining H with the component subgraphs Miji'j"

using an argument analogous to that used in the previous proof,
~ ~

yields the required result.

The completeness results for the reliability polynomials
introduced in section 4.2 follow easily from the above two

theorems. O

Corollary 4.3 The polynomial families (i) and (ii) are both
of
complete over the field7rationals, Q:

(i) {s—t—CONNECTED(Kn)in=1,2,..}

(ii) {CONNECTED(KH){n=1,2,..}.

Proof

T n2
(1) Consider the graph Gn' with s—t—SEPARATED(Gn)=(3/8) per* (X),
whose existence is assured by theorem 4.1. Relabel vertex t as t'

and augment the resulting graph to produce G' as in fig. 4.7.
n
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Figure 4.7

Figure 4.8
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2 2

The scalars P, and p2 assume the values (8/3)n and [1—'(‘3/8)1'1]"1

respectively. Then:

S—t—CONNECTED(Gé)

P, + (1-p1)p2[s-t-CONNECTBD(Gn)] -

1
P, + (1-p,)p,[1- s-t-SEPARATED (G )]
1 1752 n

= (pl+p2_p192)+(p1p2-pz)[s—t-SEPARATED(Gn)]

per*(X).
The result follows from lemma 2.3.

(ii) By theorem 4.2, there exists a graph Gn’ of small size, with
2

s—t—PARTITIONED(Gn)=(1/2)n per* (X). Augment Gn to GA as indicated
L . (n2+1) ‘
in fig. 4.8. The scalars are assigned values p1=-2 ’ p2=1/2,
P3=-1. Then:

CONNECTED(G;)

(P,P,P3 * P dyP3 * PyP,d3) [CONNECTED(G )]

+ —t-

_ Plp2p3[s t PARTITIONED(Gn)J
= per*(X).

A second application of lemma 2.3. yields the result. []
4.5 Networks with Unidirectional Links

A network in which transmission along links takes place in éné
direction only is modelled by an directed graph. In this section
only, we break from our convention, and all graphs mentioned Qill
be directed unless otherwise stated. The notion of two statiéns
of a network communicating is captured as follows. Suppose
G=(V,E) 1is a directed graph, representing a network, and A is a
subset of E, representing the functioning links of the network:

The edge set A defines a relation on V whereby u,§ are relatéd iff -
(u,v)ed; define the relation é on V to be: the reflexive, transitivé
closure of this.

Using the relation é, a number of reliability polynomials can
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be defined for directed graphs. Again we represent by QG the set

of elementary events; QG = 2E

s-t£-CONNECTED (G) =Pr{aef | s % ¢} (4.6)
STRONGLY—S—t—CONNECTED(G)=Pr{A€QGI(s Bone o (4.7)
s-V-CONNECTED(G)=pr{AeQGPstv,s ! (4.8)
CONNECTED (G) =Pr {Aef | Vu,veV, (u % v)a (v 2wy (4.9)

The polynomial (4.6) represents the probability that s can
communicate to t, (4.7) represents the probability that s and t
can communicate with eacﬁ other, (4.8) the probability that s can
communicate to all other stations, and (4.9) that all pairs of
stations can communicate.

As in the undirected case, we generate polynomial families by
considering the reliability polynomials, forvﬁhe complete graph Kn
on.n verticés, for increasing values of n. The completeness
of these polynomial families. is a direct corollory of the results

obtained in the previous section for undirectéd graphs.

Corollory 4.4 The following polynomial families are complete

over the field of rationals Q.

(i)  {s-t-CONNECTED(K ) |n=1,2,..}.

(ii) {STRONGLy—s—t-CONNECTﬁn(Kn)|n=1,2,.;}.
(iidi) {s—V—CONNECTED(Kn)|n=1,2,,,},

(iv) {CONNECTED(Kn)|n=1,2,..}.

- Proof An arbitrary undirected graph G=(V,E) may be transformed
into a directed graph G' by replacing each edge {u,v}sE by the
subgraph of fig. 4.9, consisting of 4 vertices and 5 edges.

The communication probabilities are unaltered by this

transformation and the following identities hold:
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;—t-CONNECTED(G') = s-t-CONNECTED (G)
STRONGLY~s~t~CONNECTED(G') = s-t-CONNECTED(G)
s=-V-CONNECTED(G') = CONNECTED (G)
and CONNECTED (G') = CONNECTED(G).
Note that the reliability polynomials on the left hand sides are
for directed graphs, while those on the right hand sides are for
undirected graphs. By taking G to be the complete undirected
graph on n vertices, we see that we have exhibited projectidns.
from the polynomial families (i)~ (iv) onto other polynomial

families which are known, by corollory 4.3 to be complete. E]
4.6 Discussion

A number of reliability measures for networks have been
proposed, and all have been shown to be complete in the sense of
chapter 2. This observation suggests that computing network
reliability is an inherently difficult task.  Intuitively, what
makes computation of such measures difficult is the subtlety
of the probabilistic dependencies; it is impossible to decompose
. a reliability measure so that its dependence on individual
failure'probabilities becomes explicit. In fact reliability
measures seemingly much easier than the ones éﬁudied in sections
4.4 and 4.5 appear to be intractable. As an example consider
the followiné reliability polynomial for an undirected graph
G=(V,E)

NO—ISOLATED—VERTEX(G)=Pr{AeQG| evéry component of (V,A)

has order at least 2}.

The intuitive reading of this is the probability that every
station of a network can_communicate with some other station.

One might expect this to be easy to compute, as it represents
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tﬁe probability of an event which is determined by purely Eééil
considerations at each Qertex; the previously referred to
Probabilistic dependencies are reduced to a minimum in this case.
The intractability of this measure is, however, easily
demonstrated. If p(xl,...,xn) is a polynomial of degree d in n

indeterminates, let le(p) denote the lower envelope of p, that is

to say the sum of all the monomials of lowest degree in p. We
remark that the lower envelope of a polynomial is not substantially
easier to compute than the polynomial itself. for suppose we
wish to evaluate le(p) at the point (al,a2,...,an). Consider
the polynomial P(Aai,la2,...,kan) of degree d in the single.
indeterminate ); the value we wish to compute is precisely the
coefficient of the term of lowest degree in A. The coefficients
of p(kal,...,kan) can be determined by evaluating the polynomial
at g+1 distinct values of ). In this way the evaluation of le(p)
has been reduced to d+1 evaluations of p. Now, if K is the

'
complete bipartite graph on 2n ve;tices with the usual labelling,
then the monomials of le(NO-ISOLATED—VERTEX(Kn n)) correspond to

’

partial graphs of Kn n in which every component has order
7

exactly 2, i.e. to perfect matchings in Kn a° Hence

14

le(NO-ISOLATED-VERTEX(Kn )) =per (X).
F3 ¢}

The lower envelope is thus complete, and, by the above discussion,
the reliability polynomial itself difficult to compute.

The objection might be raised that our reductions employ
constants outside the range [0,1] of realisable probabilities.
However an appeal to intuition suggests that it is no easier to
compute a multivariate polynomial when we restrict all values of
its indeterminates to -a certain range (say(0,1]) than it is to

compute it for arbitrary values. By way of justification, we
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might remark that an arithmetic circuit which correctly computes
the polynomial within the restricted range will work (except at a
few singularities where division by zero occurs) over the whole
range.

We finish with a caveat. The results obtained here are for
arbitrary networks; it is conceivable that computing the
reliability of some useful subclass of networks, for example
planar networks, is radically easier than the general case.
Although in the field of network reliability this seems unlikely,
there is a precedent for this effect in Kasteleyn's method for
enumerating perfect matchings in a planar graph, which was cited

in chapter 3.

4.7 New Completeness Results from 0ld

As'has been remarked in chapter 1, our approach differs from
that of machine-based complexity theory in two respects. Firstly,
our notions are non-uniform, for example the p-projections used to
reduce one polynomial family to another which specify a sepafaté
translation for each member of the family (i.e. for each input
size). In practice this is of no consequence; the polynomial
families which we have considered are certainly uniform (i.e. can
be described by an effective procedure), while the reductions of
this and the last chapter are not only Turing computable but
efficiently so. The second difference is potentially more
important - we have viewed problems through the medium of genérating
functions rather than as pure combinatorial enumeration. There
is a doubt that additional complexity may be introduced when we
move from the discrete combinatorial world to the continuous
algebraic one.

Although it should be stressed that the algebraic completeness
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results we have obtained are strong statements of intractability
in their own right, it might be illuminating to give an example
of how such a result can be used, with not too much effort, to
prove a statement about the complexity of an associated
combinatoriai enumeration problem.

We assume familiarity with the class #P and its associated
completeness class #P—complete_introduced by valiant in [40,41].
In brief, #P is the class of integer functions computed by
polynomial time bounded counting Turing machines. A counting
T.M. is a standard non-deterministic T.M. with the additional
facility of outputting the number of accepting computations. A

“problem is #P-~complete if it is complete in #P with respect to
polynomial time Tuting reduction. The class #P-complete
includes many classical 'hard' enumeration problems. In
partieular, the following problem is known to be #P-complete (for
a proef see [40]):

0-1 PERMANENT
Input: O~1 matrix U.
Output: per(U).

We introduce an enumeration problem, which is closely
associated with one of the reliability measures defined in this
chapter, and show it to be #P-complete using theofem 4.2. The
problem is:

#CONNECTED P-GRAPHS

Input: graph G

Output: the number of connected partial graphs of G.
Two points should be emphasised. Firstly, although the proof
of #P-completeness ie ad hoc, the techniques employed, naﬁely
polynomial interpolation and the 'encoding' of field elements,

are probably of wider application in this area. Secondly, no
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direct proof is known of #P-completeness of the above problem. -
The proof of theorem 4.7 may be interpreted as further evidence
of the utility of the algebraic approach.

Two preparatory lemmata are required. For computational
purposes, we shall assume that graphs are represented in some
standard form{ for example as adjacency matrices. Rational:
numbers will be held as éairs of binary integers, representing the
numerator and dencminator of a fraction in reduced form. The
length of such a représentation of a rational g will be denoted

by |qf.

Lemma 4.5 Suppose p(xl,...,xk) is a polynomial in k indeterminates,

}

of degree d, and with rational coefficients. - Let A={q1,qz,....,qd+1
be a set of distinct rationals. Then the coefficients of p can
be computed, in deterministic polynomial time, from the set of

(a+1) + (d+1)k values

k
Au{p(al,...,ak)}geA }

Proof .Firstly-we claim that if two pélynomials f(xl,...,xk) and
g(Xl,.;.,xk), of degree 4, agree at all points in the set

k

{ql,.-. }

"+t
then they are identically equal. Setting

h(xl"“”ﬁ:) = f(xl,...,xk)_— g(xl,...,xk),
the claim is equivalent to showing that h is identically 0. This

is a slight extension of the fundamental theorem of algebra (see

Godement [10]) which can be proved by straightforward induction

on k. Now consider the polynomial
X.-q. :
f@ = T e 1 T1T %% (4.10)
- <is #a,., (a.- .
aeA 1=igk qj a; (al qj)

k p . C
If xeA , all but one of the terms in the sum are zero; the remaining
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term is equal to p(x). Hence f agrees with p on all points of
Ak, and, by our claim, £ is i&entically equal to p. The formula
4.10 is thus an explici; expression of p in terms of {ql,...,qd+1}
and {p(g)lg;Ak}' It only remains to show that the coefficients
of p may be computed, using expression 4.10, in time polynomial
in the input length, i. This should be apparent from the
following observations.
(1) If the input length is l,>then |qi|§l Vi,
lp(a)|s1 VépAk, and (d+1)k§l.
(ii) The polynomials manipulated in the computation may be
represented by vectors of coefficients having (d+1)k
(1) components.
(iii) The sum ip (4.10) consists of (d+1)k (£1) terms, each
having kd (£l) factors.
(iv) At no point in the computation do we need to handle
rationals whose representation requires more than

0(13) space.

Lemma 4.6 Suppose that G is a graph with label set

A ={1/2,1/3,...,1/k}. Let the number of edges with label 1/j

be nj. Then there exists an efficiently computable unlabelled

graph H with the property
-n,

CONNECTED(G) = ZJ;Lk 3 J x {(number of connected partial
graphs of H.)
Proof - Suppose that G=(V,EG). The graph H=(V,EH) is constructed

from G by simply replacing each 1/j labelled edge, e, of G by a
chain, Cé, of (j-1) unlabelled edges, the endpoints of Ce being thei
same as those of the original edge e. Suppose AHg E . is such that

(V,AP) ;s connected. For each chain of edges Ce in H, AH either

contains all the edges of Ce, or contains
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all but one of the edges. (Otherwise, vertices of Ce would exist
which are isolated from the endpoints.) Define a mapping Q,
from connected partial graphs of H to connected partial graphs

of G, as follows:

v(AH) = {eeEGlAH contains all the edges in Ce}.

The mapping vis surjective, but not injective. However a simple
expression exists for the number of partial graphs of H which
map to a fixed one (V,AG) of G:
I |
[{a g B | vap=a_}|= (A(e) "-1).

eEEG—AG

(The factors in the product correspond to the number of ways of
choosing a single edge from the chain Ce.) Hence:

I{AHg EHI\)(AH)=AG}{

-1
(esE A(e) ><J;L A(e))(eeé—LA (l—A(e)a

G G G G

[1 57)
<2§j§k 17) pRg)

The result follows by summation over all connected partial graphs

I}

(VIAG) of G. D

Theorem 4.7 #CONNECTED P-GRAPHS is #P-complete.
Proof That the problem is in #P is immediate — given a graph G
we simply test in parallel each partial graph of G and accept
iff it is connected. The testing can be done in time OIGI)
by using, for example, depth first search [8]. Therefore it is
sufficient to show that 0-1 PERMANENT is polynomial time Turing
reducible to #CONNECTED P-GRAPHS.

Suppose U is an nxn 0O-1 matrix. Combining the projections
explicitly presented in lemma 2.3, theorem 4.2 and corollory 4.3

we see that a graph GU o exists with the following properties.

1’

(i) per (U) = CONNECTED(GU 0L) .

14
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(ii) GU o is efficiently constructable from U, i.e. the
, ——z 4 ;

mapping U *> GU d is computable in deterministic polynomial /

r

time.

(iii) The label set Aof G is {a ..,ak} where k is a fixed
’

U,a 1’
integer (independent of n), and aieQ. (Explicitly k=9
2

n -1

andﬂkﬁ,...,ak} = {-2 »~7/2,~3,-1,0,4/9,1/2,1,2}.)

Let GU % be the graph formed from'GU o by replacing each rational
’ =

label o, by an indeterminate X, let pU(xl,...,xk)=CONNECTED(GUC£),
and let 4 be the degree of pU., We remark that the coefficients
of pU'are integers in the range [Q,Zd]‘and that d(flGU'x[) is
bounded by a polynomial function of n. By lemma 4.5,-the
coefficients of'prand ﬁence the value of éU(al,...,ak) may be
~efficiently computed if we know the set of values

k
{oy (b, s .. by |pEB)

where 8 ={1/2,1/3,...,1/(d+2) }. However we note that pU(bl”"’b )

k

~is just CONNECTED(GU )+ where G,  is the graph formed from
. ' 2

GU < by replacing each label xi by the rational bi' By lemma
r ) .

4.6 there is a graph H and a rational 9y p’ both efficiently

U,b
computable from G * such that:

’—

CONNECTED(G__ , )

u,b
= qU X (number of commected partial graphs of H_ ).
2 =
The whole reduction is now summarised:
(1) Compute GU'E.
.. k
ii Compute {G :
(ii) D { Ulgﬂggs }
(iii) Compute {HU b{g;sk} using lemma 4.6.
’_
(iv) Use a subroutine for #CONNECTED P-GRAPHS to enumerate,

for each of the graphs found at stage (iii), the number

of connected partial graphs.
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(v) Scale the results from (iv) in .order to obtain
= " {CONNECTED (G, ) |be8*}.
up’ 12
(vi) Apply the algorithm of lemma 4.5 to compute

per (U) =CONNECTED (G; ). O

I

Note: Recently, a direct proof of the result of Theorem 4.7

has been provided by J.S. Provan and M.O. Ball. (See "The
Complexity of Counting Cuts and of Computing the Probability
that a Graph is Connected", University of Maryland working

paper MS/s 81-002, (1981).)
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5. EXACT LOWER BOUNDS FOR RESTRICTED ALGEBRAIC MODELS

5.1 Introduction

As remarked in chapter 1, the topic of this final chapter
is in some sense distinct from that of the previous three. The
common thread which binds the two parts is the idea of a model of
computation which is non-uniform and in which arithmetic
operations are elementary. In chapters two to four the
underlying model is implicit and the results are of a relative
nature; in this chapter the computational model is precisely
definéd and the complexity results obtained are in many cases exact.

We shall be considering the question of finding the number
of arithmetic operations required to compute various polynomial
functions, by now a classic goal of complexity theory. If we
allow operations to be drawn from the sét {+,x,-}, or possibly
{+,x,-,/}, then it is an unresolved question how many of these
operations are required to compute seemingly such a simple
function as matri# multiplication. Profound algebraic methods
are required to obtain all but the most trivial results in such
a system and, indeed, fast algorithms can be built using non-
trivial algebraic properties of the domain of computation.
Examples of techniques used to provide lower bounds in arithmetic
- complexity are to be found in Borodin and Munro [5], while
Strassen's celebrated fast matrix multiplication algorithm [37]
is an illustration of the possibilities which exist for subtle
exploitation of the properties of the domain of computation. Such
exploitation reaches cunning heights in the work of Pan [24] and
Bini et al. [4].

An obvious and cowardly escape from the convolutions of the

general problem is provided by restricting the computational model



in some way, and this is the path we shall be following in the
present chapter. In the field of Boolean complexity, for example,
much work has been done on monotone Boolean computations, analysis
of which has proved more tractable than computations using
negations (see [15,17,25,27,46]). Similar work has been undertaken,
‘by Schnorr, Shamir and Snir, on monotone arithmetic computations,
that is computations usi#g only positive constants, additions and

multiplications [32,34,35,36]. In both models it is possible to

prove that multiplication of nxXn matrices requires n3 scalar

multiplications. Of the same flavour are results concerning

regular expressions not using complementation or interéection [7,11].
In order to‘justify considering restricted computatidnal models

a number of desirable features of such models may be.listed.

Miller [18], for example, shows that monotone arithmetic

computations have absolute numerical stability. Such computations

also possess a kind of universality, stemming from the property

that their correctness may be deduced merely from the associativity,

Eommutativity and distributivity of addition and multiplication.

Py redefining the .operations of addition and multiplication

suitably, therefore, we may reinterpret the computation in a number

of different domains; this is a feature of monotone arithmetic

which we shall be.returning to later. Perhaps the main . argument

in favour, however, is that considering restricted models gi&es us
inéight into where the power of more general models lies; we shall
show, for example, that introducing negative constants info the
domain of computation enables a startling gain in efficiency to

be made in the computation of certain polynomials.

The material described in this chapter is motivated by

computation in the semiring of non-negative real numbers with the
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usual addition and multiplication '(monotone arithﬁetic); Tﬁé
results obtained are, howe&e:, valid for a nuﬁber‘of otﬁér (éaéil&,
characterisable) seﬁirings, and the treatment will thefeféré be
given in a general setting. The results apply,,fér é#aﬁélé; té
monotone arithmetic and to computation in the seﬁiring of réél
numbers with the operations of minimum and addition; This
latter structure has frequently been used (for example by Ahé ét
al. [1] and Cuninghame-Green [6]) to formulate and sol&é
optimisation problems.

Later in this chapter we show‘that the problem of céﬁputing
a polynomial function in these semirings is reducible to tﬁé
oroblem of computing a formal polynomial over the seﬁiring;
This in turn is as hard as computing a formal polynomial ox'rex;'
the Boolean semiring B ({0,1} with the two operations or; and) .
Formal polynomials over B are essentially finite sets of integer
valued vectors with addition being union and multiplication
being componentwise addition. Computations in this semiring
are combinatorial in character, and in section 5.4 a éombinatorial
method is developed which yields lower bounds on the number of
multiplications needed to compute certain polynomials. This is
achieved essentially by abstracting from the computational task ’
considered a suitable combinatorial optimisation probleﬁ. In
section 5.5, the technique is applied to several specific
polynomials and precise lower bounds obtained on the numbef of
multiplications required to compute them. A discussion of ﬁﬂe

results follows in section 5.6.

5.2 Semirings, Polynomials and Computations

Although the algebraic terminology we shall be using is

fairly standard, we begin this section with a brief review.
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A'éémiriﬁg is a system (S, ©, ®, 0, 1), where S is a set,
® (addition) and ® (multiplication) are binary operations on S,
and 0 and 1 are elements of S haQing_the following properties:
(1) (S, @, 0) is a commutative monoid, that is & is
associative and commutative and 0 is an identity.
(ii) (s, ®; 1) is a oommutative monoid.
(iii) ® distributes over & , that is a® (b & c) =(a ® b) & (a ® ¢).
(iv) a® 90 = 0.
The semirings we shall be using are the following:
(i) The Boolean semiring B=({0,1}, v,A, 0,1) (v being Boolean
disjunctiqn,A being conjuﬁction). |
(i) The semiring‘R=(R+,+,-,O,1) of non—negati&e real numbers
with the usual addition and multiplication.
(iii) The semiring M=£R*,min,+,+ax,0), where R*=RU{+«x}, min is
the binary minimum operator and + is the usual addition.
(iv) The semiring M+=(R+*,min,+,+<n,0), which is the subsemiring
of M obtained by restricting the domain to nonanegati§e
real numbers.
Let S be a semiring and X = {xl,...,xn} be a finite set of
indeterminates. Denote by S[X] the semiring of (formal) polynomials
obtained from S by-adjuncFion of the indeterminates xl,...,x

1 1

. 1 .
Each monomial m=x1 ce e X n is uniquely determined by the vector of

n°

exponents (il"°"in)’ so that we can identify monomials with
elements of N. Each polynomial peS[X] may uniquely be written

in the form

1 n
p = ® a,’ . X v X : (5.1)
(i,,...,i0ew* t17o-ip 1 n
1 n
where only finitely many coefficients ai i are different from
1o0-in
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zero, so we may identify formal polynomials with functions from
N" to S with finite support. Thus if peS[X], me[Né, then 1< will
denote the value of the coefficient of p with index vector m and

2.1 may be rewritten as

p = CDrlgﬁnL (5.2)

S is imbedded in S(X] by identifying each element seS with the

0 0

constant polynomial sx1 cee X -

(For a more elaborate treatment

see for example ([29], §67.)
Some terminology concerning the polynomial semiring is now
introduced. We assume henceforth that p is a polynomial given by

equation 5.2 and that m=(i1,...,in) is a monomial. Define the

monomial set of p by

mon(p)={m£Nnipm=O},

the degree of m by

n
deg(m) = 3 ij

j=1
' and the degree of p by

deg(p)=max{deg(m)|m€mon(p)}.

The polynomial p is said to be homogeneous if all its monomials
have the same degree; m is linear if me{o,l}n and p is linear

if all its monomials are linear.
Note that the formal polynomials ‘so far introduced are purely

syntactic objects. We can however define a natural mapping v
which assigns to each formal polynomial a functional interpretation.
If peS[X] is a formal polynomial then the associated polynomial
function{zpzsn-*s is the funcfion whose value at (al,...,an) is -
obtained by substituting a; for X in p. The mapvis a

homomorphism from S[X] to the semiring of functions [Sn-+S] with
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pointwise addition and multiplication. ‘We denote‘by Pﬁ(s).the
image of sS{X] under Q, that is the subseﬁiring‘of polyﬁoﬁiai
functions. The map v need not bé injective as two différéﬁt
polynomials, e.g. x and x2 in BtXJ, can represent the saﬁe fﬁnction.
The model of computation and its associated coﬁpléxity méasures
will now be introducedf (Certain terminology from graph theory
-will be employed, which can be referenced in chapter 3.) Let. S
be a semiring. A computation I in S with input set ICS is a
labelled, directed acyclic graph (d.a.g.) with the following
pProperties:

(i) Vertices of T with indegree 0, termed input vertices,

are labelled by elements of I.
(ii) The vertices of I' which are not input &ertices all have
indegree 2 and are labelled either by & or ® ..
(iii) There is a unique vertex, p, of I', of outdegree 0,

termed the result vertex.

Let V be the vertex set of T and let Vg 1

28 respecti&ely be
the & And ® labelled elements of V. If Q,BSV and there is an
edge in I directed fromato B, then ais a predecessor of B, and
B a successor of a. The ancestor relation is the transitive
closure of the predecessor.relation; the descendant relation is
the transitive closure of the successor relation.

A result function, res: V*-S; is defined recursively on the

vertices of Tin the following manner:

(i) If ais an input vertex labelled by i€ I then res(a)=i.
(ii) 1If asqa with predecessors B,y then resfa)=res(B)® res(y)..
(iii) 1If ae Vg with predecessors 8,y then res(a)=res(8)8>rescy).'
that A
Note that the conditionYFis acyclic ensures that res is well-

defined. We say that T computes s if res(P)=s, wherep is the result"

vertex of T.
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The ®(e)-cbmplexity of I' is simply the cardinality of

Ys(za)’ The &(®)-complexity of seS with respect to IcS is the

ﬁiniﬁum J(®)-complexity of a coﬁputation with input set T coﬁputiﬁé
S. Of particular interest to us willAbe computations of polynomials
in S[X}, and polynomial functions in Pn(S). For qomputations

in S[X] the input set will always be assumed to be SuX and for
computations in Pn(s) it will accordingly consist of the constant
functions and projection functions. Thus the &(®)-complexity of

a formal polynomial or polynomial function will be understood

to mean the ®(®)-complexity with respect to these input sets.

Whenever an algebraic structure is f éthmomeéhi? imagérbf another,
computations in the first structure are related to éoﬁéﬁt&t;oﬁs
in the second, and so complexity results for the second structure
translate into results for the first.» Indeed we have:

Lemma 5.1 Let S,S' be semirings, 1:S—+S' be a homomorphism.

Let I compute’ se$ with input set IcS. Let I'* be obtained from
‘T by relabelling each input vertex with labei ieI by t(i). Then
'' is a computation in S' with input set t(I); for each &ertex o
of T, if r=res (@), then T(r) is the result ofa in I''. . 1In
particular T'' computes T(s).

Proof Easy induction on V []

and in consequence:

Corollary 5.2: Let §,S' semirings, 1:5-+>S' be a homomorphism.

(i) The ®(®)-complexity of seS with respect to ICS is no
smaller than the ®(®)-complexity of 1(s) with respect
to (I).
(ii) If 1 is surjective, then the ®(®)-complexity of s'eS’
with respect-t§ ICS' is equal to the minimum ®(®) ~complexity
of an element sét-l(s') with respect to 1—1(1).

Proof Immediate from lemma 5.1 E]
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As an important application of cor. 5.2 we have:

Corollory 5.3: - The &(®)-complexity of a polynomial function is

equal to the minimum ®&(®)-complexity of a polynomial representing it.
Proof: Take T in cor. 5.2 to be the canonical homomorphismv from
polynomials to polynomial functions. []

The foregoing observation is especially useful in semirings
where each polynomial function is represented by a unique polynomiai;
the semiring R ié such a case. For such semirings the ®&(®)-complexity
of a polynomial and of the function it represents are equal. This
is not true in general for the semirings M,M+ where there is no unique’
representation of polynomial functions. The next section of the
chapter will deal with this problem.

Our complexity results will be derived in the first instance for
polynomials in B([X]. These results can be extended using cor. 5.2
to any other polynomial semiring S[X], provided that we can exhibit
a homomorphism from S[X] tc B[X] mapping S UX into BUX. But any
homomorphism T7:S *B extends naturally to a homomorphism which maps
S into B and X, onto itself. For all three semirings R,M,M+ such a
homomorphism exists, and is given by

OB iff a=Os

T(a)= (5.3)

1B iff a::OS

(OS is 0 in R and + % in M,M+).

Two points are perhaps worth making qt this juncture. Firstly,
Tmaps polynomials with 0-1 coefficients into formally identical
polynomials, and thus, any lower bound obtained for the
®(®) —complexity of a polynomial peB{X] yvields immediate lower
bounds on the ®(®)-complexity of the formally identical polynomials
in R[X], M[X] and M [X]. Secondly, it is at this point that the

method presented here for obtaining lower bounds would formally
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break down were we to attempt to apply it to general arithmetic
computations (with negative constants).  For in the general case,
taking S to be the semiring ( R,+,-,0,1), the map T defined by
equation 5.3 would no longer be a homomorphism &Kls)+r(-1s)=1B,
T(OS)=OB). That 5.3 defines a homomorphism is a characterisation
of the semirings to which the lower bounds obtained in section 5,5
apply; we might term such semirings monoctone.

As has been remarked, in the case of M[X] and M+[X] the
canonical homomorphism, v, from fofmal polynomials to polynomial
functions, is not an isomorphism. The next section - which is
self contained and can be omitted - establishes the machinery

required to deal with this problem.

5.3 Envelopes and Computations in min,+.

As will be seen, the methods pfesented in the following
sectiop for obtaining lower bounds are applicable only to
" homogeneous polynomials. It is possible, however, to extract;
from any polynomial, homogeneous components which are simpler to
compute than the polynomial itself. By arguing about these
components it is therefore possible to obtain lower bounds on the
complexity of non-homogeneous polynomials.
Let peS[X] be given by equation 5.2, and let kémin{deg(m)_lmemon(p)}°

The lower envelope of p is given by

= ®
te(p) deg(m) =k pm o

Similarly, if K=max{deg(m)|memon(p)}, then the higher envelope of

p is given by

he(p)= p_ m.

®
deg (m) =K m
Informally, le(p) (he(p)) is obtained from p by preserving only

the terms of minimal (maximal) degree. Assuming we restrict our
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attention to semirings for which the map T, .defined by equation
5.3, is indeed a homomorphism, the following properties of lower
envelopes can be deduced (pl,pzes[X]):
(i) 1If deg(le(pl))=deg(le(p2)) then
;e(p1$ p2)=le(p1) ® le (p2) .
(ii) If deg(le(pl))<deg(le(p2)) then le(p1$ pz)=le(p1).

(1iii) 1le (p1® p2)=le(pl) ® 1e(p2) .
Similar relations hold for the higher envelope. The complexity
of a polynomial and that of its higher and lower envelopes are

rélated as follows:

Lemma 5.4 . The &(®)-complexity of p is no smaller than the

®(®)-complexity of le(p) (he(p)).

Proof From the properties of lower ana higher envelopes listed
above, it is clear that any computation for peS[X] may be
restructured, by appropriately discarding some of its additions,
into a computation of le(p) (he(p)). The additions to be discarded
are those whose summands have lower (higher) envelopes of unequal
degrees. .E]

Let us now turn to the semirings M and M+. We shall
investigate how the structure of a polynomial is determined by the
function it represents. We assume that peM([X] (peM+[X]) is given
.by |

i=1
where ci=+‘m, mieNn. The function f represented by p is

f(u)=f(u_1,° ee,u_)=min(<m, -u>+ci.) '
1sisk

where <u-+v> denotes the scalar product of u and v. We shall
obtain a characterisation of the class of polynomials which represent

a given function f; this characterisation rests on the basic
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separation theorem in convexity theory, due to Farkas, whose
statement follows.
Theorem 5.5 Let a,aieRé, b,bieR for i=1,...,k. The following
two assertions are equivalent:
(i) The system.of inequalities

<ai.uA> = bi i=1,...,k

implies the inéquality

<asu>2 b, |

(ii) Hkl,...,Ak such that

Proof:- See [9], theorem 4. |

The following theorem, informally stated, tells us that any
polynomial representing a given function is composed of a fixed
set of "essential terms" together with a (possibly empty) set of
"redundant terms"; the set of possible redundant terms has an
elegant characterisation.
-Theorem 5.6 Let fePn(M) be a polynomial function over M. There
ex'ists a unique set of terms T={cimi‘1§i§t}. such that if p
represents £ in M[X] then

(i) - BEach term of T occurs in p;

(ii) If cm is a term of p then there exist

)\l,..'a,At such that:
Aizo, i=1l,0..,t;

ZKi =1;
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’ +
‘Proof Associate with f the set Gr(f)c Rn ! which is bounded

above by the graph of ff

§£(f)={(u1,..,,un,v)|V§f(u1,..,,un)}

={(u,v)|v§(<mi-u>+ci) for i=1,..,,k}.

Ei(f) is the intersection of k closed halfspaces corresponding to
'the'k terms of p, and has non-empty interior (unless p=-«),
There is a unique'ﬁinimal family of halfspéces whose intersection
yields Gr(f), each halfspace being bounded by a hyperplane which
contains one of the n~dimensional faces of the n+l1 dimensional
polyhedron Gr(f). It follows that there is a unique set T .of
terms of p whiéh appear in any polynomial representing f. This
deals with part (i) of the theorem - the éharadterisation of the
remaining terms of p follows almost immediatély from theorem 5.5. .
For if cm is a redundant term of p then:

n . min
- >
VueR , <m u>+c='1§iét

(<m, -ud+c.)

i i
which is equivalent to the assertion that in Rn+1 the system of.
inequalities

<miou>+ciz i=l,...,t

Unet !
implies the inequality

<m-u>+c 2 u
n+1

where un+1€R is an independent variable, Denoting the vectqr
(ul,..,,un,un+1) by u*, the assertion may be rewritten as

< (mi y~1)u*> 2.—c_i, i=1,...,t
implies

<{m,~-1)-u*>2 -c,
which by theorem 5.5.is equivalent to the existence of
xl,...,kt with the properties

A;20, i=1,...,t
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(m,-1)= 2 X (m ,~1)

-chAi(-f:i).

The result follows immediately. []

The characterisation of redundant terms supplied by theorem

5.6 yields a unique representation theorem for certain classes of

functions.

Theorem 5.7 Let p,geM[x] represent the same function. Then

(i)

(i)

Proof

(1)

(ii)

If p is linear then p=qg.
If le(p) (he(p)) is linear then le(p)=le(q)

(he(p)=he(q)).

Let T={cimi} be the set of essential terms occurring
both in p and q. We claim that no other term occurs in
p or d. Indeed, let c¢cm be a term-of p (or q). Then,

by theorem 5.6, m= Z)\imi with xlg o, ZAi=1. However,

“ the mi are 0-1 valued vectors and no non-trivial convex

combination of them can yield an integer valued vector
(the interior of the unit cube does not contain lattice
points). Thus the monomial m occurs in T and so cmeT.
Let k=min deg(mi). We claim that the terms of le(p)
(le(q)) are precisely the minimal degree terms of T.
If deg(mi)=k then cimi occurs in le(p) and le(g). On
the other hand, let cm be a term of le(p) (or le(q)).
Then deg(m)=k and, by th. 5.6, m= j;ximi with 1,20,

> A;=l. But deg(m)= z)\ideg(mi) 2min deg(m )=k, and
equality can occur only if Ai=0 whenever deg(mi)>k.
Thus m is a convex combination of the minimum degree
monomials in T, and, by the same argument used in (i),
it follows that cmeT. The proof for higher envelopes

is similar. O
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The relevance of the unigque representation theorem is that it
allows us to relate the complexities of polynomial functions and

formal polynomials representing them.

Corollary 5.8 Let peM[X] represent the function fePn(m). Then:
(). If p is linear, then the ®(®)-complexity of f is equal
to the &(®)-complexity of p.
(ii) va le(p) (he(p)) is linear, then the ®(®)-complexity of
f is no smaller than the 8«@)-compléxity of le(p) (he(p)).
Proof Use cor. 5.3, th. 5.4 and th. 5.7. O
When the domain of computation is restricted to non-negative
numbers, there is greater freedom in choosing representations for
functions, as the following analogue of th. 5.6 suggests.
Theorem 5.9 Let fePn(M+) be a poiynomial function over M+. There
exists a uhique set of terms T={cimi|1§i§t} such that if p represents
£ in M’ [X] then:
(i) Each term of T occurs in p.
(1i) TIf cm is a term of p then there exist
xl""’lt such that
Ai;O i=1,...,t;
2A,=1
S
m;-ZAimi
czyAe; .
Proof The construction of the set of redundant terms T is
identical to that of theorem 5.6. For part (ii) of the theorem,
suppose that cm is a redundant term of p. Then
‘VueR?, uéo => <m.ud>+C zlzigt(<mi.u>+ci)
which is equivalent to the assertion that in Rn+1 the set of
inequalities
u.20, j=1,...,n

J

<m, *u>+c.2u i=1,...,t
i i :

n+l’
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implies the inequality

<m-u>+cz2u
n+1

where un+1e R is an independent variable. Denoting the wvector

(ul,..,,u ) by u* and the jth unit vector by ej, the

n’"n+1
assertion may be rewritten as

<ejou*>20, j=1,...,n

<(my,-1)cu*>2-c., i=1,...,t
implies

<(m,=-1) *u*>2-c
which by theorem 5.5 is equivalent to the existence of
kl""'ln+t with the properties

20, i=1,...,n+t

n t
(m,-1)= 3 Aoy izl)\n*.i (m, ,~1)

j=1
t
-< -
c= .2: An+1 ( ci)'
i=1
The result follows immediately. []

. . + . :
The unique representation theorem for M is rather weaker than
the corresponding one (th. 5.7) for M.

+
Theorem 5.10 Let p,ge:M [X] represent the same function.  Then

(i) 1If le(p) is linear, then le(p)=le(q)
(ii) If p is linear and homogeneous, then p=le(q5.
Proof
(i) The argument in proving th. 5.7 carries over if we
replace the appeal in the proof to th. 5.6 by one to
th. 5.9. (There is no analogous argument for higher
envelopes. )

(ii) If p is homogeneous, then p=le(p) and (ii) follows from

(1). O
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A . .
Corollory 5.11 Let peM+[X] represent the function fePn(M ) . Then

(1) If le(p) is linear, then the ®(®)—compiexity of £ is
| no smaller than the ®(®)-complexity of le(p).
(ii) If p is linear and homogeneous, then the &(®)-complexity
of £ is equal to the ®(®)-complexity of p.

Proof Use cor. 5.3, th. 5.4 and th. 5.10. E]

5.4 A Combinatorial Lower Bound Argument

In this section, we restrict our attention to computations in
B[X], the semiring of formal polynomials over the Boolean semiring
B. The results obtained here extend to éther semirings b§ the
considerations introduced in sections 5.2, 5.3; Throughdut the
following, T will denote an‘arbitrary ceomputation in B[X] with
result vertex p and res(p)=peB{X]. 29, Yg,E will respectively
denote the set of ®-labelled vertices, ®-labelled vertices and
edges, of T.

Let us now extend some of our earlier notation. Ifais in
the vertex set V of ' then mon(a) is the monomial set of res(a)

and deg(a) is the degree of res(a). pred(a) will denote the set

of prédecessors of a. T is said to be linear (homogeneous) if

res(a) is a linear (homogeneous) polynomial for all aeV. We now
show that when obtaining lower bouhds on the ®&-=-complexity of
computing a cerfain linear (homogeneous) polynomial, we can as well
restrict ourselves to computations which are themselves linear
(homogeneous) .
Lemma 5.12 Suppose that peB[X], I computes p and that T is
optimal in the sense that no I'' computing p has fewer &-vertices. -
Then

(i} T is linear if and only if p is.

(ii) T is homogeneous if and only if p is.
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(iii) 1If Q;B are in thé vértex set V of T, Bis a descendant
of o and memon(a) then mon(B) contains a monomial of the
form mm'.

Proof
(i) . The only if part is immediate from the definition of

linearity. For the other implication, suppose to the
contrary that p is linear and that aeV with res(a) not
linear. The conditions thatT is acyclic and that p is
the unigque vertex of outdegree 0 in T imply that there

is a directed path a=a0

,al,...,dj=p froma to p in T.

Consider two adjacent vertices ai,a_

i+1 in the path with

the property that a,

is linear but o, not. It must
i+1 ) i

be the case that ai is a ®-vertex, and that its

+1
predecessor B .distinct from ai-has_res(B)=O. But then

res(ai;1)=0 and ai could be replaced by an input vertex

+1
labelled by O. The amended computation would have one
fewer ®-vertex, contradicting the optimality of T..
(i1) |
Analogous to (i).
(1ii) O]
As the polynomials for which we‘will be obtaining lower bounds
are both linear and homogeneous ,parts (i) ahd (ii) of the previous
‘ lemma assure us that we may safely confine attention to computatioﬁs
which are both linear and homogeneous, and we assume henceforth
that T has these properties. Part (iii) of the lemma captures
the property of computation in B[X] which makes it amenable to
treatment in the style of [34] or of the present cﬁapter. Stated
informally, once a monomial has been created, it must find its way
into the final result; this "conservation of monomials" ensures

that no "invalid" monomials are formed, and severely limits the rate

at which monomials may be accuriulated in the computation. Let us
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now introduce some definitions which help make precise this idea.

If aeVv, then the complement of a is the set

i, i, i
Xy Teeax |Vm' emon (o) ,mm* emon (p) }

complement(a)={m=x1 2

and the content of o is the set
content(a)={mm'Imecomplement(a),m'emon(a)}.
We remark that content(a) ¢ mon(p).
The fundamental construction on which our argument rests is
that of the parse tree of a monomial, which is now described. If

aeV’' and memon(a),Amzl (the unit monomial), then the parse tree of

m rooted at a is denoted by PT(a,m) and is a recursively defined

subtree of T. We will, in fact, define PT(a,m) by specifying its
edge set E(a,m); the vertex set of PT(a,m) then contains those
vertices in V which are endpoints of edges in E(a,m). The

recursive definition of E(a,m) is as follows:

i

(i) ¢ @ 1is an input vertex: Define E(q,m) to be @. !
) o , , o o)
(i1) @& Vg = ' Let pred(a)={B8,yv}.

Since meﬁoh(a) we may deduce that either memon(f) or
memon(y) (or both). Without loss of generality we may
suppose the former. Define E(a,m) in that case to be
E(B,m)u{(é,a)}. Note that although some freedom may

exist in choosing between B and y the definition may be
made good by providing an ordering on the predecessors of q.
(iii) \égé 28‘ : ‘- iAgain let pred(a)={B,v}. Since

memon{a) there must exist mlemon(s), m.emon(y) such that

2

m=m, m We may suppose that m

1Ege is not equal to 1, the

1
unit monomial, for if it were the homogeneity of T would
imply res(8)=1 and hence res(a)=res(y). A smaller
computation for p could then be obtained by removing

the vertex o from I' and restructuring. By a similar

argument we may suppose m,#1, Define E(a,m) to be

2
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PT(a,mn) :

Figure 5.1

PT (0‘- ,m) 2

Figure 5.2
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E(B,ml)LJE(Y,mz)U{(B,a),(Y,a)}. (Again m, and m

1 5 may not

be uniquely defined, but we may provide a rule for
choosing such a pair.) The diagrams 5.1 and 5.2 are
added as an aid to visualising the cbnstruct.

That PT(a,m) is well defined is a consequence of T being
acyclic, it only remains to check that it is indeed a tree. But
if PT(o,m) is not a trée then it must contain two distinct
directed paths from some vertex B to a . Now if memon(B), three
applications of lemma 5.12 (iii) yield that mon(a) contains a
monomial of the form mzm!, which violates the linearity of T,

The parse tree of a monomial is intended to be an intuitively
appealing construct; essentially it.is a family tree which charts
the generation of that monomial within the computation. Those
familiar with the work of Ehrenfeucht and Zeiger [7] will note
the similafity with the "parse function" which is defined there on
~ elements ofvregular sets, An important property of parse trees
is the following:

Theorem 5.13 Let m be an element of mon(p). If a is in the

vertex set of PT(p,m) then mecontent(a).
Proof Following the recursive construction of PT(p,m), let
maemon(a) be the monomial Qhose parse tree.PT(a,ma) is precisely
the subtree of PT(p,m) rooted at o. We are done if we can show
that for each a in the vertex set of PT(p,m) there exists a
monomial m& such that
mm' =m ' (5.4)
m! n € mon(p) Vnemon (a) . (5.5)
For if 5.4, 5.5 are satisfied, m&e:complement( a ) ,masmon(a) and
hence mzmam&e‘content(a). The existence of m& satisfying

equations 5.4, 5.5 is established by induction on the vertices of

PT(p,m).
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fi} The hypothesis is true for the root, p. Take mé =1,
then 5.4, 5.5 are trivally satisfied.

(ii) Assume true for @&-vertex a. Let B be the predecessor
of a in PT(p,m) and let m& satisfy 5.4, 5.5. To see
that the hypothesis holds for g , note that, by
construction, m8= ma and that 5.4 may be satisfied by
tgking mé=m& .. Also, since

{m‘BnInemon(Bj}ghnén‘nemon(aﬂ
={m/ n|nemon(a)}
¢c¢mon{p),
5.5 is satisfied.
“(iii) Assume true for ®&-vertex g. Let pred(a)={8,v}, and
let m& satisfy 5.4, 5.5. We show that the hypothesis
holds for R.(and by symmetry for.y). - Set mé =m'm

oy

and observe that, since mm' =m m' m =m m' =m,
B 8 Ba vy oo
equation 5.4 is satisfied. Additionally:
{m'n|nemon(g) }={m' m_n|nemon(g)}
B a Yy
c{m' n|nemon (a)}
a
- gmon(p)
which verifies 5.5 for g.. 0
Theorem 5.13 suggests a method for obtaining lower bounds.
I' contains !mon(p)l parse~trees corresponding to the distinct
monomials of p. Distinct parse-trees may share vertices of T,
but the amount of sharing that takes place is limited by the
previous theorem. In order to make this gualitative argument
precise we introduce a weight function for parse-trees.
Suppose T is a parse tree in T. Define the weight of T,
w(T) by

w(T) = % |content {q) l-l
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with summation being over all ®&-vertices in T.

Theorem 5.14 ) w(PT(p,m))s|v_|
memon (p) ®

(= ®-complexity of T).

Proof Denote by U(m) the set of ®&-vertices of PT(p,m). Then:

> w(PT(p,m)) > 2 |content(a) |—1
memon (p) memon (p) <a€eU(m)

2:[{mlan(mi}[.lcontent(a)I_l
aeV,

®
s: Y |{m|mecontent (a)}}. content‘(m)l-1
aegé ' )
(by theorem 5.13)
-l O

Now supposé that for a specif;ed linear, homogeneous
polyncmial p we have some bound on the content-of vertices in
the computation. Specifically, we assume the existence of a
function c(+,*) of two integer variables which satisfies

4c(j,k)zmax{]content(a)|Iaqu,deg(pred(a»={j,k}}.
We use c to construct a lower bound on w(PT(a,m)) which depends

only on the degree of a.

Theorem 5.15 If the function w*(-) of one integer variable

is defined by

w*(1)=0 (5.6)
wr (i) = 20 (W (D aw () +1/e (3,00 ) (122) (5.7)
j+k=1
then w(PT(a,m))zw*(deg(a)) for all oev, memon{a). In particular

w(PT(p,m) )2w* (deg(p)).

Proof Since T is acyclic we may perform a topological sort
([1]p.70)rof the vertices Vv of T, that is to say order the
vertices in such a way that-each edge of T is directed from a
vertex lower in the order to one higher. We proceed by induction
on this order. The hypothesis is clearly true when deg(a)=0

and the induction step trivial if as%a. Assume, therefore,
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that aeVy / pred(a)={B,v} and let .i=deg(a). Then -

w(P‘I‘(a,m))=w(PT(B,mB

2w* (deg (B) ) +w* (deg(y) ) +1/c(deg(B) ,deg(y))

))‘.l.w(]_:v];'(_Y,mY'.))+|con*t:ent(cr.)I“1

(by inductive hypothesis)

z min {w*(j)+w*(k)+1/c(j,k)}
J+k= 1

=k (1) 3
It may be remarked that the theorem remains true if the
equalities of 5.6, 5.7 are replaced by inequalities (£). This
observation‘can be useful if an exact solution to the original
equations is hard to obtain.

Corollary 5.16 For linear, homogeneous peB[X]

]moh(p)l'w*(deg(p))é ®-complexity of p
. Proof Take T in theorem 5.14 to be a computation for p which
minimises iVél,obtaining

> w(PT(p,m)) s ®-complexity of p.
memon (p)

Applying theorem 5.15 we obtain

> w* (deg(p) ) ®-complexity of p O
memon (p)

In the next section we compute content bounds for specific
polynomials and derive the corresponding weight béunds. We
show that for several'polynomials the lower bound implied by
corollary 5.16 is tight. In order to help solve the recurrences
5.6, 5.7 for practical éxamples we introduce a final lemma.

Lemma 5.17 If fo; all integers j,k satisfying 15jsk-2,
4<j+ksn, the inequality
1/c(jf1,k—1)+1/c(;,j)—l/c(j,k)-l/c(l;krl);o

holds, the solution to the recurrences 5.6, 5.7 is

i-1
w*(i)= E: 1/c(1,1i") (25isgn)

i'=1
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Proof by induction on i. Trivially true for i=2,3, otherwise

. j-1 k-1
min )
we(i)=159sk | 2 1/c(1,3M)+ 2 1/c(1,k')  +1/c(3,%)
j+k=1i | §'=1 k'=1
= min g(3j)
15§<5i/2

‘regarding j as an independent variable and k as dependent. We’
observe that g is a monotonically increasing function in its
range 1£j5i/2) since g(j+D—g(j)=1/c(1,j)—1/c(1,k-1)+1/c(j+1,k-1)~
| -1/¢c(3,%)
. 20 by stated condition.

Thus w*(i)=g(1)
Ci-1
= S-1/c(1,i")

i'=1

O

5.5 The Complexity of Specific Polynomials

(1) 1Iterated matrix multiplication

Suppose X(l),x(z),..,,x(n) are dxXd matrices; X(k)=xij(k)

(12i,jsn). We are interested in the number of multiplications

required to compute the product

x(l)...x(nh..= ® x.(l)x (2)x (3) ...x‘(n)

ii

( xS T
I 1siosa M2 t2t3 3ty *nd

We note that any computation for the above can be transformed
into a computation for the related polynomial

.(%)x, F2) ..ox.(?) x.(n+%)
151 g8 t1t2 t2ts n'n+1 Tnerti
by the addition oant most d2 ®-vertices., The number of
multiplications necessary for matrix multiplication is thus no
smaller than ( ®-complexity of p)—dz.
The first step in establishing a bound on the complexity of
P is to compute a suitable content bound c(-,:). Suppose q is

a polynomial with indeterminates of the form xi?). Define the
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indek set Iq to be the set of superscripts of indeterminates
occurring in g. . Now consider polynomials, a,b,c, of degrees
r(z1),s(z1) ,n-r-s+1, with the property that mon(abc)gmon(p). By
considering the form of monomials of p we see immediately that

I are disjoint and, moreover, IIal;r,IIble,[Iclzn—n-s+1.

a'Ib'Ic
Hence {ia,Ib,Ic} is a partition of {1,2,..,,n+1}. Define the

set A of articulations.to be

A={k|(2§k§n+1,'k and k-1 are in distinct index sets)
v(k=1, 1 and n+! are in distinct index sets)}.
Next consider a general element of mon{(abc)

(1) (@2 (D)
1112 12].3 1

n+l’1

- Observe that. if k is an articulation (keA) then the subscript ik

is necessarily fixed by the condition mon(abc) ¢ mon(p); otherwise

ik is free to assume any of the d possible values 1,...,d. Hence
|mon (abe) | sa™ 121+
If r+s<n+l then I_,I ,I_#@, which implies |a|23; if r+s=n+1 then

Ia,Ib=¢,Ic=¢ and |A|22. Consequently we take as our -content bound

dn (r+s<n+1)

dn_1 (r+s=n+1). -

c(xr,s)=

The recurrence relations 5,6, 5,7 are easily solved in this
case, where c(°,*) is essentially a constant. The condition of

lemma 5.17 is trivially satisfied, from which we obtain

n
w*(n+l)= » 1/c(1,1)
i=1

=1 &2 Mgt

Hence by cor. 5.16:

(2—n)+d(1—n) 2

®-complexity of pz2{(n-1)d ]4mon(p)|=(n—l)d3+d

and, by our initial observation, the number of multiplications

required for matrix multiplication is (n-1)d3. (For the case
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n=2, this result is implied by a stronger one, obtained by
Paterson and others [17,25,27], for the monotone Boolean matrix

product.) . The obvious algorithm, derived from the definition of

matrix multiplication yields an upper bound of (n—1.)d3 and

illustrates that our bound is tight. Note that since p is linear

&

and homogeneous the conditions of cor. 5.8, 5.11 are satisfied
and the lower bound is valid for matrix multiplication over
+
R,M,M .,
(ii) 1Iterated wrapped convolution

_ _@  _m (k) (k)

Suppose X  ,X reeerX are d-vectors; x =xi (0sisd-1).

 ‘The wrapped convolution of these vectors is the k-vector §'whose

components are given by

y.= ® ) x,(l)x.(z)f.. .(n)
3 il+12+..-.+in5j (mod d@) %4 o) - tn

As before we define the related polynomial

o= . (1), (2) () (n+1)
11+...+1n+1=0(mod d) ;1 i, i, i+ R
_(n+1) : '

where x is a d-vector, and remark that the number of
multiplications  required to éompute'; is at leést ( ® —complexity
of p)-d. .

Consider polynomials a,b,c of degrees r,s,n-r-s+l with
the property that mon(abc) ¢ mon(p). As before define the index
set Iq of a polynomial g to be the set of all superscripts
occurring in the indeterminates which form g. Again, Ia,Ib,Ic
form a partition of {1,2,...,n+1}. If we now consider a
general monomial

mambmc=xi(1)xi(2)"'xi (n+1)
1 2 n+1

of mon(abc), we see from the definition of p that
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> i+ DI N > i, 20 (mod d)
kel . kSIb kel
a c

and, letting ma range over mon(a)-while holding mb,mc fixed, we

deduce that » i
keIa

X is congruent to a constant, modulo d. Similar

arguments apply to Ib,Ic and hence |mon(abc)| is bounded by the
number of assignments which can be made to i_l,iz,..,,ih+1 which
‘fix the three above sums. If r+s<n+l, then Ia,Ib,Ic are all
nbn—empty and the number of assignments which can be made is

n-2 n-1 , .
4 ; if r+s=n+1 then Ic=¢ and there are d possible assignments.
oOur content bound is thus

.n-2
c(r,s)= (r+s<n+1)

dn-.1 (r+s=n+1)
Observing that this bound is identical to that derived in thé
previous example we can immediately write down
w* (n+1) = (a-1)@ 2T 4g (171
and so by cor. 5.16
®-complexity of pz[(n—l)d(zfn)+d(1—n)]4mon(p)I
=(n—1)d2+d.
The number of multiplications required to compute the wrapped
convolution is thus at least‘(n-l)dz. That this bound is tight
.may be seen by considering the algorithm derived from the

. . : +
definition. Again the bound is valid for R,M and M .

(iii) Permanent

Suppose X is an nxn matrix of indeterminates xi.(léi,jén).

The permanent function on X is defined to be

per(X)=p= ©

X X
meS(n) 1,m(1) 2,1T(2) n,T(n)

where S(n) is the set of all permutations of the first n natural

numbers. In its arithmetic interpretation, the permanent was
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introduced in chapter 2.and its importance as the generating
function for perfect matchings in bipartite graphs discussed.
It will be recalled that the permanent is algebraically complete;
we should not expect thereforé to be able to compute ‘the permanent
using a number of arithmetic operations bounded by a polynomial
in. n, even if arbitrary constants are allowed@_ We shall in
fact show that in any monotone computation of the permanent
(i.e. computation in R{X]) there .are an exponential number of
multiplications.

‘Re-interpreting the semiring oper;tions, ®, ® as min,+,
the significance of the permanent is that it computés the minimum
-weight of a perfect matching in a bipartite graph (the so-called
"assignment problem"). In contrast to the arithmetic
interpretation, the problem of finding a minimum weight matching
in a bipartite graph is tractable and an O(n3)-algorithm can be
found in Lawler (161

To study the complekity of monotone computation of the
permanent we first determine a content bound, c(-,°). Suppose
a,b and ¢ are polynomials of degrees r,s and n-r-s respectively,
with mon (abc) ¢ mon(p). If g is a polynomiai with indeterminates

X.., we denote by I and J_ the sets
1] q q

I ={i|x,. occurs in g}

q l i) E
J ={j]|x.,. occurs in q}.
gl q

If we consider a general element of mon (abc)
a1, 1 (1) *2,m(2) * **n, 7 (n)

we can see that the sets Ia,Ib,Ic are disjoint and
lIa[=r, ‘Ib|=s,]ICl=n-;-s

so that {Ia,I ,Ig{is a partition of {1,2,...,n}. Since 7 is a

b
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permutation, the same argument yields that {Ja, b’Jc} is also a
partition. Elements of mon (abc) éorrespond to permutations 7
which observe the restrictions

(I )=J_, m(L, ) =3, (I )=J .
The total number of such permutations is cléarly‘r!s!(n-r—s)!‘
and so we may take as our content bound

c(x,s)=r!s!(n—r-s)!_
We claim that this bound satisfies the condition of lemma 5.17.
In order to show this we need the following easily verified lemma:
Lemma 5.18 If r20, s22 then (r:s>zr(s+1) O
For the particular. content bound we have just computed the
condition of lemma 5.17 becomes

Vr,s satisfying 15rss-2, 4<r+ssn:

1/(r+1)!(s;1)!(n—rfs)!+1/r!(n-r-1)!-i/r!s!(n-r-s)!-l/ls—l)!(n-S)!io
By multiplying throughout by r!(s-1)!(n-r-s)! the fbllowing
'equivalent'condition is obtained

Vr,s satisfying 1srsSs-2, 4sr+ssn:

=1 -1
(r+1r1+<n—r—1) _S-1_<n-s- >
n-r-s n-r-s

Finally, making the substitution t=r+s, we arrive at a final

(1%

0

equivalent condition

Vt,r satisfying 4stsn, 2£2rst-2:

-1

-1
- -1 (n-r-1 -1 /n-t+r
£(t,r)= (x+1) +<n_t > - (t-1) -(n_t > 20 (5.8)

In fact, it proves easier to show that £(t,r)20 in the slightly
extended range 4stsn, 252rst-1, Our approach will be to show
that £(t,r), with t fixed, is a monotonically decreasing function
of r in the range 222rst-1. The problem is thus reduced to
showing £(t,r) to be non-negative when r assumes its maximum value

ie.  (t-1)/2).
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. For the monotonicity of f, consider the difference

f(t,r-1)-£(t,x). From the definition of £ we. have

f(;,r-1)=r‘1+<2‘r>'1_(t_r+r) -1_<n—t+r>-1

W
o

-t n-t (3.9)

Forming differences of corresponding terms in equations 5.8, 5,9
‘we obtain

£(t,r-1)-£(t,r)
-1

—1/r(r+1)+<n_§> + [1=(n=1) / (t=r) 1+1/ (t-x) (t-r+1)
-1 '
+<2:E+r> e [1-(n-t+x)/r]
r -1 -1 n-t+r -1 -1
=1/r(xr+1)- (n t) ¢ (n-t) (t-r) +1/(t-r)(t-r+1)—< net ) « (n-t)r

By lemma 5.18, the binomial coefficient(h—i) is bounded below by

t+r

n-t )ls bounded by

(n-t) (t-r+1) while the binomial coefficient(n
.(n—t)(r+1). Replacing each coefficient by its bound the terms
of right hand side cangel in pairs, yielding -

f(t,r-1)-£(t,r)20,
i.e. that £ is a monotonically decreasing function of its second
argument.

It only remains to show that f is non-negative when its

secohd argument assumes its maximum value, i.e. that

£(t, (t-1)/2))20 Vt,45tsn.
Considering the cases when t is respectively odd and even:

£(t, (£-1)/2)

-1 -1
=(&t+§)’1+<r:j:t'*> -(&t+’:)"1-<n:?%)
=0

and £(t,it-1)

-1
-1 -it-
=(3t) +<n it) ~(3t+1) "t (n if;)
oy
-4/t(t+2)+< t) [1-(n-3t) /3t]
=4/t (t+2)- < i) -2(n —t)t L,
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n-it

By. lemma 5.18, (n—t

) is bounded below by (n-t) (}t+1), and hence
f£(t,%$t-1)20.
Invoking lemma 5.17, whose condition we now see to be

satisfied , we deduce

n-1
> 1/(i=1) 1 (n-i)!

i=1

w* (n)

= r.li1<n;1>/(n—1) v

i=1

=™ 1) /a1y s
By cor. 5.16
®-complexity of pén!(Zn-l—l)/(n—l)!
=n (2" 1.1
This lower bound is in fact achievable using a permanental

equivalent of Laplace's expansion rule for determinants. This

is essentially a dynamic programming method: the permanents of ali
ixi gubmatrices ;ontained in the first i rows of X (the
"subpermanents" of the first i rows) are computed using the values
obtained for the subpermanents of the first i-1 rows. Clearly
_we can obtain variants of this algorithm by permuting rows of X
and transposing X; what is more interesting is that the optimal
algorithm lacks uniqueness in a non-trivial way, this stemming
from the observation that several "shapes" of parse tree all have
optimum weight. More specifically, the value of

w* (1) +w* (j)+1/c(4i,3)
is a constant for all non-negative integers i,j summing to n-1i,
which leads to the following family of optimal algorithms for
12t=n-2;:
(1) Evaluate all txt subpermanents of the first t rows

using Laplace's expansion.
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(2) Evaluate the (n-t-1)x(n-t-1) subpermanents of the rows
t+1,t+2,...,n-1 in the same way.
(3) Use the results of (1) and (2) to compute}all
(n-1)x(n-1) subpermanents of the first n-1 rows;
(4) From (3) compute per(X) by Laplace's expansion.
We remark that, once moré, thé lower bound is valid for R,M and M+°

(iv) Hamiltonian circuit polynomial

Suppose again that X is an nXn matrix of indeterminates

(12i,j=n). The Hamiltonian circuit polynomial is

X, .
1]

HC =p=

e ve%%n)$1/“(1)x2'"(2)r.‘x

n,m(n)

where C(n) is the set of all cyclic permutations of the first n
natural numbers. Identifying each indeterminate xij with the
{i,3j) edge of the complete graph Kn on the n vertices {1,2,...,n},
it will be seen that monomials of p correspond to Hamiltonian
circuits in Kn' Over R the polynomial can be viewed as the
generating function fér Hamiltonian circuits in the complete graph,
while the corresponding interpretation for M* is that of finding
the shortest circuit which visits all the vertices of a graph -
the so-cailed "Travelling Salesman Problem".
In the usual way, we let a,b,c be polynomials of degrees
r,s,n-r-s respectively with mon(abc) ¢ mon(p). Using the séme
reasoning as for the permanent, a,b and c define two partitions
of {1,2,...,n} namely
{Ia,Ib,Ic} ad {Ja,Jb,JC}.

If we consider a general monomial of abc
Tap e, m(1)*2,m(2) " *n, w(n)

we have

N(Ia)=Ja, n(Ib)=J W(Ic)=Jc

bl
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and so [mon(abcﬁl is bounded by the number of cyclic permutations
T which. satisfy these constraints. Suppose we fix mb,mc i.e, fix
T on IbU Ic; we wish to know the number of possible choices of ma

i.e. the number of ways of extending m to Ia' Define

m*:I ->1T
a a

m* (1) =1 (1)
s Q.
where o is the smallest positive number such thatm(.J.)EIa (such
an o. exists since m is cyclic). Note that 7™ is completely

determined by 7w* and the restriction of w to I, U Ic. We

b
observe that m* is a cyclic permutation, and hence the number

of distinct permutations m which agree on I

bUIc is bounded by

the number of cyclic permutations on r objecﬁs
i.e. |mon(a)|s(x-1)1
similarly |mon(b) |s(s-1)!
and [mqn(c)lé(n—r—s—l)i - - (r+s<n)
| =1 (xr+s=n)

;he second case case being the degenerate one where Ic=¢.'
Consequently we take '‘as content bound

Cetrre- (r-1)1(s=1)! (n-r-s-1)1 (r+s<n)
(r-1) ! (s-1)1 (r+s=n)
By an argument completely analogous to the case of the permanent,

we can show that this bound satisfies the conditioﬁ of lemma 5.17

and hence

: ‘ n-2
w*(n)=1/(n=2) !+ 3 1/(i-1)!(n-i-2)!
i=1
n-2
=1/(n=-2)1+ (’."3>/(n-3)z
' i= |
=tm-202" P11/ (=21

By cor. 5.16 %
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®-complexity of pz(n-1)! [(n-2)2 B~3)

(n-3)

+1]/(n-2)1
=(n-1) [(n-2)2 +1].

Again this bound is wvalid for.the semirings R,M and Mf, and
is attainable.

Denote by N the set containing the first n natural numbers

i.e. N={1,2,...,n}. Let p, for i,jeN, SgN-{i,j} be the

i,s,3
polynomial whose monomials cor;espond 1-1 with the simple paths
in Kn which start at vertex i, terminate at vertex j and visit
exactly those vertices in S. A dynamic programming approach may
be used to compuﬁe plfS,j for all permissible j,S; the relevant

relations are

=X, JEN\1
P1,0,57 %15 e )

= ' z
P1,5,57 @ Py s\i,i ¥y (I5NNM,S#).
’ 1e8S
Generating the set {p1 s j||S|=s},of polynomials from the set
. ,, 7 ’ .
{pl s j||S|=s-1} can be achieved using s(n—1)(n—2>*multiplications;
oy s .

by iterating this process we can compute p1 N in
,N-

n-2 5
> s(n—l)(n- )

{1,3}.3

s=1 S
' n-2 n-3
=(n-1) (n-2) s§1<s—1)
_ (n=3)" o .
=(n-1) (n-2)2 multiplications,

n.
Now chxn= ®' p.

. XL
j=2 llN-{'llJ}IJ j1

which can be computed in
(n-3) ‘ q .
(n-1) (n-2)2 +(n-1) multiplications.
A polynomial closely allied to the Hamiltonian circuit
Vpolynomial is the generating function for simple paths between

two distinguished vertices of a complete graph. Define the

simple paths polynomial to be

Sp = ® o)
S¢ N-{'lln} 1/S,n
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so that monomials correspond to simple paths from vertex 1 to
vertex n in the complete .graph Kn° .We remark that ®&-complexity

of HC S ®-complexity of p1 N since a éomputation

(n-1)x(n-1) {1,n},n

for the latter may be transformed into. one for the former by

changing the inputs xin to Xiqe Hence the lower bound for
HCan implies a lower bound of (nA2)[(n—3)2(n_4)+1] multiplications
for PJ,N;{l,n},n' However pl,N-{l,n},n=he(SPan) and so, by

theorem 5.4 and corollary 5.8, we obtain a lower bound of

(n-2) [(n=3)2 (*~4)

+1] multiplications for SP_.n, when .working with
+ . '

the semirings R and M (but not M , where a minimum length path

between two vertices is necessarily simple - the significance of

this observation will be discussed in the next section.)

(v) Spanning tree polynomial

Suppose X is an nxn matrix of indeterminates xij (12i,j=n).

Define the spanning tree polynomial to be

SToan ™= L D %2, (2)%3,£(3) " Fa, £ (n)

where T(n)={t:{2,3,...,n}>{1,2,.:.,n}|Vi3xk, £5(1)=1}.
The polynomial is the generating function of directed trees
spanning Kn and rooted at vertex 1. The lower bound obtained
for this polynomial is not claimed to be attainable; it is in any
case difficult to envisage the form that an optimal mdnotone
computation would take in this case; We therefore content
ourselves with a crude bound on the content of a vertex, which
is, however, good enough to yield an exponential lower bound on
the ®-complexity of STnxn°

Let a,b,c be polynomials of degrees r,s,n-r-s-1 satisfying

mon (abc) ¢ mon(p). In the usual way we define the index set I

of a polynomial g to be
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' Iq={i[xi. is an indeterminate of q}

and note that {Ia,Ib,IC}.is.a partition of {2;3,...,h}.
Let.xi (2£1i=n) be defined by

x.={x “Ixij is an indeterminate of a,b or c}

. : n
Obviously, 2:|Xil is bounded by the number of distinct
i=2

indeterminates which appear in STn s L. (n—l)?, but this

Xn

trivial bound may be improved through the following observation.

Suppose i_€I_ and i €I ; then the indeterminates x, . ,x. .. cannot
a a b b i i i1
n ab a
both appear inL_JXi, for if they did xi i would appear in a,wxi i
i=2 ap b a
would appear in b and the invalid monomial x, ., x. . m would
*a'p 'pta

appear in mon(abc). Thus a better restriction is

2 2
éégxilé(n'l)"'Fa

tl-lrgllz l=lz Mzl
=(n-1)2-rs-s(n-r-s-l)-(n—r—s-l)r
=(n—1)2—rs-(r+s)(n-r-s-l)

é(n-1)2¥(r+s)(n—r-s-1).

‘The numbér of monomials in mon(abc) is clearly bounded by the
number of functions t,

t:{2,3,...,n}{1,2,...,n}

which respect xi t(i)EXi for all i, 2s5isn; this number is just
hadt4

n .
rllxi[. This product is maximised, subject to the constraint
i=2 n

on the sum §§|Xi|. when Ixii is independent of i, thus:
i=2 ' -

n
]mon(abc)lél—llx,|
i=2 ¢

é[(n—l)—(r+s)(n-r-s-l)/(n—l)](n_l)
and a (crude) content bound is
c(r,s)=[(n-1) - (r+s) (n-r-s-1)/(n-1)] B~

It is an elementary observation that any parse tree rooted at p

must contain at least one ®-vertex, o, whose degree lies in the
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range [n/3,2n/3]. The content of this vertex a is bounded by
|content(a)| §;J=max.' c(x,s)
n/3sr+s<2n/3

Now c(r,s) is dependent only on the sum (r+s) and achieves its

maximum in the stated range at r+s=2n/3. Hence

content(a)|§[(n—1)-2n(n-3)/9(n-1)](n—l)
=[(7n%-12n+9) /9 (n-1)] {*~ V)
< (7n/9) (D) (n22)

The weight of any parse tree rooted at P is certainly bounded

below by :<:onten‘t:(0l)l—1 and hence, by theorem 5.14
. (n-1)
®-complexity of pglmon(p)|(9/7n) .
The cardinality of mon(p) is precisely the number of directed
spanning trees, rooted at 1, of the complete graph Kn. The

(n-2)

number of such trees is n (see Moon [22]), from which

(n-2) (n-1)

®-complexity of p2n (9/7n)
=n—1(9/75 (n-1)

Thus we obtain an exponential bound valid for R,M, and M+, that

is, for the problems of counting the number of directed(spanning

trees of a graph, or of finding in a graph such a tree of

minimum weight.

5.6 Discussion of Results

In the previous section, lower bounds were obtained for
the ®-complexity of a wide range of functions in different
semirings. Some of the results, such as the exponential lower
bound for the minimum spanning tree computation, stand in stark
contrast to the known tractability of the problem, and raise
questions as to the relevancy of the results to actual computations.
The lower bounds can therefore be interpreted in two complementary
ways: on the one hand they deny the existence, for many problems,

of fast "combinatorial" algorithms which work independently of
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the domain of computation, while on the other hand they affirm

- the power of algorithms which exploit the algebraic idiosyncracies
of a specific problem. Let us use the results of the previous
section to explore the efficiency which can be gained by using
less restrictive models of computation.

Our model of coﬁputation.suffers from two weaknesses; the
more obvious is the restriction on the allowed operations. In
the arithmetic case, only computations ﬁot involving subtraction
were considered. That such a restriction could entail an
exponential penalty was already known; Valiant [42] treats the
example of the generating function of perfect matchings in a
planar gfaph. In the same vein, the results presented here
indicate ‘an exponential gap for the spanning tree polynomial.
From example (v) of the previous section‘we learn that any
monotone arithmetic computation for tﬁe spanning tree polynomial
requires at least n;%9/7)(n—1) multiplications, while in contrast,
if negati&e constants are allowed, the same polynomial can be
expressed as an nxXn determinant whose elements are linear
combinations of the indeterminates (see for example Moon [22]).
The determinant may be evaluated via the method of Aho et al.
(1], coupled with the matrix multiplication technique of

2'52) multiplications/divisions; an

Schonhage, using O(n
observation of Strassen ([38] allows the divisions to be
eliminated at the expense of increasing the number of
multiplications to O(n3°52).

Even for functions which have polynomial monotone complexity,
subtraction is still helpful. From example (i) we have that,

in the monotone case, multiplication of two nxn matrices requires

3 . . . , .
at least n  multiplications, whereas, allowing negative constants,
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Schonhage's method [33] computes the product in 0(h2‘52)

multiplications. Similarly a gain can be achieved for the
convolution of example (ii) using the-fast Fourier transform
method ([1] p.257). A very modest gain can be demonstrated for
-the permanent function of example (iii): any monotone computation
requires at least n(2n-l—i) multiplications, however, using a
modificatioﬁ of the inclusion-exclusion technique of Ryser ([23],
p.158), the same computation can be effected using subtraction in
only (n-1)2n—1+3 multiplications. The interest in-this case is
that, although small( the complexity gap is the only one known for
a 0-1 polynomial which is algebraically complete in the sense Qf
vchapter 2.

All this evidence points to the value of complex algorxrithms
- which exploit the particular characteristics of the domain of
computation, in this case the ability to form monomials which
cancel out in subtle ways in the result. Of particular interest
is the power of linear algeﬁra'to make tractable polynomials whose
monotone complexity is exponential. In contrast, it isvnote-
worthf that augmenting the allowed se£ of operations with division
and performing computation over the rational functions is of
limited value, as division can be simulated by truncated powér
series (Strassen [38]).

The second weakness of the model is less obvious, since it
is not usually encountered in algebraic complexity. What is
essentially a straight-line algorithm (s.l.a) model is used to
measure the complexity of computation, neglecting the additional
computational power that branching (test and branch instructions)
can provide. It is well known (see for example Strassen [39])

that branching cannot help in the computation of polynomials over
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an infinite field, so that the model is adequate for R in this
respect. The situation is however completely different in M or
M+ where branching can yield dramatically shorter computations.
To return to the example of the spanning tree polynomial ((v) af

(n-1)  &ditions are

the previous section), we learn that n-1(9/7)
necessary to compute the polynomial using a straight-line algorithm,
whereas the same polynomial can be computed in O(nzlog n) min, +
operations if branching is allowed ([16],p.348). As another
demonstration of an exponential gain, we might consider the
permanent, which over M+ is connected with the minimal assignment

. problem. In the min, + algebra, the computation of the permanent

requires n(2(n-1)

-1) additions, but with branching the same
computation can be performed using only O(n3) operations (([16],
p.205). 1Indeed, we can paraphrase Valiant [42}.and assert that
"branching can be exponentially powerful".

A final lesson we may drawn is that the'algebraic
idiosyncrasies of different semirings can cause functions
described by the same formal polynomial to have radically
different complexities. In fact, only one consistent relation
emeréed from a study of the semirings considered here: it is
always easier to compute a 0-1 polynomiél over B than M,M+ or R.
(Loosely speaking, checking the existence of a solution to a
problem is always easier than finding an optimum solution or
counting their number.) This gap can be exponential: the
spanning tree polynomial ST has exponential complexity over
M,M+ and R, but polynomial over B. Over B, STnxn(X)=1 iff the
graph whose adjacency matrix is X has a directed spanning tree
rooted at 1, that is to say if a directed path éxiéts from each

vertex to 1. However the latter condition may be checked by
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computing the transitive closure X* of X and-ing the elements

in the first column of Xf, a procedure which can be accomplished
in 0(n3) operations ({1], p.199). Another interesting case is
provided by the simple paths polynomial SP of example (iv). If
xij is the length of edge (i,Jj) in gn’ then Sann(X) represents,
over M,M+, the length of a minimum simple path from vertex 1 to
vertex n. In M+_this is equal to the minimum length of a éath
from 1 to n and can be computed in O(n3) operations ({11, p.202).
Over M, however, the polynomial has exponential complexity. The
same exponential bound is valid, over R, for the problem of
enumerating éimple paths (where X is the adjacency matrix of the

graph).

- 121 -



ACKNOWLEDGEMENT

It is a pleasure to thank those who assisted in the production
of this thesis. Threefold thanks are due to Leslie Valiant: for
initially suggesting fruitful lines of enquiry, for helpful
discussions and encouragement while the work was ih progress, and
finally for reading the manuscript. I would like to record my
gratitude to Marc Snirj; through my collaboration with him I learnt
something of the nature and method of research. In addition I
would like to thank Heather Carlin for seeing through a difficult

typing Jjob.

- 122 -



REFERENCES

1.

10.

11.

A.V. Aho, J.E:. Hopcroft and J.D. Ullman. 'The Design and

‘Analysis of Computer Algorithms. Addison Wesley, 1974.

M.O0. Ball. Computing Network Reliability. Operations

Research 27 (1979), pp. 823-838.

C. Berge. Graphs and Hypergraphs. North-Holland,

Amsterdam, 1973.

2.7799
n

D. Bini, M. Capovani, G. Lotti and F. Romani. Of )

Complexity for Matrix Multiplication. Information Processing

Letters 8 (1979), pp. 234-235.

A. Borodin and I. Munro. The Complexity of Algebraic and

and Numerical Problems. American Elsevier, New York, 1974.

R. Cuninghame-Green. Minimax Algebra. Springer Verlag, 1979.

A. Ehrenfeucht and P. Zeiger. Complexity Measures for

Regular Expressions. Proc. 6th ACM Symposium on Theory of

Computing' (1974) , pp. 75-79.

S. Even. Graph Algorithms. Computer Science Press,

Potomac, Maryland, 1979.

K. Fan. On Systems of Linear Inequalities. In Linear

‘Inequalities and Related Systems, H.W. Kuhn and A.W. Tucker

(eds.). Princeton Univ. Press, Princeton N.J., 1956,

pp. 99-156.

R. Godement. Algebra, Hermann, 1968.

G.B. Goodrich, R.E. Ladnexr and M.J. Fisher. Straight-line

Programs to Compute Finite Languages. Proc. of a Conference

on Theoretical Computer Science. Univ. of Waterloo, 1977,

pp. 221-229.

- 123 -



12,

13.

14.

15.

6.

17.

18.

19.

20.

21.

22.

23.

0.J. Heilmann and E.H. Lieb. Theory of Monomer-Dimer Systems.

‘Commun . Math. Phys. 25 (1972), pp. 190-232.

R.M. Karp. Reducibility Among Combinatorial Problems. In

Complexity of Computer Computations, R.E. Miller and J.W.

Thatcher (eds). Plenum Press, New York, 1972.

P.W. Kasteleyn. Graph Theory and Crystal Physics. In

Graph Theory and Theoretical Physics, F. Harary (ed.) .

&

Academic Press 1967, pp. 43-110.

E.A. Lamanga and J.E. Savage. Combinatorial Complexity of

some Monotone Functions. Proc. 15th IEEE Symposium on

Switching and Automata Theory (1974), pp. 140-144.

E.L. Lawler. Combinatorial Optimisation: Networks and

Matroids. Holt Rinehart and Winston, New York, 1976.

K. Melhorn and Z. Galil. Monotone Switching Circuits and

. Boolean Matrix Product. Computing 16 (1976), pp. 99-111.

W. Miller. Computational Complexity and Numerical Stability.

JACM 22 (1975), pp. 512-521.

H. Minc. Permanents. Encyclopedia of Mathematics and its

Applications, 6. Addison-Wesley, 1978.

K.B. Misra. An Algorithm for the Reliability Evaluation of

Redundant Networks. IEEE Trans. Rel. 19 (1970) pp. 146-151.

E.W. Montroll. Lattice Statistics. In Applied Combinatorial

Mathematics, E.F. Beckenbach (ed.). Wiley 1964, pp. 96-143.

J.W. Moon. Counting Labelled Trees. Canadian Mathematical

Congress, Montreal, 1970.

A; Nijenhuis and H.W. Wilf. Combinatorial Algorithms.

Academic Press, 1975.

- 124 -



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

V. Ya. Pan. New Fast Algorithms for Matrix Operations.

"SIAM 'J. ‘on Computing 9 (1980), pp. 321-342.

M.S. Paterson. Complexity of Monotone Networks for Boolean

Matrix Product. Theoretical Computer Science 1 (1975},

pp. 13-20.

J.K. Percus. Combinatorial Methods. Applied Mathematical

Sciences 4. Springer Verlag, 1971.

V.R. Pratt. The Power of Negative Thinking in Multiplying

Boolean Matrices. SIAM J. on -Computing 4 (1975) pp. 326-330.

C.R. Rao. Linear Statistical Inference and its Applications.

Wiley, 1973.

L. Redei. Algebra Vol. 1. Pergamon Press, Oxford, 1967.

A. Rosenthal. A Computer Scientist looks at Reliability

Computations. In Reliability and Fault Tree Analysis,

R.E. Barlow et al. (eds.). SIAM, Philadelphia, 1975,

pp. 133-152.

A. Rosenthal. Coﬁputing the Reliability of Complex Networks.

SIAM J. Appl. Math. 32, (1977), pp. 384-393.

C.P. Schnorr. A Lower Bound on the Number of Additions in

Monotone Computations. Theoretical Computer Science 2 (1976),

pp. 305-315.

A. Schonhage. Partial and Total Matrix Multiplication.
Manuscript, Mathematisches Institut, Universitat Tubingen,

Tubingen, Germany.

E. Shamir and M. Snir. Lower Bounds on the Number of
Multiplications and the Number of Additions in Monotone
Computations. IBM, T.J. Watson Reseafch Center Report, RC 6757,

1977.

- 125 -



35.

36.

37.

38.

39.

40.

- 41.

42.

43.

44,

45.

46.

E. Shamir and M. Snir. On the Depth Complexity of Formulas.

‘Mathematical Systems Theory (to appear).

M. Snir. On the Size Complexity of Monotone Formulas.
Proc. 7th International Colloquium on Automata, Languages

and Programming (1980). ' Lecture Notes in. Computer Science 85,

Springer Verlag, pp. 621-631.

V. Strassen. Gaussian Elimination is not Optimal.

Numerische Mathematik 13 (1969), pp. 354-356.

V. Strassen. Vermeidung von Divisionen. J. Reine und

Angewandte Mathematik 264 (1973), pp. 182-202.

V. Strassen. Berechnung un Programm II. Acta Informatica 2

(1973), pp. 64-79.

L.G. Valiant. The Complexity of Computing the Permanent.

Theoretical Computer Science 8 (1979), pp. 189-201.

L.G. Valiant. The Complexity of Enumeration and Reliability

Problems. SIAM J. on Computing 8 (1979), pp. 410-421.

L.G. Valiant. Negation can be Exponentially Powerful.

Proc. 11th ACM Symposium on Theory of Computing (1979),

189-196.

L.G. Valiant. Completeness Classes in Algebra. Proc. 11th

ACM Symposium on Theory of Computing (1979), pp. 249-261.

L.G. Valiant. Universality Considerations inVLSI Circuits.

IEEE Trans. on Computers 30 (1981), pp. 135-140.

L.G. Valiant. Reducibility by Algebraic Projections.

University of Edinburgh Report CSR-64-80 (1980).

I. Wegener. Switching Functions whose Monotone Complexity is

Nearly Quadratic. Theoretical Computer Science 9 (1979},

pp. 83-87.

- 126 -



