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ABS TRACE 

A wide range of multivariate polynomials is considered and an 

attempt made to explain the varying amounts of computational effort 

required in their evaluation. Two approaches to this task are 

documented. 	In the first, a completeness class of polynomial 

families is introduced, the members of which are interrelated by 

means of elegant algebraic reductions known as projections. It is 

likely that no member of this completeness class may be evaluated 

using a number of arithmetic operations (+,-,,/) which is bounded 

by a polynomial function of the number of indeterminates. the members 

of the classimay reasonably be termed intractable. 

Two polynomials arising in the study of the physical properties 

of crystal lattices, namely the generating functions for monomer-dimer 

arrangements on a 2-dimensional lattice and for the 3-dimensional Ising 

problem, are shown to be intractable in this sense. Further 

multivariate polynomials. concerned with network. reliability are 

shown to be similarly intractable, a particular example being the 

probability that all stations of an unreliable network can communicate 

with each other. For all the specific examples mentioned above 

there was previously no explanation of their apparent computational 

difficulty. 

In the second of the two approaches, attention is restricted to 

monotone computations, that is computations involving only the 

arithmetic operations {+, x} and non-negative real constants. The 

reward for restricting the domain of computation is that it becomes 

possible to obtain exact bounds on the number of multiplications 

required to compute various polynomials. 	In this way, provably 

optimal monotone algorithms can be exibited for computing the 

permanent of a nxn matrix (which is shown to require 



multiplications) and the generating function for Hamiltonian 

circuits in the complete-  graph of order n ((n-1) (n_2)2n3+(n_1) 

multiplications). 	As ,a bonus, the results hold good for other 

computational domains, including the minlinax algebra (real numbers 

with the operations of + and mm). 	In particular, it will be 

shown that finding minimum weight matchings using a straight-line 

program in this algebra takes exponential time, whereas known 

algorithms using branching solve the problem in polynomial time. 
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1. 	INTRODUCTION 

This thesis is concerned with the computational properties of 

multivariate polynomials. 	In the field of computer science 

such polynomials arise not only explicitly in numerical 

computations, for example matrix multiplication, but also in 

implicit forms. Problems involving the counting of certain 

tructures in graphs for example, perhaps more often regarded as 

combinatorial enumeration, can be viewed as the evaluation of 

appropriate polynomial generating functions. It is natural to 

ask how difficult are these polynomials to evaluate. 

The usual model of computation employed in such a study is 

the straight line algorithm, which informally consists of a 

linear sequence of instructions each calling for the addition, 

multiplication etc. of two previouslycomputed values or inputs. 

The inputs to the computation are indeterminates and. elements 

of the field underlying the computation. The complexity of 

the computation is measured, perhaps in terms of the total number 

of arithmetic operations used, perhaps by the number of 

multiplications required. There are two essential features of 

the model. Firstly, the arithmetic operations, and the 

elements of the underlying field, are atomic units of computation 

and are considered indivisible. We are concerned neither with 

the representation of field elements nor with the implementation 

of the operations of a more fundamental level; furthermore, it 

is not considered important that the time taken to execute each 

step of the algorithm on a "reasonable" machine would be a 

function of the length of the representations of the values being 

manipulated. (It may he remarked in passing that this mirrors 

the situation in real computers, where approximations to real 

numbers are held in small, fixed multiples of words and are 
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operated upon as single entities.) 	The second feature of the 

model is that it lacks uniformity of the kind possessed by Turing 

machines. A separate straight line algorithm is provided for 

each input size - in this context, input size is the number of 

indeterminates in the polynomial being computed. A Turing 

machine, on the other hand, is expected to act uniformly over 

all input sizes. 

Ideally, we would like to know good bounds on the number of 

operations required to compute specific polynomials in such a 

model. Unfortunately, such bounds seem, in general, very 

difficult or impossible to obtain. We must content ourselves 

with results which are less cut and dried but still hopefully 

informative. 

In this thesis two distinct approaches are described to the 

problem of determining the inherent complexity of evaluating 

multivariate polynomials. 	In chapter 2, a classification is 

described which enables, subject to a reasonable assumption, a 

broad division between tractable and intractable polynomials to 

be made. A class of polynomial families is described whose 

members may be informally characterised as having easily computable 

specifications. 	A notion of reducibility between polynomial 

families is presented which enables a "completeness class" of 

families to be identified. The members of the completeness class 

are characterised as being at least as difficult to compute as 

any member of the original class. (This situation mirrors the 

more familiar, machine based completeness class in NP.) 	The 

completeness class has the property that either all its members 

can be computed using a number of arithmetic operations which is 

polynomial in the number of indeterminates, or none can be. The 

heavy weight of circumstantial evidence points to the latter. 



The aforementioned completeness class was introduced by 

Valiant [43],  who showed that several naturally occurring 

polynomial families, including the permanent function and the 

generating function for Hamiltonian circuits in a complete graph, 

are contained within it. 	Perhaps the most interesting family 

to be classified in this way was the generating function for 

dimer arrangements on the 3-dimensional cubic lattice graph - a 

problem which has its origin in the study of the physical 

properties of crystal lattices. An efficient algorithm for 

computing the generating function on 2-dimensional lattices had 

been known for some time, and attempts had been made to extend 

the method to 3-dimensional lattices. The significance of the 

result was that it explained the failure of these attempts; since 

the generating function for a particular 3-dimensional lattice is 

a member of the above completeness class, it is unlikely that any 

efficient algorithm exists which solves the problem in general. 

A closely related problem is that of computing the generating 

function of monomer-dimer arrangements on a crystal lattice. If 

the lattice is taken to be the 3-dimensional. cubic lattice, the 

intractability of the task follows easily from the completeness 

result for dimer arrangements. 	It is tempting to suppose, 

however, that some technique akin to that employed in the, 

enumeration of dimer arrangements on 2-dimensional lattices might 

be applicable to the related monomer-dimer problem. 	In chapter 

3, this is shown to be very unlikely, as the generating function 

for monomer-dimer arrangements on the 2-dimensional rectangular 

lattice is also a member of the completeness class. 	In the same 

chapter, another crystal lattice enumeration problem, the so-called 

Ising problem, is shown to be intractable for 3-dimensional lattices; 

again this contrasts with the 2-dimensional case for which an 
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efficient solution is known. 

In chapter 4, the same classification is applied to the 

study of reliability measures for communication networks. Such 

networks have been intensively studied for some time and many., but 

not all, of the natural reliability measures have been shown to 

be computationally intractable. One measure, for which there 

was previously no evidence of intractability, is the probability 

that all stations of a network can communicate with each other. 

This measure is treated inchapter 4, and is shown to be a member 

of the algebraic completeness class. 

The main observation to be made about chapters 3 and 4 is that 

the framework described above, and which will be established in 

chapter 2, enables problems to be treated which have escaped 

classification in other formulations. This is suggestive of 

the power and utility of the algebraic reductions employed. 

In the final chapter, a number of precise bounds on the 

number of arithmetic operations required to compute certain 

polynomials are obtained, at the expense of limiting the model 

of computation somewhat.. Computations are considered which 

involve only the arithmetic operations {+,x} and non-negative 

real constants, and lower bounds obtained using a combinatorial 

argument. As a bonus, the results hold good for computations 

over a number of other domains - a notable example being the 

mininiax algebra (the real numbers with the operations of mm 

and +) which has been used, on a number of occasions, for 

specifying and solving combinatorial optimisation problems. 

This restricted form of computation, often termed monotone 

arithmetic, has been studied by other authors. Schnorr (32] has 

presented an argument for bounding the number of additions 

required in the computation of various multivariate polynomials.. 



Shamir and Snir [34,35], in addition to obtaining lower bounds 

on the formula depth of several polynomials, have determined 

bounds on the number of multiplications required to compute 

specific polynomials. among the polynomials to which their 

technique has been applied are the permanent function on n 2  

variables, for which a bound of 0(188r) exists,and the 

generating function for Hamiltonian circuits in the complete 

graph on n vertices, for which a similar bound applies. Although 

exponential, these bounds are not tight, and chapter 5 will 

present a technique for obtaining exact, that is to say 

attainable, bounds for these and other multivariate polynomials. 

In particular,, we shall show that n2
1 .n multiplications are 

both necessary and sufficient for the monotone computation of 

the permanent of an nxn matrix, and that'(n-•l) (n-2) 	(n-i) 

multiplications is optimal for the generating function for 

Hamiltonian circuits on the complete graph of order n. 	In 

addition, provably optimal monotone algorithms are presented for 

iterated matrix multiplication and iterated convolution. 

The results obtained in chapter 5 are interesting, even if 

the computational model is rather weak, as exact bounds are a 

rarity in the field of computational complexity. More 

importantly, however, the results act as pointers to where the seat 

of power lies in less restricted models. 	It is shown, for 

example, that an exponential number of arithmetic operations are 

necessary in any monotone computation of the generating function 

for spanning trees in a complete graph, whereas the same polynomial 

can be efficiently computed if;negation is allowed. ( The 

existence of such an exponential gap is not a new discovery - it 

had been demonstrated by Valiant [42] in connection with the dimer 

generating function on a particular 2-dimensional lattice.) 
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In the same vein, it is shown that for computations in the 

minimax algebra an exponential speed-up can be obtained by 

introducing branching. Computing a maximum matching in a 

bipartite graph, for example, requires an exponential number of 

{max, +} operations, whereas known algorithms (see Lawler [16] 

p. 205) accomplish this in a polynomial number of steps, if 

branching is allowed. 
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2. 	AN ALGEBRAIC COMPLETENESS CLASS 

2.1 	Informal Description 

In classical, machine based, complexity theory, the objects 

of interest are computationally defined classes of languages, for 

example the class NP of languages accepted by non-deterministic 

Turing machines which halt within a number of steps bounded by a 

polynomial function of input size. It is a well-documented 

phenomenon that, within such classes of languages, certain 

naturally defined languages exist which are, in some sense, as 

hard -to compute as any in the class. These naturally defined 

languages belong to a completeness class which has the following 

characterisation: for any language L in the class, and any L in 

the completeness class, there is an efficiently computable 

function f with the property that 

wL<=> f(w) E 
L c 

By taking the class NP and drawing f from P. the class of 

functions computable by polynomial time deterministic Turing 

machines, the well known NP-completeness class is obtained (see, 

for example, Karp [131). 	Note that the class and the reductions 

which establish the completeness class are both computationally 

defined. 

Following Valiant [43],  we shall take an approach which 

mirrors this, but does away with all computational references 

(although the results obtained certainly retain computational 

interest and implications). Rather than dealing with classes 

of languages, we shall be considering classes whose elements are 

polynomial families. These families consist of polynomials in 

several indeterminates, the polynomials being indexed by the 

natural numbers. Our convention will be that the index of a 

polynomial shall be equal to the number of indeterminates on which 
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it depends; in this sense the index corresponds to the notion of 

input size. The classes of polynomial families which we shall 

consider are defined in a way which is partly combinatorial, 

partly algebraic, but makes no reference whatsoever to machine 

models. 

The reductions employed between polynomial families are 

straightforward substitutions of indeterminates by other 

indeterminates or constants. 	Considering the very simple 

nature of the reductions it is rather surprising that many 

naturally defined polynomial families (for example those described 

in chapters 3 and 4 of this thesis, or by Valiant in [43])  turn out 

to be elements of a completeness class defined in this algebraic 

way. 	It should be noted that if a polynomial family is a 

projection of another, then polynomials in the first family can 

be computed by evaluating elements of the second with suitable 

assignments to the indeterminates. This situation parallels the 

programming concept of package, since inputs are "plugged-in" 

without pre-computation. 

The particular algebraically defined class we shall be 

dealing with is the class of "p-definablepolynom1ials". 

Combinatorial enumeration problems are usually viewed in terms 

of evaluating a certain polynomial called the generating function; 

for many natural enumeration problems this polynomial is p-

definable. Moreover, for many "hard" enumeration problems the 

associated generating function is complete in the algebraic 

sense. Note that if a polynomial family is shown to be complete, 

then an algorithm for evaluating members of the family may be 

used as a "package" for evaluating members of any p-definable 

family of polynomials. 	Since the class of p-definable 

Polynomial familes contains many families which, for empirical 
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reasons, are thought to be hard to compute, showing a polynomial 

family to be complete is considered to be good evidence that 

it is difficult to compute. 

2.2 	Notation and Definitions 

Let F be a field and let F[x11. .. ,xJ be the ring of 

polynomials over the indeterminates x 1 ,... ,x with coefficients 

drawn from F (see, for example, Godement [101). 	We shall be 

dealing extensively with families of polynomials, conventionally 

represented by P and Q, of the following form 

P = {Pj P.cF.[x 1 , ... , x.], i=1,2,..1. 

If it is necessary explicitly to exhibit the arguments of P., we 

do so by writing P. (x 1 , ... , x.). 

The set of all formulae over F is defined recursively as follows: 

"c", where ce F, is a formula. 

" x. "  where x is an indeterminate, is a formula. 
1 	 1 

U(f 
where f and g are formulae, is a formula. 

"(f ® g)" 

The symbols ED and 	are intended, for the moment, to be 

uninterpreted syntactic objects. 	The size, If I, of a formula 
f is an integer which is also recursively defined: 

ci =0 

lxii = 0 

= fl + jg + 1. 

= 	fl + ll +.i. 

Each formula represents a polynomial; the polynomial p  represented 

by a formula f is obtained as follows: 

PC = C. 

Px. =x.. 
1 
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P(f (D g) = p  + P g • 

P(f (& g) = P fPg • 

(On the right-hand side of the defining equations, we are 

employing ordinary addition and multiplication of polynomials.) 

Clearly a polynomial can be represented by several formulae, 

for example the polynomial 

x  x2  + x 1  x3  

is represented both by the formula 

((x 1  (9 x 2 ) 	ED 	(x1 (9 x 3 ) ) 

of size 3, and by the formula 

(x 1  (9 	(x2 ED x 3 ) ) 

of size 2. 

The formula sizel PH of the polynomial P. is the minimum of 

Ifl over all formulae f which represent p. 

We now introduce an important class, that of p-definable 

polynomial families. A polynomial family P over F is 

p-definable if there is a family Q and a one argument polynomial 

t(.) such that for each i there exists a j with the property that 

P.(x 1 ,. .. 1 x) = 	 Q(x 11 ... ,x.) 

	

,x.) 	{O,i} 

and 	IQI 	t(i). 

In the next chapter a sufficient condition for a polynomial 

family to be p-definable will be presented; for the present, let 

it just be said that the class of p-definable families is very 

rich and includes most of the generating functions associated 

with classical enumeration problems. 

Having introduced the class of polynomial families we shall 

be working with, let us now consider a notion of reducibility 
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between members of the class. 	We shall say that P.CF[x,...,x.j 

is a projection of Q c Fix 1 1... Ix I iff there is a mapping 

{x 11  ... ,x.}uF 

such that 

P.(x 11 . .. , x.) = Q.(a(x 1 ) ,.. . 

The family P is a p-projection of  if f there is a one argument 

polynomialt(.) such that for alli, P. is a projection of Q. for 

some j .t(i). 	It should be noted that if two families P and Q 

are p-projections of each other then they are of similar 

computational difficulty, for P can be used as a "package" for 

computing Q and vice versa; we need only make the correct 

assignments to the indeterminates. 

We can now establish the completeness class containing those 

p-definable families which are "hardest to compute". A 

polynomial family P over F is complete over F if: 

(j) 	p . is p-definable 

(ii) 	Every p-definable family Q is a p-projection of P. 

Although it is not immediately apparent that complete families 

exist, we shall see in the next section that the completeness 

class is non-empty. 

2.3 	Some Key Results 

Firstly, we introduce a useful, sufficient condition for a 

polynomial family to be p-definable. 

Theorem 2.1 Suppose P = {P1,p21 ... } 
is a family of polynomials 

over an arbitrary field F, in which every monomial of every 

member polynomial has coefficient 0 or 1. 	Suppose also that 

there is a polynomial time bounded Turing machine which can 

determine for any vector 	{'O, 11 whether the coefficient of 
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n x 
V.1 	j 

in P• 
1 

is 1. 	Then P is p-definable over F. 

Proof Due to Valiant (see proposition 4 of [431.) 	El 

This simple, yet powerful result is sufficient to demonstrate 

the p-definability of all the generating functions introduced 

in chapter 3. Each of the polynomial families considered there 

easily computable 0-1 coefficients and the theorem may be 

directly applied. Theorem 2.1 cannot, however, be directly 

applied to the reliability polynomials considered in chapter 4. 

These polynomials are of the form 

P. (p1 ,p2,. 
.. 	 = 	 U p 	JJ (1_Pj)j 

c{O,i} 	v .  1 	v.=0 
- 	 J 

where c(v) an easily computable function mapping {o,i}' to {0,1}. 

By theorem 2.1 the polynomial family 

U pj  fl q.j 
v cfO,1} 	v.=1 	v=0 
- 	 J 	J 

is p-definable, and hence, by the definition of p-definability, we 

are assured of the existence of a polynomial 

q 1 , ... ,q.,x 1 ,... XJ ) with the properties 

= k  
c{0,1} 

and 	2i+k' t(i) for some polynomial t(.). 

Now 

P. (p) = 	k '2±+k 
E10 11 

=+k1'" ,p.,x) 
x c{o,l}k 

where lQ.kjt(i)+i. 	Hence, by definition, P is p-definable. 

When the polynomial families considered in chapters 3 and 4 are 

introduced, it should be immediately apparent, from the above 

discussion, that they are p-definable; no further comment will 
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be made about this point. 

Let us now turn our attention to the completeness class 

itself, i.e. the class of polynomial families which are complete 

over F. 	If X nxn = {x. 1 1 i,j n} is a matrix of indeterminates, 
then define the permanent function per 	(X nxn nxn 	 nn ) (or just per(X 	) 

where no confusion arises) by 

per (X 	) = 	x 	
x2, 
	

n,rr(n) nxn 1,rr(1) 	ir(2) ircS (n) 

where S(n) is the set of all permutations of the first n natural 

numbers. 	It will be seen that the permanent is similar to the 

more familiar determinant function, and differs from it 

formally only in the respect of the sign assigned to the 

coefficients of the monomials. The permanent is of great 

significance in combinatorial mathematics, and a comprehensive 

account of it is given by Minc [191. 	The following theorem 

shows two things, firstly that the completeness class is non-

empty, and secondly that the determinant and the permanent, 

despite definitional sixnilarities,are apparently of widely 

separated computational complexities. 

Theorem 2.2 	The family {per(x. .) I i=1,2,.. .} is complete over 
any field not of characteristic 2. 

Proof Due to Valiant (see theorem 2 of [43]). 	0 

The practical importance of theorem 2.2 springs from the 

following considerations. 	Suppose P is a polynomial family 

which is known to be complete over F. 	It is immediate from 

the definition of p-projection that the relation "is a p-projection 

of" is a transitive one. 	It follows that, in order to demonstrate' 

that another family Q is complete over F, it is sufficient to 

show that 
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(i) 	Q is p-definable 

and. (ii) 	P is a p-projection of Q. 

Theorém.2:.2; by explicitly exhibiting a complete polynomial, 

gives us a starting point from which we can prove other families 

complete. 

We close this section by showing the completeness of the 

partial permanent function. The method serves as an illustration 

of the above technique, while the completeness result itself 

serves as a useful base for the reductions of chapters 3 and 4. 

* 
If 	is as before, the partial permanent per 	(X nxn 	 n,xn nxn 

is defined by 

* 
per (X 

n. n 	 11 ) = 	 X71. 

rrcs (n) 	icdomOT) 
* 

where S (n) is the set of all injective (but not necessarily 

total) functions {1,2,... ,n} - {1,2,... ,n}, and dom(rr) is the 

domain of n. (The null product is taken to be 1; as a consequence, 

per(X) has a term 1 of degree 0.) 	Note that monomials of 

per*(X 
n,x . n ) correspond to sets of indeterminates which are row-wise 

and column-wise disjoint in X 
nxn 

Lemma 2.3 	The family {per*(Xi • I i=1,2,. . .} is complete over 

any field not of characteristic 2. 

Proof Representing the nxn identity matrix by I 	and the nxn 
nxn 

zero matrix by 0 
flXYL

, the following is an explicit expression of 

the permanent function as a projection of the partial permanent: 

per(Xn) = per
* 

 

(-1 

x 
flxn -I. n.xn 

 0 nxn 	fl)qt 

By way of verification, we note that the right hand side of the 

identity is a linear combination of monomials of per (X A and, 
moreover, that each such monomial of degree d occurs with 

coefficient 
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per* / I (2n-2d) x (2n-2d) 

" dx(2n-2d) 	0dxd 

This coefficient is clearly 1 if d=n, but otherwise is equal to 

/2n(-1) 2+ 	
/2n-2d\ 2n-2d\ (2n_2d)(l)_2d\ 

2 ) 	•• 	
2n-2d) (1.)2n_2d I. 	(0 	1 

= 	(11) 2fl_2d 

Ip 

The result follows from the completeness of the permanent function 

	

over such fields (theorem 2.2). 	 D 
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3. 	FIRST APPLICATION: TWO PROBLEMS FROM CRYSTAL PHYSICS 

3.1 Enumeration Problems in Crystal Physics 

The domain of crystal physics is one rich, in combinatorial 

enumeration problems. A crystal lattice, consisting of a regular 

array of atoms and bonds joining them, is given, and we are asked 

to find the number of distinct figures which can be inscribed on 

the lattice and which satisfy a certain given condition. Such 

questions have been treated by many authors including Heilmann and 

Lieb [12], Kasteleyn [14], Montroll [.211 and Percus [26]. 	Two 

problems of the above type are presented here and analysed using 

the methods introduced in chapter 2. 

Our first example is motivated independently by two distinct 

physical models. A two-dimensional version of the problem arises 

in the mathematical treatment of the properties of a system o 

diatomic molecules, or dimers, which are adsorbed on the surface 

of a crystal. The dimers are attracted preferentially to pairs 

of adjacent lattice sites which they then occupy. The 

thermodynamic properties of the system are to some extent 

determined by the number of ways in which the dimers can be 

arranged on the crystal without overlap. The dimer problem is 

the enumeration problem which arises if we insist that all 

lattice sites be occupied, while the monomer-dimer. problem is 

concerned with counting the arrangements which may occur if we 

allow vacant sites or monomers. An analogous three-dimensional 

version of the problem arises in the theories of binary mixtures 

and cell-clusters. 

The second example is concerned with the "Ising model" of a 

crystalline system. In this model, each atom of a crystal can 

be in one of two states; adjacent atoms which are in different 
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states contribute a fixed amount of energy to the system whereas 

those in similar states contribute an amount which is equal but 

opposite in sign. 	It can be shown, see Kasteleyn [14], that 

computing the thermal properties of such a system is equivalent to 

an enumeration problem of the type which we are considering. 

3.2 Graphs and Lattices 

In this and the next chapter we shall be drawing on several 

concepts from graph theory. Here, for completeness, we include 

some basic graphical definitions; others will be introduced as 

and when required. It is intended that the terminology used 

should, for the most part, be consistent with that of Bergé [3]. 

A graph G is specified by a pair (V,E), where V = Cv 11 v21 ...,v} 

is a set of vertices and E a set of edges. For a directed graph 

the set E is composed of ordered pairs of vertices, i.e. 

Ec{(u,v)I u,vcV}, and for an undirected graph E is a set of 

unordered pairs, i.e. E;{{u,v} I u,vcv}. 	An edge (u,v) of a 
directed graph has endpoints u and v, and is said to be incident 

out of u and incident into v. The number of edges incident out 

of u is the outdegree of u . - 	number of edges incident into v is 

the indegree of v. An edge {u,v} of an undirected graph has 

similar endpoints and is .said to be incident at u and v. 	The 

degree of u is the number of edges incident at u. The degree of 

an undirected graph is equal to that of a vertex of maximal degree 

in the graph. The order of a graph G is the cardinality of its 

vertex set V ;  the size of G, denoted by IGI, is the cardinality of 

the edge set E. The term node is used as a synonym for vertex. 

It will prove convenient to supply additional structure for 

our graphs. A labelled graph is a graph G together with a mapping 

A: E -* A which takes edges of G into some.lãbel set A. The label 
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sets we shell use will be of the form A = F U X where F is a 

field and X is a:set of indeterminates over F. We shall, henceforth 

assume that all graphs are labelled graphs. 

There are two graphs which we shall have cause to refer to 

frequently. The complete graph, onnnodes is defined in 

the undirected case by the triple, 

V = {v 11  ... v} 

E = {{v ,v } 1 < i<j < n} 
13 

A: E -3-X, 	{v1.,v. 
J 
 }+x. 

1.3 	
(ij) 

and in the directed case by 

V = {v 1 , .... v} 

E =(v. V.) 	 j:_5 nj. 
13 

A:E+X, 	(v1
.,V.)+X. 

1
. 

3 	J 

Here X = {x. 1 1!5i,j:5n} is a set of indeterminates. The (undirected) 

complete bipartite graph, Kn on 2n nodes is defined by the 

triple 

V = {u1',. •lUnVll ..,v] 

E = 	u. v. j 1<i,j :5n} 

A: E -3-  X, 	{u.,v.}+ X. 
1 	3 	2.J 

We shall, for the moment, restrict our attention to 

undirected graphs. Two methods of deriving smaller graphs from 

larger will interest us. 	If G = (V,E) is a graph then G'= (V',E') 

is said to be a subgraph of G if 	V' ç V and E'= {{u,v}cE I u,vV'}. 

(The subgraph G' is said to be induced by the set of vertices V'.) 

In addition, if G is as before, and E' is any subset of E, then 

= (V,E') is said to be a partial graph of G. 

For the purposes of the current chapter, in which we are 

concerned with crystal lattices, we shall need to consider certain 
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graphs.with a regular structure. Two such will be introduced 

here. R will denote the rectangular lattice graph. whose n 2  

vertices are arranged in two-dimensional Euclidean space according 

to the Cartesian coordinates {(i,j) 10 i,j n-1}, and whose edges 

consist of pairs of nodes which are separated by unit distance. 

(It will be assumed that the edges are labelled with distinct 

indeterminates over some field.) A three-dimensional variant 

of the above, the cubic lattice graph C, has 2n 2  vertices placed 

according to the coordinates {(i,j,k) Oi,j n-i, k0,1}. 

Again, edges consist of pairs of nodes which are separated by unit 

distance. 

3.3 Generating Functions and Polynomial Families 

Suppose that S is a function which maps an arbitrary graph 

G = (V,E) onto a subset of 2E, for example S(G) might be the set 

of all perfect matchings of G. Recall that the graphs we are 

considering are labelled and suppose that the label set is 

A = FUX where F is a field and X = 	 is a set of 

indetenninates over F. Denote by M the set of all monomials in 

the indeterminates X, i.e. M = Cx 1 r1 •• X
n  r 
	r: 1 . . . ,r n c 

Then the labelling X on E extends to a function on the subsets 

ACE in the following way: 

. F x M 	 A l-+ [I A(e). 
e :A 

(The product used here is the multiplication in the polynomial 

ring.) 	The pair (S,G) specifies an enumeration problem, namely 

evaluating the cardinality of S (G), and defines a corresponding 

generating function (g.f.): 

GF(G,S) = 	
X(A) 

 AS(G) 
	 (3.1) 

(The sum used is the addition of the polynomial ring.) 	Note 

that if X maps each edge of G onto a distinct indeterminate, then 
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monomials of C3. 1) correspond in a natural way to the objects we 

wish to enumerate. 

In order to construct, from the-defining function S of the 

enumeration problem, a polynomial family of the type considered 

in chapter 2, we need only specify a family of graphs; the 

generating functions for these graphs will comprise the polynomial 

family. As an example, the family of graphs CKI n  

generates the polynomial family{GF(K  S)i n = 1,2,...J. 	This 

family is "universal" for the enumeration problem in the sense 

that the g.f. for an arbitrary graph of order n can be obtained 

from the nth  element of the family by a projection which maps 

certain of the indeterminates x. onto 0 while leaving the others 
13 

fixed. To polynomial families which we will be considering are 

the following: 

{GF(R ,S)t n 
n 

(GF(C 
n ,S)I n = 1,2,...1. 

It will be recalled that R 
n 	n 

and C are the rectangular and cubic 

lattice graphs defined previously. 

The generating function described above may be evaluated for 

0,1 assignments to its indeterminates in order to yield solutions 

to the corresponding enumeration problem. In addition, a component 

of certain degree can be extracted from the polynomial in order 

to yield the number of structures of given size which exist in the 

lattice. The generating function also allows us to assign a 

weighting to each lattice edge corresponding to some physical 

quantity which is not uniform over all bonds. Kasteleyn [14] 

lists several reasons why enumeration problems on lattice graphs 

should be attacked via the corresponding generating function, and 

the empirical evidence to support this view is very strong: 
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generating functions consistute the only known method for solving 

those non-trivial lattice problems which are known to be tractable. 

We therefore argue that showing a g.f. to be complete for some 

family of lattices is good evidence that the corresponding 

enumeration problem on such lattices is intractable. 

3..4 The Monomer-Dimer Problem 

In order to discuss dimer arrangement problems we need to 

introduce the graph theoretic notion of matching. A partial 

matching of a graph G = (V,E) is a subset M of E with the 

property that no pair of elements of M are incident at a common 

node. A vertex v c::V is said to be saturated by M if there 

exists an edge in M which is incident at v. A perfect'matching 

of G is a partial matching of G which saturates all the vertices 

in V. The monomer-dimer problem is that of enumerating partial 

matchings in a lattice graph, while the dimer problem is concerned 

with the enumeration of perfect matchings. 

Let S be the function which maps an arbitrary finite graphMD  

onto the set of all partial matchings of the graph. We may 

write down the generating function for monomer-dimer arrangements 

on a graph G as 

MD(G) = GF(G,S) 	 (3.2) 

where GF is defined as in (3.1). 	Likewise, if SDI  is the 

function which maps a graph onto the set of all its perfect 

matchings, then the g.f. for dimer arrangements may be written 

DI(G) = GF (GISDI )  

In the case of the rectangular and cubic lattice graphs 

introduced earlier, in section 3.2, these g.f. yield the following 

interesting polynomial families: 
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{DI (R n )I n = 1,2,..} 	 (3.4) 

{DI(c 
n )I n = 1,2,..} 	 (3.5) 

{MD (R 
n )I n = 1,2,..} 	 (3.6) 

{(c n )I n = 1,2,..} 	 (3.7) 

Kasteleyn [141 shows how the g.f. for dimer coverings of a 

planar graph (for a definition of planar see Berge [3]) can be 

expressed as the square root of a determinant of size equal to the 

order, k, of the graph. such a determinant can be evaluated in 

53 2. 
O(k 	) operations using the matrix multiplication method of 

Schonhage [331 coupled with the LTJP matrix decomposition algorithm 

described in Aho et al. ([11 p. 235). 	Each member of the 

05 family (3.4) can therefore be evaluated using O(n 5. ) arithmetic 

operations. 

It is interesting to observe that when we pass from 2-

dimensional to 3-dimensional lattices the g.f. becomes apparently 

much more difficult to evaluate. The essence of this phenomenon 

is captured by a result of Valiant [431 which asserts that the 

family (3.5) is complete over any field not of characteristic 2. 

It should be noted that using even the merest degree of freedom 

which 3-space allows (the cubic lattice C  has only unit thickness) 

enables us to convert a computationally tractable problem into an 

intractable one. A second observation is that testing for the 

existence of a perfect matching in an arbitrary, possibly non-

planar, graph of order k, can be achieved in time 0(k 3 ) using a 

method of Edmonds, which is described in Lawler [16 1 p. 233. 

This is a typical example of the now well-documented gap which can 

exist between the complexity of an existence problem and its 

corresponding enumeration problem. (See Valiant (411.) 

It is the aim of the following section to show that the family 
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(3.6), and hence (3.7), is complete in the sense of chapter 2. 

The consequence of this result is that it is unlikely that 

enumerating monomer-dimer arrangements on a rectangular lattice 

is computationally feasible. 	It will afterwards be suggested 

that the exact nature of the lattice is immaterial to the result 

and that the generating function remains complete for a variety 

of other lattice graphs. This result stands in stark contrast 

to the tractability of the planar case of the dimer enumeration 

problem. 

3.5 The Completeness of the Family {MD(R)} 

Our starting point in this section is the family CMD(K)} 

of g.f.'s for monomer-dimer arrangements on complete bipartite 

graphs, the completeness of which is almost immediate. The 

bipartite graph will, for n a 3, be non-planar, but we will provide 

a sequence of transformations of the bipartite graph which result 

in a planar graph of order 0(n 4). These transformations have 

the property that they preserve the monomer-dimer g.f. of the 

graph. In this way, we will have constructed a family of planar 

graphs, the monomer-dimer g.f. 's of which form a complete family. 

Finally a space-efficient technique is used to embed the members 

of this family of planar graphs, in instances R k  of the rectangular 

lattice graph. 

Lemma 3.1 	The family {MD(K)} is complete over any field 

not of characteristic 2. 

Proof 	The monomials of MD(K n,n ) (see section 3.2) may be 

characterised as products of elements of the matrix 

X = {x. 	1 i,j n} in which pairs of elements in the product 

are row-Wise and column-wise disjoint. 	There is thus a 1-1 

correspondence between monomials of the above polynomial and those 
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of per (.X) 	We deduce that MD(Knn) = per *(X),  and the result 

follows from Lemma 2.3. 	 0 

The transformations we shall apply to the complete bipartite 

graph to yield a planar graph are of the following form. Choose 

a subset of the vertices of the graph, excise the subgraph induced 

by those vertices, and insert some prescribed replacement subgraph. 

In order to make precise the notion that a transformation of a graph 

preserves the monomer-dimer g.f. of that graph, we require some 

new definitions. 

We introduce a restricted form of the monomer-dimer g.f.. 

Suppose H = (V,E) is a graph and Ucuc V. 	Define 

	

MD(HU ,U) = 	 X(A) 	 (3.8) 
0 	 AS(H,U

0  ,U) 

where S(H,U,U) is the set of all partial matchings on H which 

saturate all the vertices in U but none of those in (U -U). We 
0 

remark in passing that 

MD (H) = 	Z 	(HU ,U), 	for anj Jzecl U 

	

UcU 	 0 

0 

Suppose that El is as before a simulation S of H consists of 

a graph HS = (V, Es)  together with an injective map i 5 : V + V 

(Note that we allow the order of H 5  to be strictly greater than 

that of H.) 	We say that a simulation S of H is faithful if f, 

for all UçV, 

* 	
,i(U)) = MD(HVU) 

It should be clear that the definition of faithful simulation 

captures the notion of generating function preserving 

transformation which we require. For if G is a graph which 

contains H as a subgraph, we may excise H from G and replace it 

by H S (identifying the nodes according to the injective map i) 

without affecting the monomer-dimer g.f. on G. 	Three simulations, 

which are claimed to be faithful, are now presented. The first 
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O-L--o Si > 

H=K2  H 
Si 

Figure 3.1 

&-Lc - > 
H=K2 	 H 2  

Figure 3.2 

Figure 3.3 
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two show between them that a single. edge may be simulated by a 

"chain" of edges of arbitrary length. 

(Si) Simulation of _K 2 : The simulation is described in fig. 3.1. 

Here a= y= 1, 	= 6= -1 and x is an indeterminate. Note that 

the nodes labelled u and V in H51  are really i 31 (u) andi51 (v). 

however, no confusion should arise from this abuse of notation. 

The following four observations establish that the simulation is 

faithful.. (For brevity, we let f(U) = MD (H{u,v},u); and Si l  

g(U) =MD (H,{u,v},U)) 

f(Ø) = 1 + + y+ 6+ a6= 1 = g(Ø) 

f(Cu}) 	cL6 	= 0 = g({u}) 

f((v}) = x+x 	= 0, = g({v}) 

f({u,v}) = a , x 	 = x = g({u,v}). 

Simulation of K2 : The simulation is described in fig. 3.2. 

ci. = -1, $ = 6 = 1 and y = -2. 	The four cases are listed as 

before. (For brevity, we let f(U) = MD(H 521 {u,v},U) and 

g(U) = MD (H,fu,v},U)) 

f(Ø) = 1 ++y+ 6 	= 1 = g(ø) 

f(Cu}) = ci. + a6+ ay 	= 0 = g({u}) 

f({v}) = x + 8x + yx 	= 0 = g({v}) 

f({u,v3)=cLx + aYX 	 x = g({u,v}). 

Simulation of a crossover: Our aim is to construct a 

planar graph which simulates the crossover of fig. 3.3. We 

first remark that it is sufficient to treat the special case 

when x,y = 1. 	To see this we note that the edges Cs,t} and {u,v} 

may be expanded using simulation Si (see fig. 3.1), and the 

crossover arranged to take place on the y(=1) weighted edges. 

We construct the simulating graph stepwise from simpler 

components. 	First consider the graph Fl, with distinguished 
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Fl: 

Figure 3.4 

F2: 

Figure 3.5 
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nodes a,b,c, which is described by fig. 3.4. 	Here a and 8 are 

the distinct roots of the equation x 2 + yx - y 2 = 0, and y. = 2- 1/6 
 

(Note that c and 8 are real, and have the properties 

c + 8 = -y, 8 = _2•) 	The properties of Fl may be summarised 

as follows ;  as before we employ the succinct notation 

f1(A) = MD (Fl, {a,b,c},A): 

= .. i 

= f 1  ({b}) = f 1  ({c}) 

=cz+8+y 

= -y+y 

=0 

f 1 ({a,b}) = f 1 ({b,c}) = f 1 ({a,c}) 

+28y 

= ( + 8) - a8 + 2y (a+8) 

2 	2 	2 =y ±y -2y 

=0 

= c 	 ct + 	+ 32y + 3821 + 3a8y 

= ( + 8) (2 - 8 +82) + 3(2 +82 +a8) 

= (c + 8)[(c + 8)2 - 3a8]+ 3i[((x + 8)2_ 8] 

= 	( 2 + 3y 2 + 3( 2 	2 )  

= 2y 3 

The second stage of the construction combines two copies of 

Fl into a single graph F2 as described in fig. 3.5. 	The 

subgraph Hi is a copy of Fi with vertices a,b relabelled d,p, 

and H2 is another copy with vertex c relabelled q. The scalars 

c and 8 are set to -1 and 2 respectively. We use the following 

abbreviated forms: 

= MD (F2, {a,b,c,d},A) 	(Aca,b,c,dl) 
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Figure 3.6 



(A) = 
	* 	

{c,d,p}, A) 	 (Ac {c,d,p}) 

h
2  (A.)=MD (E2 {,b,q}

;  A) 	 (A(_t {a,b,q}). 

Only for two values of its argument does f assume a non-zero value, 

these being 

f2 (Ø) = h 1 ()h2 (Ø) .[1 + 	+2 	
• 	2 ]  

= 1.1.2 

= 2, 

and f2 ((a,b,c,d}) = h 1 ({c,d,p})h2 ({a,b,q}) .1 

=//i 

=2 

For all other arguments, f 2  is zero, a representative example being 

= h 1 (Ø)h2 ({a,b,q}) 11 + al 

= 

I 

The function f 2  encapsulates the properties of the graph F2 

which are relevant for the verification of the final stage of 

the construction. 	In this, F2 is augmented to a. graph F3, 

described by fig. 3.6, which has the properties required of a 

faithful simulation of the crossover of fig. 3.3. 	The 

assignments to the scalars are a = ii/, 	-ii/, 'y' —1/2. 

and we make the usual style of abbreviation: 

f3 (u) = MD(F3, s,t,u,v}, U) 	(Uç{s,t,u,v}). 

The verification of F3 zs a faithful simulation is purely mechanical: 

f 3 (Ø) = f() [1 + 4y + 212] + 

= 2(-1/2) + 2.1 

=1 

f3 ({s}) = ... = f 3 ({v}) 

= 	[a + ] [1 + 2y] 

= 2.0.0 
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f 3 ({u,t}) = ... = f 3 ({s,u}) 

= f() [a2 •+ a2Y 
+

2 +2 + ct 

= 2 [1/2 - 1/4 + 1/2 - 1/4 - 1/21 

am 

f 3 ({s,t}) = f 3 (Cu,v}) 

= f2Ø) 	+2 + 2ct + 2cy] 

= 2 [1/2 + 1/2 - 1 + 1/21 

=1 

f3 ({s,u,t}) = ... = f3 ({v,s,u}) 

= f2 Ø [a3 +
3 
 + a 2 	+ a 2 ] 

=2(a+ )(c + a ) 

=0 

f3 (Cs,t,u,v}) = f2 (Ø) [a + 

= 2 [1/4 + 1/4] 

ME 

We thus see that F3 has exactly the properties required for a 

faithful simulation. 	This completes the construction. 

We are now in a position to prove a preliminary theorem 

which will lead to the main result of the section. 

Theorem 3.2 There exists a family of graphs G}, with the 

following properties: 

Each G   is planar, 

IGI 	= 

{MD(G)} is a complete family over the real field R. 

Proof 	Our starting point is the complete bipartite graph 

K 
n,n 	 n,n 

; we know from Lemma3.1 that MD(K ) is complete over R. 

It will be shown that, using the simulations which we have 

presented, Knn may be transformed into a planar graph G, whose 

size is 0(n4 ). 	Since the simulations have the property that they 
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Figure 3.7 
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are faithful, MD(G) = MD(K.) and the result follows. 

The construction of Gn proceeds as follows. Each edge of 

is expanded into a chain of n 2  edges by recursively applying 

the simulation Si. As there are only n edges in K n 
 we may 

arrange that each crossover in the transformed graph takes place 

on a separate pair of edges. Each crossover is then transformed 

using simulation S3 into a planar ,subgraph the resulting graph 

isG. 	 0 
We now arrive at the main theorem. 

Theorem 3.3 	The family {MD(R)} is complete over R. 

Proof The proof proceeds in two steps.. The planar graph G 

of the previous theorem is transformed by the "unfolding" of its 

vertices into a graph of degree 3. The resulting degree three 

graph is then efficiently embedded in R using a known result on 

planar embeddings. 	The result will follow from the pbservation 

that both of these steps preserve the monomer-dimer g.f.. 

The first step, of unfolding vertices of degree greater. than 

3, is illustrated in fig. 3.7. 	Here we consider the unfolding 

of a vertex v, of degree d, with incident edges labelled by 

indeterminates x 11 ... ,x, into 4 vertices of degree less than 

or equal to 3 and one of degree d-i. Clearly the unfolding 

may be repeated until all vertices have degree less than of equal 

to 3. The values of the scalars used in the construction are 

c= 1, 	=-2, 1=1 and  

Suppose that the graph of which v is a vertex is H and that 

the graph resulting from a single unfolding of the type shown in 

fig. 3.7 is H'. 	Denote by E0  the original edge set of H, and 

by E the set of added edges, i.e. those labelled ci, a, y, 5. 

We wish to show that 	(H') = MD(H). 	Now by definition, 
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= 	Z 	7 	A(A) x(Ai)Xul(AuA) 
A0 çE0  A1çE1 	0 

where xa(A)  is 1 if A is a partial matching of H, and 0 otherwise. 

Separating the two sums we obtain: 

MD(H - ) 	 X(A )f(A ) 
A0çE0 	0 	0 

where f(A ) 	= 	 X(A )x ,(A U A 
ACE 	OH 
1= 1 

our claim is that f(A0) = x (A.0 ), from which we may deduce the 

required identity MD(H') = MD(H). 

The claim may be justified by a direct calculation consisting 

of two parts. 

Suppose that xHAO) = 0. 	Then there exists a pair of 

elements of A which are incident at a common vertex of H. If 
0 

that common vertex is other than v, then Xai (Au A 1 ) = 0 for any 

choice of A 1  and hence f(A) = 0. 	We may suppose, therefore, 

that the common vertex is v and, moreover, that the two edges 

incident at v in H are incident at distinct vertices of H'; 

suppose w.l.o.g. that the pair of edges in question are the x 1  

and x labelled edges. Then 

f(A0> = X 	11 + 	+ 11 = 0. 

Thus we deduce that ( X   (A0 ) = 0 	f (A) = 0). 

Now assume, to the contrary, that xH(Ao) = 1. 	Then each 

pair of edges in A 0  is vertex disjoint and thus at most one of 

the x1,.. . ,x labelled edges is a member of A. 	There are 

three cases to consider: 

No edge in A is incident at v, in which case 

= [1 
	

= 1 

Either the xdl or the x   labelled edge is incident 

at v, in w: iich case 

f(A0 ) = [1 ++y++1 = 1 
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U 

(iii) One of the xl,...Xd2 labelled edges is incident at v, 

in which case 

f(A0) = [1 +ct++yj = 1 

Taken together, these three cases, yield that-( xE(Ao) = 1 => 

f(Ac) = 1). From (a) and (b) we deduce that X(A0) = f(A0 ), 

which was our claim. 

By unfolding all the vertices of G, in the manner described 

above, we obtain an equivalent degree 3 graph which we shall 

denote by 	We remark that IG 3 I < 9'IGI. 	For the second 

step, that of embedding the resulting degree three graph in the 

rectangular lattice graph, we employ a variant of the method of 

Valiant [44]. 

As G 3  is planar, it has a planar realisation. From such 

a realisation we may construct a sequence of vertices by 

repeating the following procedure until all the vertices of 

G 3  are included in the sequence: Choose a vertex on the outer 

boundary of the planar realisation, add it to the sequence, and 

delete all edges which are incident at that vertex. Clearly, 

the planar realisation of G '3  may be reconstructed starting with 

a single vertex, the. last in the 'above sequence, and adding 

vertices, one by one, according to the reverse of the sequence. 

Together with each new vertex are added all the edges incident 

at that vertex and with some other vertex previously placed.. The 

construction of the sequence allows us to arrange that each edge 

added lies within the exterior of the perimeter constructed so far. 

The planar graph G 3  may be embedded in a rectangular 

lattice by a recursive method using this strategy. Suppose that 

the first i vertices of G 	have been embedded in the 

rectangular grid R6.  The method by which we embed the vertex 
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vertex i+1 

Figure 3.8 
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i+i and its incident edges is described in fig; 3.8. 	The lines 

emanating from the newly added vertex in this figure correspond 

to edges incident at vertex i+i in G '3  and are obtained by 

recursively applying the simulations Si and S2 to the corresponding 

single edge in G 	 We remark that the reason why two 

different simulations are required is one of parity. Using 

only Si we may construct only chains of odd length, while Si and 

S2 together may be used to construct a chain of any length greater 

or equal to 3. From this consideration we see that the chains 

of edges in fig. 3.8 need never be distant more than ' 3 from the 

perimeter of the embedding of the first i vertices. Hence the 

first i+i vertices may be embedded in R 
6(i+i)

. The fact that 

the embedding preserves the monomer-dimer g.f. is immediate from 

the observation that Si and S2 are faithful. 	 0 

3.6 	Some Extensions and Observations 

It will perhaps have been noticed that the construction of 

the planar embedding of the last section does not rely heavily 

on the particular structure of the rectangular lattice and that 

the result should hold if R is replaced by a number of other 

lattice graphs. 

Two possible families of lattice graphs we might consider 

th 
are the hexagonal, whose n member has a vertex set defined by 

the Cartesian coordinates 

v
3  =O '  

and the triangular with vertex set 

{(i3O)v 1 +(i/2,/5/2)v2 O~ v,v5n} 

In each case edges are considered to exist between pairs of 

vertices which are distant 1 apart. Without going into detail, 
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it should be clear that the construction given in fig. 3.8 may 

be modified to yield an embedding in either of these lattices. 

We therefore deduce analogues of theorem 3.3 which declare that 

the monomer-dimer g.f.'s for these two lattice graphs are complete. 

Another immediate corollary is the following: rather than 

enumerating all monomer-dimer arrangements on R (say) we may 

wish to enumerate those arrangements which have a certain number 

i of monomers (i.e. we insist on a fixed monomer density). The 

g.f. for such an arrangement is simply a component of MD(R) of 

specified degree. 	In the case u = 0, the g.f. is exactly DI(R) 

which is efficiently computable as we have already remarked. 

However an efficient computational procedure for evaluating the 

g.f. for arbitrary values of i would imply the existence of an 

efficient procedure for computing MD(R). (We would merely 

sum over all values of i.) 	It is therefore unlikely that 

counting monomer-dimer arrangements with specific monomer 

density is computationally feasible. 

3.7 	The Ising Problem 

The second of two examples drawn from crystal physics is 

the so called Ising problem. Suppose that we have a crystal 

lattice in which each atom can be in one of two states. The 

state of an atom at vertex v. of the lattice is described by a 
3. 

variable c. which can assume values from {-1,1}. 	Two adjacent 

atoms vi 	contribute an "interaction energy" - J. .0.0. to 
- J 	 1J1J 

the system, where j. is a constant; the total energy of the 
13 

system is given by 

adj 
a.0. J .  

] 
• 	1J 1J 1, 

The summation is over i and j with v• 
3. 

and v. 
J 
 adjacent. 	The 
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thermodynamic properties of the system are described by the 

"partition function" 
adj 

N exp ( 

	 ) 	

( 3.11 

laM) E{-1,1} 	 ui 

where N is the number of vertices in the lattice and 

K.. = j /kT..The symbols k and T represent physical constants. 

The evaluation of the above partition function for particular 

values of J.. constitutes the Ising problem. ij 

It is shown by Kasteleyn ([141 p.  100) that there is a 

close relationship between (3.11) and the g.f. for closed 

partial graphs of the lattice graph. A graph is said to be 

closed if each of its vertices has even (possibly zero) degree. 

If G = (V,.E) is a graph then let Sis(G) denote the set 

{AcE I (V,A) is a closed graph}. 

The g.f. for the Ising problem is simply: 

IS(G) = GF (GiSis ) 
	

3.12 

The relationship, which is derived in the above reference, 

between the Ising problem and the g.f. IS is the following. 	If 

G is a lattice graph with vertices v1,... IVN and edges {v.,v,} 

labelled x.. then the expression (3.11) is equal to 13 
adj 

2N( 	
cosh(K 

iJ 
.))IS(G) 

1 

evaluated at the point 
13  

x., = tanh( J. ./kT). 
 13 

The generating function (3.12) applied to the rectangular 

and cubic lattice graphs, introduced in section 3.2, yields two 

Polynomial families, viz. 

{Is(R 
n )I n = 1,2,...} 	 (3.13) 

{IS(c )I n =1,2,...} n 	 .( 3.14) 
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The method used for computing the g.f. of dimer arrangements 

on planar lattice graphs can be modified (see Kasteleyn [14] 

p. 101) to yield an algorithm for evaluating members of the 

family (3.13) which uses a number of arithmetic operations which 

is polynomial (0 (n 5°5 )).in  the index n. 	On the other hand, 

the evaluation of members of (3.14) appears much more difficult, 

and no efficient procedure is known. We throw some light on 

this phenomenon by showing that the family (3.14) is complete 

in the sense of chapter 2. We remark that this is another 

example where moving, from 2 to 3 dimensions introduces apparent 

intractability. 

3.8 	The Completeness of the Family CIS(C)} 

We approach the main result via a series of lemmata. The 

first of these parallels lemma 3.1. 	Recall that DI is the dimer 

generating function defined in equation (3.3). 

Lemma 3.4 The family {DI(Knn) is complete over any field 

not of characteristic 2. 

Proof A typical monomial of DICK 	), say x. 	..x. 	, is 
flfl 	 1-, 	14 

1-1 	nin 

characterised by 

,i distinct and in the range [1,n] 

distinct and in the range [1,n] 

i.e. is of the form x17r(1)  ... nif (n) 
x 	for some permutation 7. 

 

Moreover to each such permutation corresponds a monomial of 

DI (K 	). 	Hence DI (K 	).= per (x ij ). 	The result follows from n,n 	 n,n  

theorem 2.2. 

Lemma 3.5 For any graph G, there exists a graph H with the 

following properties: 

Coffem 



Figure 3.9 
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DI (H) = DI (G) 

H is of degree 3. 

JHJ < 5 1G1 

Proof The graph G is transformed into H by "unfolding" vertices 

of degree greater than 3, a process analogous to that employed 

in theorem 3.3. 	The unfolding is illustrated by fig. 3.9, where 

we consider the case of a vertex of degree 4 with incident edges 

labelled by indeterminates w,x,y,z; the extension to vertices of 

higher degree will be immediately apparent. The scalars 

are all set to 1. 

Suppose that H is obtained from G by applying this unfolding 

to each of its vertices. Any perfect matching of G may be 

extended to a perfect matching of H in a unique way. For 

example, a perfect matching of G which includes the x labelled 

edge will extend to one of H which includes the x labelled edge 

together with the edges labelled cL 11 ct4 ,cL6 . Conversely a perfect 

matching on H must include exactly one of the edges w,x,y,z; hence, 

such a matching is the extension of some matching on G. From this 

1-1 correspondence between perfect matchings of G and H we deduce 

that DI(H) = 1)1(G). 	This shows that H meets condition (i): 

conditions (ii)and (iii) are easily verified. 	0 
It proves convenient to introduce a g.f. complementary to IS, 

which we denote by T, defined as the g.f. of partial graphs in 

which each vertex has odd degree. 

Lemma 3.6 For any graph G of degree 3, there exists a graph H 

with the following properties: 

IS(H) = DI(G) 

I HI < 151 GI 
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Figure 3. 10 
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Proof H = (V,E) is constructed from G as follows. 	For each 

vertex v. in G (we will suppose that G has n vertices v 1 ,... ,v) 

there corresponds a set V. of 5 vertices in H ; V is then taken to 

be the union v 1.  u. 	. 	The vertices within each V 1  . are n  

interconnected by a set E. of 7 edges as described in fig. 3.10. 

In addition, for each edge {v.,v.} in G there is an edge in H 

connecting a vertex of V. to one of V.,. 	Distinct edges of G, 

incident at a common vertex v. in G, correspond to edges of H 

which are incident at distinct vertices of V, as suggested by 

fig. 3.10. 	The set of edges of H which correspond 1-1 with the 

edges of G is denoted by E ; E is then the union E U E U ... UE 
0 	 0 	1 	n 

Note that JHJ15.jG. 

	

Now define x: 	x-2 E  -{0,1} by x(U,A) = 1 iff for all 

u c U the degree of the vertex u in the partial graph (V,A) is odd. 

Then by the definition of IS: 

- 

IS (H) H 	 X(A0 )...X(A))((V,A0 U ... UA)IL 
. c E. (0in) 

Z X(A 	 A(A1 )...X(A) x(V,A 
AcE 	0 	A.cE.(1in) 
0 	0 	1 	1 	

(3.15) 

As the edges of H which are in distinct E. are vertex disjoint, 

we may expand X -(V,A0 U ... UA) as 

[I 	X(V.,A UA). 10 	1 
1 i n 

Hence, substituting in (3.15), we obtain 

 0 	
7 77  I X(A)X(VIAUA) I 15(H) E 	X(A 

	

i 	i 0 
1in 	A 	E. A0cE0 	 i 	1 	 1 (3.16) 

We claim that the sum 

X(A.) x(V.,A U A.) 	 (3.17) 
1 	1 0 	1 

A. C E. 
1= 1 

is 1 if exactly 1 edge in A is incident at V. 1  (we shall say that 0  
an edge is incident at a set of vertices iff it is incident at 
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some vertex in the set), and 0 otherwise. 	Hence the identity 

(3.16) simplifies to 

IS (H) = DI(G). 

The claim may be demonstrated by direct calculation. 

FirstLy, we note that if exactly 0 or 2 edges of A 0  are incident 

at V, then necessarily x(VA0uA) = 0 for any choice of A., 

and hence (3.17) is zero. (The number of odd degree vertices in 

any graph is even, see for example Even [8] p.  1.) 	If 3 edges 

of A are incident at V. then the sum (3.17) is 
0 	 1. 

111 + 

+81 83a2183a1a3] 

which evaluates to zero if we make the following assignment to 

the scalars in the construction: 

a 1  = a2  = a3-1/3, 8 i = 82 = 83 = /1/3 and y = 243/128. 

(The terms in the expression correspond naturally to partial graphs 

of .(Vi  ,E).) 	If exactly one edge of A0  (say the xlabelled edge 

in fig. 3.11) is incident at V then (3.17) is 

+ a2  

which evaluates to one under the same assignment. 

Le=a 3.7 For any graph G there exists a graph H such that: 

IS (H) = IS(G) 

I HI 	5 IGI. 

Proof Firstly, we note that if G has an odd order .then IS = 0. 

(The number of vertices of odd degree in a graph is even.) It 

is trivial, in this case, to construct a suitable H; we might, 

for example, take the complete graph on three vertices with edges 

labelled 1,1 and -1. 	We may therefore suppose that the order 

of G is even. 	Partition the 2n nodes of G into two sets, 
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(V.
1 1  

,E.) 

Figure 3.11 



u
1 ., , 	 and v 1 

 ,... 

, n 
v , in an arbitrary fashion. Construct 

n  

H = (v,E) by composing G with the n graphs described by fig. 3.11, 

identifying the similarly labelled vertices. Denote the 

original set of edges of G by E0 , the set of vertices 

(u.,v.,a.,b,} by V. and the set of 

by E. 	Note that V = V U .. . UV and E = E U E U ... UE . 	 Let 

X : 2V x  2E 
- {o,i} be defined by x(U,A) = 1 iff, in the partial 

graph (V,A) , there are an even number of edges incident at u 

for each vertex u C U. 	Then by definition: 

	

IS(H) = 	Y  
1 	

X(A 0 ...X(A) XA0 	UAn) 
A. c E. (0in) 

- 1 

	

= 	Z 	X(A 0) 	 X(A1 )..X(A)X(V,A 0U.. UA) 
AcE 	A.CE.(1in) 
0 	0 	 1 =  1 

(3.1) 

In a manner similar to that used in the proof of lemma 3.6, 

we may express x(V,A0u... UA 
n ) 

as the product 

fl 	x(V.,A UA.). 

	

10 	1 tin 

Substituting in (3.18) we obtain: 

	

IS (H) = 	T 	A(A0) 	fl 	f 	X(A.) )((Vi 'A uA.)' 
A0CE0 	

1 
1~i~ n 	A.E. 	

1 0 
 

- - 	1 

(3.19 

We now claim that the sum 

	

X(A.)x(V1A u 	) 	 (3.20) 
AcE. 
1 	1 

is 1 if there are an odd number of edges incident at both u and 

V1 and 0 otherwise. 	Hence the product in (3.19) is 1 if the 

degree of each node of the partial subgraph ({u11 .. ,u,v 11 ..v},A0 ) 

is odd, and 0 otherwise. 	Hence (3.19) simplifies to IS(H) = 

We justify the claim by direct calculation. 	Firstly, we 

observe that if an odd number of edges in A 0  are incident at v 
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and an even. number at u. (or vice versa) then (3-20) is 

necessarily 0. (This arises from the usual parity consideration.) 

If the number of edges in A incident at u. is even and at V. 
0 

is even then (3.20) is 

1 + ctI3yS 

which is zero under the assignment c=1, $=1,Y= (1+//2, cS = (1-//2, 

On the other hand, if the number of edges in A 0  incident at U. is 

odd and at v. is odd then (3.20). is 

ay 	

1 

+ ft6 

which is,1 under the same assignment. This substantiates the 

claim. 

We can now state and prove a theorem analogous to theorem 3.2. 

Theorem 3.8 There exists a family {G} of graphs with the. 

following properties: 

(1) {IS(G)l  n = 1,2,..} is a complete family over the 

real field R. 

(ii) 	IGI = 	( 2 )  

Proof Combining lemmata 3.5, 3,6, 3.7 we deduce the existence 

of a graph G with the property that IS(G) = DI(K). It is 

clear from the statements of the lemmata that IG 375.EK I. n 	n,n 

The result follows from the completeness of DI (K ) } over 
n,n 

(lemma 3.4). 

The analogue of theorem 3.3 is 

Theorem 3.9 	The family {IS(C) I n = 1,2,..l is complete over 

the real field R. 

Proof The construction is in two steps: 

(i) transformation of the graph G of the previous theorem 

into a degree-3 graph G '3  which satisfies 

IS(G 3 ) = IS(G) 

/ 
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Figure 3.12 
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(ii) embedding of the degree-3 graph G 3  homeomorphically 

in the cubic lattice C ()  for some polynomial p(.). 

The construction of G 3  from Gn  is effected by unfolding 

the vertices of G  in a fashion described by fig. 3.12, which 

illustrates the degree-4 case. The extension to vertices of 

higher degree and the fact that the g.f. is preserved should be 

immediate iy apparent. 

(3) Suppose G 	has k vertices v1,.. •Vk  and m edges e11. ..em. 

G 3  may be embedded in CA 
 as follows. The vertex v. is mapped 

onto that vertex of C which has Cartesian coordinates 
3k 

(3i-2,0,0). 	For each edge e connecting vertices v and v, 

in G 3  there is a chain of edges in C3k  passing through the 

following points and running in straight lines between them: 

(3i-2+d,0,0), (3i-2-i-d,j,O), (3i-2+d,j,1), (3i'-2+d',j,1), 

(3i'-2+d',j,O), (3i'-2+d',0,0); d and d' take values in {-1,0,1} 

and are chosen so that each of the three edges incident at a 

vertex of the original graph G 3  is mapped onto a distinct chain 

of edges in C 3 	Note that where chains cross in the x,y-plane, 

they always do so at different "levels" i.e. their z-coordinates 

differ. 

Each edge of such a chain is labelled 1, except an arbitrary 

distinguished one which is given the same label as the 

corresponding edge in 
	All the other edges of C   are 

assigned weight 0. 

It will be apparent that the Ising g.f. of the embedded graph is 

the same as that of G 	The result follows from theorem 3.8. 
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4. 	SECOND APPLICATION : NETWORK RELIABILITY 

4.1 	An Introduction to Network Reliability 

As a second example of the use of the ideas developed in 

chapter 2, we examine the problem of determining the reliability 

of communication networks. Informally a communication network 

is composed of a number of transmission stations which 

communicate via links. The elements of the network (stations 

and links) are unreliable and fail with known probabilities; the 

failures of distinct elements are assumed to be probabilistically 

independent events. Two stations are said to be communicating 

if they are connected by a chain of links and stations, none of 

which has failed. 	It is of fundamental importance to designers 

of communication networks that they be able to ascertain the 

robustness of a proposed network to element failures. They are 

thus led to consider various reliability measures for networks, 

such as the probability that all stations can communicate with 

each other, or the probability that two given stations can 

communicate. 

Such networks have been studied extensively by many authors, 

for example Ball [2], Misra [20] and Rosenthal [30]; despite this 

effort, no procedure is known which computes a non-trivial 

reliability measure, which can be applied to arbitrary networks, 

and which runs in time polynomial in the size of the network. 

Polynomial time algorithms are known only for some very special 

cases, for example the series-parallel networks which are 

considered by Misra [20]. 

It would be pleasing to be able to make some statement about 

this apparent intractability. One way of doing this is to show 

that some problem related to network reliability is NP-hard in the 

C.. 



sense of Karp [131. 	This is not a very natural or satisfying 

method. It is not natural because an evaluation or enumeration 

problem is being translated into a decision problem: it is not 

satisfying because we do not obtain a precise characterisation of 

the complexity of the problem, only that it is harder than some 

complexity class. However, this technique has been used by 

Rosenthal [301 to show that some reliability measures are.hard to 

compute, assuming that both station and link failures are allowed. 

Another approach is to view the computation of a reliability 

measure as the problem of enumerating all partial graphs of a 

graph which possess a given property;. in this way, Valiant [411 

has demonstrated the intractability of evaluating the probability 

that two given stations communicate, even if we assume that all 

stations are perfectly reliable. 	In this chapter we use the 

algebraic formulation developed in chapter 2, which forms a 

natural framework in which to consider reliability problems. 

The intractability of most reliability measures in the case 

when stations as well as links are allowed to fail has already 

been established. 	It might be supposed that if we restrict our 

attention to networks with perfectly reliable stations then 

computation becomes much easier -we shall show that this is not 

the case. 	The aim of this chapter is to present proofs of the 

intractability of several reliability measures. For one of 

these measures, namely the probability that in an undirected 

network all stations can communicate with each other, there was 

previously no evidence of intractability. The question of the 

computational difficulty of this measure was raised by Rosenthal 

[30] and a solution has been particularly elusive. 
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.4.2 	Network Definitions 

Although we may consider networks with links which are either 

bidirectional or unidirectional (i.e. in which transmission can 

take place in both. directions or only in one), we will concentrate 

our attention first on the case of bidirectional links. The 

completeness results for reliability measures on unidirectional 

networks are usually easy corollories of the results for 

bidirectional ones as will be shown in section 4 of this chapter. 

Accordingly, we model a communication network as an undirected 

graph G = (V,E); the vertex set V is taken to represent a number 

of stations, E is the set of links joining them, and the edge 

labellings represent the probabilities that the corresponding 

edges are functioning. There are two points to be stressed: 

firstly that the stations are thought of as perfectly reliable, 

and secondly that the link failure probabilities are assumed to 

be probabilistically independent. 

The notion of two stations of a network being able to 

communicate carries over to the graph theoretic concept of 

connected components of a graph. 	Suppose that G = (V,E) is a 

graph and ACE. The set of edges A defines a relation on V 

whereby u,vV are related iff {u,v}CA; define the equivalence 

relation e—> on V to be the reflexive, transitive closure of this. 

The equivalence relation, 4—, partitions V into equivalence 

classes; the su.bgraphs induced by the equivalence classes are 

called the (connected) components of G. Two stations of a 

network which can communicate correspond to vertices of G which 

are in the same connected component. 

In the usual manner of probability theory (see Rao (281 p. 80) 

we associate with G a set of elementary events Q - in this case 
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we simply take 	= 	We assume, as in chapter 3, that A is a 

labelling of G taking values in FUX, where F is a field and 

X = {x 
1 
 ,. • .x } is a finite set of indeterminates over that field. 

n 

The labelling x  induces a probability distribution p : ç + F[x 
" 

,x 
G 	1' 	fl 

specified by 

p(A) = 	[I 	X(e) 	[I 	(1-X(e)). 
ecA 	ec(E-A) 

Here addition and multiplication are those of the polynomial 

ring F[X1. 

Suppose now that S is an event, that is S 	The event S 

has an associated probability of occurrence, a polynomial 

specified by 

Pr (S) = 	p(A). 	 (4.1) 
AE S 

We remark that the probability of an event and its complement 

are related by 

Pr (S) + Pr (2 - S) = 1 
	

(4.2) 

Using this notation, a few reliability measures for undirected 

graphs are listed: 

CONNECTED(G)=Pr{Ac2J(V,A) has exactly one connected 

component}. (The probability that, in the network 

modelled by G, all stations can communicate.) 

s_t_CONNECTED(G)Pr{Ae2js  and t are in the same 

connected component of (v,A) }. 	(Measures the 

probability that s and t can communicate.) 

Both the reliability polynomials so far defined have a natural 

interpretation; the next is artificial, but serves as a useful 

stepping-stone in our reductions: 

s_t_PARTITION(G)=Pr{AEc2GI(V,A) has exactly two connected 

components, one containing s and the other t}. 
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The final polynomial is redundant in that it is the complement 

of one previously defined, however, it too serves as a conceptual 

aid: 

(iv) s-t-SEPARATED(G)=Pr{AE G Is and t are in distinct 

components of (V,A)}. 

Note that, by identity (4.2), 

s-t-SEPARATED(G)=1-(s-t-CONNECTED(G)).  

By considering these reliability measures applied to the 

complete graph K for increasing n, we generate the associated 

polynomial families, for example: 

{s-t-CONNECTED(K)I n=1,2,..} 

and 	{CONNECTED(K ) n=1,2,.. } 
n 

The main results of section 4 of this chapter will be to show 

that these two polynomial families are complete in the sense of 

chapter 2. 	In section 4.5 the completeness of several 

reliability measures for directed graphs will be deduced as 

corollaries. 

4.3 	computing Reliability Measures of Synthesised Networks 

In the proofs of the main theorems of the next section we 

will need to compute reliability polynomials for large graphs 

which are composed from small component graphs. In preparation 

for these tasks, we introduce a method due to Rosenthal [31] for 

simplifying such calculations. 

Suppose G = (V,E) is a graph constructed from a set of 

component subgraphs, H. = (V.,E.) (1 im), by identifying 

certain of the vertices in distinct H.. 	The identified vertices 
3. 

will be termed external, and the remainder internal, vertices. 

Suppose also that we wish to compute some reliability polynomial 
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on G. For the sake of definiteness we shall work with the 

S-t--SEPARATED polynomial, but the method can be applied to any 

natural measure of reliability. 

Consider one of the component subgraphs H. with external 

vertices UI,... 	Any subset A of the edges E1  of H. induces 

a partition r of the external vertices of H., that is to say 

divides {u 11 . .. , u} into a set of blocks such that each u. is in 

exactly one block of Ti; two vertices are in the same block of it 

if f they are in the same connected component of (V.,A). 	In this 

way, to every partition ir of the external vertices of H. 

corresponds a class of elementary events on H 
1 

C 11 = .{AcE J.  J A induces the partition it of the 
.  

external vertices of HA. 
1 

Each class has a class probability, namely 

Pr (C ) = 	2 Pr (A) 
It. 	

ACC 
IT 

We introduce a succinct notation for classes. A class is 

specified by listing the external vertices of a subgraph, say H1 , 

enclosing in square brackets those vertices which belong to the 

same connected component. 	For example, when k=3, (u 11 u3 ] [u 2 ] 

is the class {AcE • j u 1  and u3  are contained in a single connected 

component of (V 
1 ,A), which is distinct from that which contains 

u2 J. 

If H. and H. are distinct component subgraphs with classes 

and class probabilities defined as above, we can combine them to 

form a single, larger component, H say, by identifying certain of 

	

the external vertices. 	The set of external vertices of H contains 

those vertices of H, and H which are also shared by component 

subgraphs other than these two. 
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The classes of H are in 1-1 correspondence with partitions 

of the external vertices of H. The important observation is 

that the class probabilities of H. and H. encode exactly enough 

information to enable the computation of the class probabilities 

of H to proceed. 	In particular it should be noted that each 

class of H is a union of sets of the form 

(A. 
1 	J 
UA. 	

1 
A. 	

:1. 
C., A 

J  
.CC 

 J  
.} 
	

(4.4) 

where C. and C. are classes of H. and H. respectively. 	Using 

this observation it can be seen that a product of classes 

C = C. XC. can be defined, where C is that class of H which 
1 	J 

contains the set (4.4). 	We can express the class probability of 

C as 

Pr (c) = 	 Pr(C.)Pr(C.) 	 (4.5) 
C. XC. = C 

1 	J 

By combining component subgraphs, using a repeated application of 

this procedure, we may evaluate the class probabilities of the 

synthesised graph G. The polynomial s-t-SEPARATED(G) is then 

simply that class probability of G which corresponds to a 

partition of s and t into separate blocks. 

As a concrete example, consider the component subgraph of 

fig. 4.1. 	It has 5 classes, corresponding to the 5 partitions 

of the external vertices s,t,u .. 	The class probabilities are 
U 

listed assuming the assignments p 1 =1/2, p 2=l/2 and p 3=3/2. The 

convention q.=1-p.-is used 

(i) Pr([s,t,u]) =p 1p2p 3 	 3/8 

 Pr([s,t][u 	.J ]) 
1
. = p 1p2q3  =-1/8 

 Pr([s,u 	.][t]) = p 1q2p 3  =3/8 
iJ 

 Pr([t,u 	Us]) = q 1p2p 3  = 3/8 
ii 

 Pr([s) [tHu. •])= q 1q2q3+p 1q2q3+q 1p2q 3+q 1q2 p3  = 0 
U 
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Figure 4.1 

13 

Figure 4.2 

M 
iji l i '  

Figure 4.3 
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In this example, it will be noted that the classes [s,t,u ] and 
13 

[s,t] [U.,] may, in the present context, be neglected as they already 

place s and t in the same connected component - we shall call such 

classes inconsistent. In addition the class [s] RI [u, .1 can be 
13 

neglected as it has associated probability 0 - we shall call such 

classes null. This leaves only two classes which are neither 

null nor inconsistent - such classes will be termed contributory. 

By working with the 2 contributory classes instead of the 8 

elementary events, the computational effort is substantially 

reduced. 

We are now prepared for the main results of the chapter. 

4.4 	Completeness Results 

Theorem 4.1 There exists a family of graphs {G}, with 

distinguished vertices s and t, which possesses the following 

properties: 

J G I = 0(n3 ). n 	
2 

s-t-SEPARATED(G)=(3/8) '  per*(X) 

Proof The graph G is constructed by composing the component 

subgraphs K ij iL,j  (1i,jn) and 

i=i' S j=j') of figs. 4.1, 4.2, 4.3 respectively. 	The symbol 

is here used to denote "exclusive or". 	Similarly labelled 

vertices are identified in the composition, while separate 

occurrences exist of the unlabelled vertices. We consider the 

classes of each of the component subgraphs and compute their 

respective class probabilities, in preparation for evaluating the 

required reliability measure on G 
n 

(i) The components K, have 3 external vertices, s,t,u, 

	

1J 	 13 

and hence 5 classes. The scalars are assigned values 
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p 1 = 1 /2 , p2=1/2, p 3 =3/2. 	The class probabilities 

were computed in the last section but are repeated 

here for convenience: 

Pr([s,t,u..]) = 3/8 

Pr([s,t][u . . 1) =-1/8 
1J  

Pr([s,u 	.][t]) = 3/8. 
1] 

Pr([t,u..][s]) = 3/8. 
1) 

Pr([s] It] [u. .]) = 	0 
1] 

(inconsistent). 

(inconsistent). 

(null). 

The components L. have 2 external vertices t and u. 13 	 13 

and hence only 2 classes. The scalars are assigned 

values p 1 =1/2, p2=2, p3=2. 

Pr([t,u 1J  . . 	
1 

]) = x. .J  (p 1p2p 3  + p 1p2q3  + p 1q2p 3 ) 

+ (1-x
iJ 	 + p 1p2q3 ) 

= x .(2-1-1) + (1-x..)(2-1) 

	

iJ 	 13 

ii 

	

Pr( It] [u. .])= x. 	(by identity 4.2) 

	

iJ 	U 

(iii) The components M.have 3 external vertices u. ,u.
U  131']' 	 UJ 	'J' 

	

and t and 5 classes. 	The scalars are assigned values 

P 1=-7/5, p2 1 ' 2 1 p3=1/2,  p4=4/3. 

Pr([u 
13
. ., u.1 , .

J
,,t]) = p 1p2p 3p4  + q 1p2p 3p4  + 

p 1q2p 3p4  + p 1p2q3p4  

= -3/5. 

Pr([u 	,. 
iiu 
	[t])= q 1p2p3q4  + p 1 q  2  q  3  q  4  + 

P 1p2q3q4  + p 1 q2p 3q4  + 

+ p 1p2p3q4  

= -1/5. 

Pr( 
1 

[u. J ,tI [u 1. 	fl= q1p2q3p4  

= 4/5 
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Pr([u. 11 .,,t][u 1. .J 
 1). = q 1q 1p 3p4  

= 4/5 

Pr([u 
13 	1 
.][u. 1 .,][tl)= q 

1  q  2  q  3  q  4 
 + q 1p2q3q4  + 

q 1 q2p3q4  + q 1q2q3p4  

= 1/5 

Having analysed each of the component subgraphs, let us now 

proceed to apply the method of the previous section. Firstly 

each pair of component subgraphs K.,, L,, is c .  ombined to form a 

single component H., with external vertices {st 1u}. 	As has 
13 	 3.3 

been noted, K. j  has only two contributory classes, namely 

[s,u.,] [t] and [t,u..] [si, both of which have associated 

probability 3/8. 	H., thus has two contributory classes: 

(i) [s,u .. ] [t], formed by producting the class 

[s,u •  .) [t] of K. . with the class [ti [U. .1 of L. 
1J 	 1J 	 13 	1J 

By equation 4.5 the associated class probability 

is-(3/8)x ij-  

(ii) [t,u..] [s], formed by producting the class 

[t,u. ,] [sI of K. with either class of L.... 	By 
1J 	 13 	 13 

equation 4.5 the associated class probability 

is (3/8) Lx.. +(1-x.)] = 3/8. 

Next, the component subgraphs H., thus produced are combined 
3-3 

into one component H with external vertices {s,t,u11 ,u12 ,. . . ,u} nn 

Each H, has exactly two contributory classes - one which places 
13. 

U. in the connected component containing s and another which 

places it in that containing t. 	Each contributory class of 

H corresponds to a partition of the external nodes into two 

blocks, one containing s and the other t, i.e. each such 

class of H is of the form 
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CS  = [s,u..((i,j) es) }[t,u..(.(i,jS:)] 	 - 

for some sc{ (i,j) 11i.,n}. 	The class Cs  is formed by producting 

together the classes [s,u..] [t] of H.. for (i,j)E5 and the classes 

{t,u. .][s]  of H.. for (i,j)S. 	Thus: iJ 	 iJ 

Pr (C ) = 	11 	(3/8)x 	Ii 	(3/8) 
S 	(i,j)c 	i S 	j 	(i,j)S 

2 

	

= (3/8) " 	[I x 
(i,j)S ij 

Finally, we combine the above class probabilities with those 

of the component subgraphs M..,., in order to compute 

s-t--SEPARATED(G). 	The 2 	 class probabilities of H correspond 

precisely to the 2 
flXfl 

 possible linear monomials in the 

indeterminates {x11,.. . ,x}; the function of the subgraphs 

ij i' j
is to pick out those monomials which occur in the 

expansion of per*(X),  while annihilating others. 

We investigate which classes of M]• J 
1' J 

. , when producted with 

the class C of H, produce the class (s) [ti of G. 	There are 

four cases: 

If (i,j)S and (i',j')S then any of the classes of 

M ijiJ 
., will combine. 	The factor contributed by 

such subgraphs is thus 1. 

If (i,j)cS and (i',j')S then the classes which 

combine are [tI [u. 
iJ 
.][u 

i  . J 
1  .] and [u.j[u. 1 .,,t]. 

The factor contributed is Pr([t][u.. 
iJ 	iJ 

][u,.,. }) + 

Pr([u ][u.,.,,t]) = 1/5 + 4/5 = 1. 
1J 

The case when (i,j).S and (i',j')cs is similar to (ii) 

by symmetry. 

If (i,j)cS and (i',j')cS then the classes which combine 

are [ti [u iJ • . 	]
] [u., J ,] and [t] [u1. .3  ,u.1 , .

3
,]. 	The factor 

MIMM 



K. 
iJ :  

Figure 4.4 

L..: 
13 

Figure 4.5 

M... 
1J1 , J 

Figure 4.6 
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contributed isPr([tl[u.•)[u.,. 1 ]) + Pr([t][u..,u.,.,]) 

= 1/5 - 1/5 = 0. 

A component subgraph M 	 exists for all 1i,j,i',jn with 

(i=i') ED (j=j'). Hence 

s-t-SEPARATED(G n 

= 	 X(S)Pr(C5 ) 

Sc (i,j) 1~i,j :5n} 

where 

X(S)=l if every pair of elements in S differs in 

both components, and 

=0 otherwise. 

i.e. 	s-t-SEPARATED(G ). 
fl 	F 	2 

= 	
1(3/8)fl 

x(S) 	fl 	x. 
sc{(i,j) I 1i,jn} 	 (i,j)ES 

2 
= 

 

(3/8 )n per*(X) 

Theorem 4.2 There exists a family of graphs {G}, with 

distinguished vertices s and t, which possesses the following 

properties: 

I G
n I0(n 

3 
 ) 

2 
s-t-PRTITI0NED(G n )=(1/2) "  per*(x). 

Proof The proof of this theorem is analogous to that of 

theorem 4.1. The graph G is constructed by composing the 

component subgraphs K..,L. (1i,jn) and M..t.,  (1i,j,i',j'n, 

i=i' 	j=j'), described by figs. 4.4, 4.5 and 4.6, which are 

modified versions of those employed in the last construction. 

To accommodate the s-t-PARTITION reliability measure we must 

slightly redefine the notion of class. Suppose H. = (V., E.) is 

a component subgraph with external vertices u1,... UK• 	As 

before, any subset of the edges E. of H. induces a partition 



of the vertices u11.. . ,U . 	To each such partition corresponds 

a class, CTr? of elementary events on H.: 

C,11 = {AcEJ (A induces the partition ,1t of the external 

vertices of H.) A (every connected component of 

(V.
3.
,A) contains an external vertex of H.)} 
 1 

The classes are in 1-1 correspondence with those defined for the 

s-t-SEPARATED measure; the only difference is that we insist 

that no internal vertex is isolated from all the external vertices. 

With the redefined classes it is clear that s-t-PARTITIONED(G n 

may be expressed as the class probability Pr([s][t])  of G. 

Although the classes have been redefined, the rules for 

computing class probabilities when component subgraphs are 

combined remain unchanged. The altered classes require that the 

component subnetworks be modified from those used in theorem 

4.1, however each performs essentially the same function in 

both constructions. We shall therefore content ourselves with 

computing the class probabilities of the component subgraphs 

and appending a sketch of how they combine. 

The class probabilities of the component subgraphs are 

now listed: 

(i) The components K. have 3 external vertices, s,t,u. 
1J 	 1J 

and 5 classes. 	The scalars are assigned values 

p2=1/2, p 3=2. 	The class probabilities are 

Pr([s,t,u. 
.]) =p IP2P3 

= 	1/2 	 (inconsistent) 

Pr([s,tl [U 	]) = P1p2q3 =- 1/4 	 (inconsistent) 
ii 

Pr([s,u 	.1 [t]) = P 1q2p 3  = 	1/2 
U 

Pr((t,u . . I[s]) = q1p2p3  = 	1/2 
13  

Pr([s}[t}[u 	]) = p 
1 
q  2  q  3 

+ q 1p2q3  + q 1q2p3  

= -1/4-1/4+1/2 

= 0 	 (null) 
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(ii) 	The components L.. have 2 external vertices s and u.., 

and 2 classes. 	The scalars are assigned values p 1 =-1, p2 =1/2, 

p3=-1. 

Pr([s,u 1) = x. .(p 1p2p 3  + p 1 q2p 3  +  p 1 p2 q3  + q 1p2p 3  + 
13. 	13 

	

q 1 q2p 3  + q 1p2 3 	ij 	1 q )+ (1-x )(p p
2  p 3  + 

p 1 q2p3  + p 1p2q3  + q 1p2p 3 ) 

	

= x 
ii 	 iJ 

(1/2+1/2-1-1-1+2) + (1-x .) (1/2+1/2-1-1) 

= X -  I . 

13 

Pr([s] [u 
13 

• 	 . . ])= x (p1q2 3 	1 2 3 	1
q + q q q ) ~ (l-x. .3  )(p 1 q  2  q  3 

 + q 1p2q3 ) 

= x. (-1+2) .+ (1-x. .) (-1+2) 

= 1. 

(iii) The components M. 
131 3' 

have 3 external vertices 

U.., 	 ,S and 5 classes. 	The scalars are assigned values 

P 1 =4/9, p27,'2, P3=1  /2, p4 =1/2, p5 -3. 

Pr([s,u,u])= 	 + p2q3p4p5  + p2p 3q4p5  + q2p3p4p 5 ) 

= 4/9(21/8+21/8+21/8-27/8) 

= 2. 

Pr ([u 
1J
. . 

1 
,u., .

J 

 ,j [s))= p 1  (p 2p 3p4q5  + p2p 3q4q5  + p2q3p4q5  + 

P2q3q4p5  + q2p 3p4q5 ) 

= 4/9(-7/2-7/2-7/2+21/8+9/2) 

=- 3/2. 

Pr([s,u 1]  . . 	1][u.,.,i) = p 1 q2p3q4p5  

= -3/2. 

Pr([s,u.,.,][u..]) = 
1 	

p1q2q3p4p5 

= -3/2. 

Pr( Esi (u ii ICU 
1
.

13 . 1 1) = 1 (q2p 3q4q5  + q2q3p4q5  + q2q3q4p 5 ) 

= 4/9(9/2+9/2+27/8) 

= 5/2. 



Let us now combine the component subgraphs, as in the proof 

of the previous theorem, computing the class.probabilities as we 

proceed. 	Firstly each pair of component subgraphs K.., L.. 

is combined to form a single component H 
1J 

with external vertices 

{s,t,u }. 	The class probabilities of H are ij 	 13 

Pr([s,u ][]= 1/2[(x. -1)+1] 
13 	 1] 

= (1/2)x 
1] 

and 	Pr([t,u][sJ) 1/2•1 
13 

= 1/2. 

Next, the H are combined into a single component H with 
iJ 

external vertices {s,t,u11,... iUnn}  and classes tcsc( (i,j) 1i,j<n}} 

where C 
 S 	ij 

[s,u((i,j)c 	
1

S)][t,u. .
J 
 ((i,j)S)]. 	The class 

probabilities of H are given by 
2 

Pr(C ) = (1/2)n 	N 
S 	 (i,j)cS ij 

Finally combining H with the component subgraphs M... 1 .,, 

using an argument analogous to that used in the previous proof, 

yields the required result. 

The completeness results for the reliability polynomials 

introduced in section 4.2 follow easily from the above two 

theorems. 	 0 

Corollary 4.3 The polynomial families (i) and (ii) are both 
o5 

complete over the fieldrationals, Q: 

(s-t-CONNECTED(K) jn=1,2,..} 

CONNECTED(K) n=1,2,. .}. 

Proof 
- 	 2 

(i) Consider the graph G , with s-t-SEPARATED(G 
n 
)=(3/8)  fl per*(X), 

n  

whose existence is assured by theorem 4.1. Relabel vertex t as t' 

and augment the resulting graph to produce G' as in fig. 4.7. 
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G' 
n 

Figure 4.7 

G' 
n 

Figure 4.8 



2 	 2 
The scalars p 1  and p2  assume the values (8/3) "  and [1_(3/8)]_1 

respectively. 	Then: 

s-t-CONNECTED (G') 

= P 1  + (1-p 1 )p 2 [s-t-CONNECTED(G)1 

= P 1  + (1-p 1 )p2  [1- s-t-SEPARATED (G) I 

= (p 1 +p2 _p 1p2 ) +(p 1p2-p2 )[s-t- SEPARATED (G)I 

= per* (X). 

The result follows from lemma 2.3. 

(ii) By theorem 4.2, there exists a graph G , of small size, with 
2 

s-t-PARTITIONED(G 
)=(1/2)  fl per*(X). 	Augment G to G' as indicated 

n 	 n 	n 

in fig. 4.8. 	The scalars are assigned values p1=-2 (n2+1) , P2= 1/2, 

P 3=-1. 	Then: 

CONNECTED (G') 
n 

12p3 + pq2p3  + p 1p2q3 ) [CONNECrEDG 

+ P 1p2p 3  [s-t-PARTITIONED(G)I 

= per*(X). 

A second application of lemma 2.3. yields the result. 

4.5 	Networks with Unidirectional Links 

A network in which transmission along links takes place in one 

direction only is modelled by an directed graph. In this section 

only, we break from our convention, and all graphs mentioned will 

be directed unless otherwise stated. The notion of two stations 

of a network communicating is captured as follows. Suppose 

G=(V,E) is a. directed graph, representing a network, and A is a 

subset of E, representing the functioning links of the network. 

The edge set .A defines a relation on V whereby u,v are related if f 

(u,v)cAj define the relation on V to be the reflexive, transitive 

closure of this. 

Using the relation , a number of reliability polynomials can 



Figure 4.9 
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be defined for directed graphs. Again we represent by 0 the set 

of elementary events; c = 
G 

s_t.CONNECTED(G)=Pr{Acc2GIs 	t} 	 (4.6) 

STRONGLY-s-t-CONNECTED (G) =Pr{AEGI (S 	t) A(t 	s) } 	(4.7) 

s-V-CONNECTED(G)=Pr{Ac%lVvVs v} 	 (4.8) 

A 	A 
CONNECTED(G)=Pr{ACQ 	-'- v)A(v + u)} 	 (4.9) 

The polynomial (4.6) represents the probability that s can 

communicate to t, (4.7) represents the probability that s and t 

can communicate with each other, (4.8) the probability that s can 

communicate to all other stations, and (4.9) that all pairs of 

stations can communicate. 	 - 

As in the undirected case, we generate polynomial families by 

considering the reliability polynomials, for the complete graph K 

on.n vertices, for increasing values of n. 	The completeness 

of these polynomial families is a direct corollory of the results 

obtained in the previous section for undirected graphs. 

Corollory 4.4 The following polynomial families are complete 

over the field of rationals Q. 

{s-t-CONNECTED(K)In=1,2,..}. 

{STRONGLY-s-t-coNNEcTED(K)In=1 1 2 1 ..}. 

{s-V-CONNECTED(K)In=1,2,..}. 

{CONNECTED (K) I n= 1 , 2,.. 

Proof An arbitrary undirected graph G=(V,E) maybe transformed 

into a directed graph G' by replacing each edge u,v}cE by the 

subgraph of fig. 4.9, consisting of 4 vertices and 5 edges. 

The communication probabilities are unaltered by this 

transformation and the following identities hold: 
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s-t-CONNECTED(G') = s-t-CONNECTED(G) 

STRONGLY-s-t-CONNECTED(G') = s-t-CONNECTED(G) 

s-V-CONNECTED (G') = CONNECTED (G) 

and 	CONNECTED (G') = CONNECTED (G). 

Note that the reliability polynomials on the left hand sides are 

for directed graphs, while those on the right hand sides are for 

undirected graphs. By taking G to be the complete undirected 

graph on n vertices, we see that we have exhibited projections 

from the polynomial families (i)-(iv) onto other polynomial 

families which are known, by corollory 4.3 to be complete. 

4.6 	Discussion 

A number of reliability measures for networks have been 

proposed, and all have been shown to be complete in the sense of 

chapter 2. This observation suggests that computing network 

reliability is an inherently difficult task. 	Intuitively, what 

makes computation of such measures difficult is the subtlety 

of the probabilistic dependencies; it is impossible to decompose 

a reliability measure so that its dependence on individual 

failure probabilities becomes explicit. 	In fact reliability 

measures seemingly much easier than the ones studied in sections 

4.4 and 4.5 appear to be intractable. 	As an example consider 

the following reliability polynomial for an undirected graph 

G= (v,E) 

NO_ISOLATED_VERTEX(G)=Pr(AE0 0 I every component of (V,A) 

has order at least 21. 

The intuitive reading of this is the probability that every 

station of a network can communicate with some other station. 

One might expect this to be easy to compute, as it represents 
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the probability of an event which is determined by purely local 

considerations at each vertex; the previously referred to 

probabilistic dependencies are reduced to a minimum in this case. 

The intractability of this measure is, however, easily 

demonstrated. If p(x 1 ,.... ,x) is a polynomial of degree d in n 

indeterminates, let le(p) denote the lower envelope of p, that is 

to say the sum of all the monomials of lowest degree in p. We 

remark that the lower envelope of a polynomial is not substantially 

easier to compute than the polynomial itself. For suppose we 

wish to evaluate le(p) at the point 	 Consider 

the polynomial p(Xc,Xc 	"n of degree d in the single. 

indeterminate X;  the value we wish to compute is precisely the 

coefficient of the) term of lowest degree in X. 	The coefficients 

of p(XcL 1 , .... Xct) can be determined by evaluating the polynomial 

at d+1 distinct values of A. 	In this way the evaluation of le(p) 

has been reduced to d+1 evaluations of p. Now, if K 	is the 
n,n 

complete bipartite graph on 2n vertices with the usual labelling, 

then the monomials of 1e(NO-ISOLATED-VERTEX(K )) correspond to 
n,n 

partial graphs of Kn,n in which every component has order 

exactly - 2, i.e. to perfect matchings in Knn• 	Hence 

le (NO-ISOLATED-VERTEX (Knn  =per (X). 

The lower envelope is thus complete, and, by the above discussion, 

the reliability polynomial itself difficult to compute. 

The objection might be raised that our reductions employ 

constants outside the range [0,1) of realisable probabilities. 

However an appeal to intuition suggests that it is no easier to 

compute a multivariate polynomial when we restrict all values of 

its indeterminates to •a certain range (say[0,1}) than it is to 

compute it for arbitrary values. 	By way of justification, we 
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might remark that an arithmetic circuit which correctly computes 

the polynomial within the restricted range will work (except at a 

few singularities where division by zero occurs) over the whole 

range. 

We finish with a caveat. 	The results obtained here are for 

arbitrary networks; it is conceivable that computing the 

reliability of some useful subclass of networks, for example 

planar networks, is radically easier than the general case. 

Although in the field of network reliability this seems unlikely, 

there is a precedent for this effect in Kasteleyn's method for 

enumerating perfect matchings in a planar graph, which was cited 

in chapter 3. 

4.7 	New Completeness Results from Old 

As has been remarked in chapter 1, our approach differs from 

that of machine-based complexity theory in two respects. Firstly, 

our notions are non-uniform, for example the p-projections used to 

reduce one polynomial family to another which specify a separate 

translation for each member of the family (i.e. for each input 

size). 	In practice this is of no consequence; the polynomial 

families which we have considered are certainly uniform (i.e. can 

be described by an effective procedure), while the reductions of 

this and the last chapter are not only Turing computable but 

efficiently so. 	The second difference is potentially more 

important - we have viewed problems through the medium of generating 

functions rather than as pure combinatorial enumeration. There 

is a doubt that additional complexity may be introduced when we 

move from the discrete combinatorial world to the continuous 

algebraic one. 

Although it should be stressed that the algebraic completeness 
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results we have obtained are strong statements of intractability 

in their own right, it might be illuminating to give an example 

of how such a result can be used, with not too much effort, to 

prove a statement about the complexity of an associated 

combinatorial enumeration problem. 

We assume familiarity with the class #P and its associated 

completeness class #P-complete introduced by Valiant in [40,41]. 

In brief, *P is the class of integer functions computed by 

polynomial time bounded counting Turing machines. A counting 

T.M. is a standard non-deterministic T.M. with the additional 

facility of outputting the number of accepting computations. A 

problem is #P-complete if it is complete in #P with respect to 

polynomial time Turing reduction. The class #P-complete 

includes many classical 'hard' enumeration problems. 	In 

particular, the following problem is known to be #P-complete (for 

a proof see [401): 

0-1 PERMANENT 

Input: 0-1 matrix U. 

Output: per(U). 

We introduce an enumeration problem, which is closely 

associated with one of the reliability measures defined in this 

chapter, and show it to be #P-complete using theorem 4.2. The 

problem is: 

*CONNECTED P-GRAPHS 

Input: graph G 

Output: the number of connected partial graphs of G. 

Two points should be emphasised. Firstly, although the proof 

of #P-completeness is ad hoc, the techniques employed, namely 

Polynomial interpolation and the 'encoding' of field elements, 

are probably of wider application in this area. 	Secondly, no 
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direct proof is known of #P-completeness of the above problem. 	-- 

The proof of theorem 4.7 may be interpreted as further evidence 

of the utility of the algebraic approach. 

Two preparatory lemmata are required. For computational 

purposes, we shall assume that graphs are represented in some 

standard form, for example as adjacency matrices. Rational 

numbers will be held as pairs of binary integers, representing the 

numerator and denominator of a fraction in reduced form. The 

length of such a representation of a rational q will be denoted 

by  Iqi. 

Lemma 4.5 	Suppose p(x1,... ,xK)  is a polynomial in k indeterminates, 

of degree d, and with rational coefficients. 	Let A={q1,q2,. . 

be a set of distinct rationals. Then the coefficients of p can 

be computed, in deterministic polynomial time, from the set of 

(d+1) + (d+l)k values 

Au{p(a1,... ,ak)I  a 6 Ak} 

Proof Firstly we claim that if two polynomials f(x1,... ,xk) and 

g(x 
1'...'} 

x.. ), of degree d, agree at all points in the set 

k 
q 1 ,... 

then they are identically equal. 	Setting 

h (x = f(x1,.. . ,x) - g(x1,... ,xk) 

the claim is equivalent to showing that h is identically 0. This 

is a slight extension of the fundamental theorem of algebra. (see 

Godement [10]) which can be proved by straightforward induction 

on k. Now consider the polynomial 

Z k 	fl 	(x.-q.) 	 (4.10) 
acA 	1ik q.a. (a-q.) I 

If xEAk,  al'l but one of the terms in the sum are zero; the remaining 
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term is equal to p(x). Hence f agrees with p on all points of 

A 
k
, and, by our claim, f is identically equal to p. The formula 

4.10 is thus an explicit expression of p in terms of {q 1 ,... 

and {p(a) acAk ). It only remains to show that the coefficients 

of p may be computed, using expression 4.10, in time polynomial 

in the input length, I. This should be apparent from the 

following observations. 

If the input length is 1, then Iq.ji Vi, 

IP) I..l VaAk, and (d+1) 1 l. 

The polynomials manipulated in the computation may be 

represented by vectors of coefficients having (d+l)k 

(SI) components. 

The sum in (4.10) consists of (d+l)k (l) terms, each 

having kd (l) factors. 

At no point in the computation do we need to handle 

rationals whose representation requires more than 

0(13  ) space. 

Lemma 4.6 Suppose that G is a graph with label set 

A ={1/2,1/3,... ,1/k}. 	Let the number of edges with label 1/j 

be n. Then there exists an efficiently computable unlabelled 

graph H with the property 

COECTED(G)= 2k i_ni x(ner of connected partial 

graphs of H.) 

Proof Suppose that G=(V,EG). 	The graph H=(V,EH) is constructed 

from G by simply replacing each 1/j labelled edge, e, of G by a 

chain, C, of (j-1) unlabelled edges, the endpoints of C   being the 

same as those of the original edge e. 	Suppose AH c EH is such that 

(VA) is connected. For each chain of edges Ce  in H, 	either H. 

contains all the edges of Ce?  or contains 
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all but one of the edges. (Otherwise, vertices of C   would exist 

which are isolated from the endpoints.) 	Define a mapping U, 

from connected partial graphs of H to connected partial graphs 

of G, as follows: 

= {ecEGIA. contains all the edges in Ce}• 

The mapping vis surjective, but not injective. However a simple 

expression exists for the number of partial graphs of H which 

map to a fixed one (V lAG) of G: 

{AHcEH I U(AH)=AG}I=e [I 	(X(e) 1 -1). 
CEG_AG 

(The factors in the product correspond to the number of ways of 

choosing a single edge from the chain C.) 	Hence: 

H 	H 	H 	G 
CE Iv(A )=A }I 

= ( [I 	(e) 	X(e))( Ii  
\eCEG 	\eEAG 	ecEG_AG 

= ( [I j '  j) p(AG) \2jk 

The result follows by summation over all connected partial graphs 

(V,A) of G. 

Theorem 4.7 #CONNECTED P-GRAPHS is #P-complete. 

Proof That the problem is in #P is immediate - given a graph G 

we simply test in parallel each partial graph of G and accept 

if f it is connected. 	The testing can be done in time OIGI) 

by using, for example, depth first search [8]. Therefore it is 

sufficient to show that 0-1 PERMANENT is polynomial time Turing 

reducible to #CONNECTED P-GRAPHS. 

	

Suppose U is an nxn 0-1 matrix. 	Combining the projections 

explicitly presented in lemma 2.3, theorem 4.2 and corollory 4.3 

we see that a graph Gct  exists with the following properties. 

(i) 	per(U) = CONNECTED (GU). 
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G 	 is efficiently constructable from U, i.e. the 

mapping U G  	is computable in deterministic polynomial / 

time. 

The label set Aof G 	is {ct1,. • 	where k is a fixed 

integer (independent of n), and a 
i 

EQ. 	(Explicitly k=9 
2 

and{,...,ak} = {_
2  fl 1,_7/2,_3,_1,0,4/9,1/2,12}) 

Let G 
U,x 

 be the graph formed from G 	by replacing each rational 

label ct. by an indeterminate x, let p(x1 , ... lxk)=CONNECTED(Gu )I 

and let d be the degree of p. We remark that the coefficients 

of p are integers in the range [O,2'] and that d(=IGuI)U. 

bounded by a polynomial function of n. By lemma 4.5, the 

coefficients of p  and hence the value of 	 ,ctk) may be 

efficiently computed if we know the set of values 

{p(b1 , ... ,bk) IbCk} 

where =11/2,1/3,... ,1/(d+2)}. 	However we note that PU(bl ,  ... , bk) 

is just CONNECTED(G 	' where 	is the graph formed from 
U b  

G 	by replacing each label x. by the rational b.. By lemma 
1 	 1 

4.6 there is a graph Hub and a rational
U,b'

both efficiently 

computable from Gsuch that: 

CONNECTED(G ,b 

= q U,b X(number of connected partial graphs of Hu b 

The whole reduction is now summarised: 

Compute 

Compute {GU  bib 	} 

Compute {uU  bIb 	] using lemma 4.6. 

Use a subroutine for #CONNECTED P-GRAPHS to enumerate, 

for each of the graphs found at stage (iii), the number 

of connected partial graphs. 
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Scale the results from (iv) in order to obtain 

{CONNECTED (G b b8k} 

Apply the algorithm of lemma 4.5 to compute 

per(U)=CONNECTED(G). 

Note: Recently, a direct proof of the result of Theorem 4.7 

has been provided by J.S. Provan and M.O. Ball. (See "The 

Complexity of Counting Cuts and of Computing the Probability 

that a Graph is Connected", University of Maryland working 

paper MS/S 81-002, (1981)4) 

Is 



5. 	EXACT LOWER BOUNDS FOR RESTRICTED ALGEBRAIC MODELS 

5.1 	Introduction 

As remarked in chapter 1, the topic of this final chapter 

is in some sense distinct from that of the previous three. The 

common thread which binds the two parts is the idea of a model of 

computation which is non-uniform and in which arithmetic 

operations are elementary. 	In chapters two to four the 

underlying model is implicit and the results are of a relative 

nature; in this chapter the computational model is precisely 

defined and the complexity results obtained are in many cases exact. 

We shall be considering the question of finding the number 

of arithmetic operations required to compute various polynomial 

functions, by now a classic goal of complexity theory. 	If we 

allow operations to be drawn from the set {+,x,-}, or possibly 

+,x,_,/}, then it is an unresolved question how many of these 

operations are required to compute seemingly such a simple 

function as matrix multiplication. Profound algebraic methods 

are required to obtain all but the most trivial results in such 

a system and, indeed, fast algorithms can be built using non-

trivial algebraic properties of the domain of computation. 

Examples of techniques used to provide lower bounds in arithmetic 

complexity are to be found in Borodin and Munro [5],  while 

Strassen's celebrated fast matrix multiplication algorithm [37] 

is an illustration of the possibilities which exist for subtle 

exploitation of the properties of the domain of computation. Such 

exploitation reaches cunning heights in the work of Pan [24] and 

Bini et al. [4]. 

An obvious and cowardly escape from the convolutions of the 

general problem is provided by restricting the computational model 
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in some way, and this is the path we shall be following in the 

present chapter. 	In the field of Boolean complexity, for example, 

much work has been done on monotone Boolean computations, analysis 

of which has proved more tractable than computations using 

negations (see [15,17,25,27,461) -. Similar work has been undertaken, 

by Schnorr, Shamir and Snir, on monotone arithmetic computations, 

that is computations using only positive constants, additions and 

multiplications [32,34,35,36]. 	In both models it is possible to 

prove that multiplication of nxn matrices requires n 3  scalar 

multiplications. 	Of the same flavour are results concerning 

regular expressions not using complementation or intersection [7,11]. 

In order to justify considering restricted computational models 

a number of desirable features of such models may be listed. 

Miller [18],  for example, shows that monotone arithmetic 

compttations have absolute numerical stability. Such computations 

also possess a kind of universality, stemming from the property 

that their correctness may be deduced merely from the associativity, 

comniutativity and distributivity of addition and multiplication. 

By redefining the operations of addition and multiplication 

suitably, therefore, we may reinterpret the computation in a number 

of different domains; this is a feature of monotone arithmetic 

which we shall be returning to later. Perhaps the main argument 

in favour, however, is that considering restricted models gives us 

insight into where the power of more general models lies; we shall 

show, for example, that introducing negative constants into the 

domain of computation enables a startling gain in efficiency to 

be made in the computation of certain polynomials. 

The material described in this chapter is motivated by 

computation in the semiring of non-negative real numbers with the 
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usual addition and multiplication (monotone arithmetic). The 

results obtained are, however, valid for a number of other (easily 

characterisable) semirings, and the treatment will therefore be 

given in a general setting. The results apply, for example, to 

monotone arithmetic and to computation in the semiring of real 

numbers with the operations of minimum and addition. This 

latter structure has frequently been used (for example by Ahb et 

al. [1] and Cuninghame-Green (61) to formulate and solve 

optimisation problems. 

Later in this chapter we show that the problem of computing 

a polynomial function in these semirings is reducible to the 

problem of computing a formal polynomial over the semiring. 

This in turn is as hard as computing a formal polynomial over 

the Boolean semiring B (J0,11 with the two operations or, and). 

Formal polynomials over B are essentially finite sets of integer 

valued vectors with addition being union and multiplication 

being componentwise addition. Computations in this semiring 

are combinatorial in character, and in section 5.4 a combinatorial 

method is developed which yields lower bounds on the number of 

multiplications needed to compute certain polynomials. This is 

achieved essentially by abstracting from the computational task 

considered a suitable combinatorial optimisation problem. In 

section 5.5, the technique is applied to several specific 

polynomials and precise lower bounds obtained on the number of 

multiplications required to compute them. A discussion of the 

results follows in section 5.6. 

5.2 	Semirings, Polynomials and Computations 

Although the algebraic terminology we shall be using is 

fairly standard, we begin this section with a brief review. 
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A * semiring is a system (S, ED , (9, 0, 1), where S is a set, 

(addition) and ® (multiplication) are binary operations on S, 

and 0 and 1 are elements of S having the following properties: 

(S, ED , 0) is a commutative monoid, that is e is 

associative and commutative and 0 is an identity. 

(S, ®, 1) is a co mmutative monoid. 

® distributes over 9 , that is a(& : (b ED C) =(a (9 b) 9 (a ® C). 

a(9:O = 0 .. 

The semirings we shall be using are the following: 

The Boolean semiring B= ({O,1 
}, 
v,, 0,1) (v being Boolean 

disjunction, A being conjunction). 

The semiring R(R++.01) of non-negative real numbers 

with the usual addition and multiplication. 

* 	 * 
(iii) The semiring M= (R ,min,+,+,0), where IR =RU{+a.}, min is 

the binary minimum operator and + is the usual addition. 

+  
(iv) The semiring M =(R

~ * 	
which is the subsemiring 

of M obtained by restricting the domain to non-negative 

real numbers. 

Let S be a semiring and x = {x11 ... ,x.} be a finite set of 

indeterminates. 	Denote by S[X] the semiring of (formal) polynomials 

obtained from S by adjunction of the indeterminates x 1 ,... ,x. 

n Each monomial m=x1 	- 	 is uniquely determined by the vector of 

exponents (i 11 ... 1 i) 1  so that we can identify monomials with 

elements of Nn . Each polynomial pcS[X] may uniquely be written 

in the form 

	

3. 	 1 
n 

	

a i  ... i X1 	••Xn 	 (5.1) 

n 	

n 
 )F_ N 	1 	n 1  

where only finitely many coefficients a. 	are different from 
1"1n 



zero, so we may identify formal polynomials with functions from 

to S with finite support. Thus if pcS[X], mEN ' , then p will 

denote the value of the coefficient of p with index vector m and 

2.1 may be rewritten as 

p= On Pmm' 
mcN  

(5.2) 

S is imbedded in S[X1 by identifying each element scS with the 

constant polynomial sx •.. x0  . 	(For a more elaborate treatment 

see for example [29], 67.) 

Some terminology concerning the polynomial semiring is now 

introduced. We assume henceforth that p is a polynomial given by 

equation 5.2 and that m=(i 1 ,... ,i) is a monomial. 	Define the 

monomial set of p by 

mon(p)={mT"pO}, 

the degree of in by 

deg (m) = 

and the degree of p by 

deg(p)=max{deg(m) lmcmon(p) }. 

The polynomial p is said to be homogeneous if all its monomials 

have the same degree; m is linear if C{O,l}nl and p is linear 

if all its monomials are linear. 

Note that the formal polynomials 'so far introduced are purely 

syntactic objects. We can however define a natural mapping ' 

which assigns to each formal polynomial a functional interpretation. 

If pES[X] is a formal polynomial then the associated polynomial 

f unction p:S' 'S is the function whose v ilue at (a11... ian)  is 

obtained by substituting a i for x 1  in p. The map vis a 

homomorphism from S[x] to the semiring of functions [S'-S] with 
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pointwise addition and multiplication. We denote by P(S) the 

image of S[x] under v, that is the subsemiring of polynomial 

functions. The map v need not be injective as two different 

polynomials, e.g. x and x 2  in B[XJ, can represent the same function. 

The model of computation and its associated complexity measures 

will now be introduced. (Certain terminology from graph theory 

will be employed, which can be referenced in chapter 3.) 	Let S 

be a serniring. A computation r in S with input set IC S is a 

labelled, directed acyclic graph (d.a.g.) with the following 

properties: 

Ci) Vertices of 1' with indegree 0, termed input vertices, 

are labelled by elements of I. 

The vertices of r which are not input vertices all have 

indegree 2 and are labelled either by e or ® 

There is a unique vertex, p, of I', of outdegree 0, 

termed the result vertex. 

Let V be the vertex set of r and let V, V®  respectively be 

the e and 0 labelled elements of V. 	If ccv and there is an 

edge in I' directed from cto , then ais a predecessor of , and 

a successor of a. 	The ancestor relation is the transitive 

closure of the predecessor relation; the descendant relation is 

the transitive closure of the successor relation. 

A result function, res: V+ 5, is defined recursively on the 

vertices ofrin the following manner: 

If ais an input vertex labelled by iE:I then res(a)=i. 

If acv with predecessors 	then res(c)=res()res(y).. 

If acV®  with predecessors ,-ythen res(a)=res()®res(y). 
that 

Note that the condition1ris acyclic ensures that res is well- 

defined. 	We say that rcomputes s if res(P).=s, where p is the result 

vertex of r. 



The ®(e) -complexity of r is simply the cardinality of 

V®  (v).. 	The ®(e)-complexity of scS with respect to IcS is the 

minimum ®(e)-complexity of a computation with input set r computing 

S. 	Of particular interest to us will be computations of polynomials 

in S[X], and polynomial functions in P(S). 	For computations 

in S[X] the input set will always be assumed to be SuX and for 

computations in P(S) it will accordingly consist of the constant 

functions and projection functions. 	Thus the (We)-complexity of 

a formal polynomial or polynomial function will be understood 

to mean the O(ED) -complexity with respect to these input sets. 

Whenever an algebraic structure is a homomdrphic image of another,, 

computations in the first structure are related to computations 

in the second, and so complexity results for the second structure 

translate into results for the first. 	Indeed we have: 

Lemma 5.1 Let S,S' be semirings, t:S+S' be a homomorphism. 

Let 1' compute: seS with input set IC S. Let r be obtained from 

'r by relabelling each input vertex with label iI by T(i)'. Then 

r' is a computation in S' with input set T(I); for each vertex a 

of 1', if r=res(a), then T(r) is the result of a in rt. 	In 

particular r' computes T(s). 

Proof Easy induction on V 	 El 	 - 

and in consequence: 

Corollary 5.2: Let S,S' semirings, t:S--S' be a homomorphism. 

The ®(e)-complexity of scS with respect to ICS is no 

smaller than the ()-complexity of --r(s) with respect 

to -r(I). 

If 'r:is surjective, then the ((B)-complexity of s'cS' 

with respect to ICS' is equal to the minimum ®(e)-complexity 

- 	of an element sct ' (s') with respect to -r 1 (I). 

Proof Immediate from lemma 5.1 	0 
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As an important application of cor. 5.2 we have: 

Corollory 5.3: 	The(9(9)-complexity of a polynomial function is 

equal to the minimum ®()-complexity of a polynomial representing it. 

Proof: Take t in cor. 5.2 to be the canonical homomorphism v from 

polynomials to polynomial functions. 	0 
The foregoing observation is especially useful in semirings 

where each polynomial function is represented by a unique polynomial; 

the semiring R is such a case. 	For such semirings the O(ED)-complexity 

of a polynomial and of the function it represents are equal. This 

is not true in general for the semirings M,M+  where there is no unique 

representation of polynomial functions. The next section of the 

chapter will deal with this problem. 

Our complexity results will be derived in the first instance for 

polynomials in B[X). 	These results can be extended using cor. 5.2 

to any other polynomial semiring SEXI, provided that we can exhibit 

a homomorphism from S [XI to B [XI mapping S U X into B U X. But any 

homomorphism T:S-'B extends naturally to a homomorphism which maps 

S into B and x. Onto itself. 	For all three semirings R,M,M such a 

homomorphism exists, and is given by 

0B if a=O 5  

(5.3) 

'B 	
a%O5 

(O is 0 in R and + co in M,M). 

Two points are perhaps worth making é this juncture. Firstly, 

t:maps polynomials with 0-1 coefficients into formally identical 

polynomials, and thus, any lower bound obtained for the 

®(e)-complexity of a polynomial pcB[X] yields immediate lower 

bounds on the ®(e)-complexity of the formally identical polynomials 

in R[X], M[X] and M+[X]. 	Secondly, it is at this point that the 

method presented here for obtaining lower bounds would formally 
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break down were we to attempt to apply it to general arithmetic 

computations (with negative constants). 	For in the general case, 

taking S to be the semiring ( tR,+,,O,.1), the map t defined by 

equation 5.3 would no longer be a homomorphism (r(1s)+r(_1s)=1B, 

T(Os)=OB). 	That 5.3 defines a homomorphism is a characterisation 

of the semirings to which the lower bounds obtained in section 5,5 

apply; we might term such semirings monotone. 

As has been remarked, in the case of M[X] and M[X] the 

canonical homomorphism, v, from formal polynomials to polynomial 

functions, is not an isomorphism. The next section - which is 

self contained and can be omitted - establishes the machinery 

required to deal with this problem. 

5.3 	Envelopes and Computations in min,+. 

As will be seen, the methods presented in the following 

section for obtaining lower bounds are applicable only to 

homogeneous polynomials. 	It is possible, however, to extract, 

from any polynomial, homogeneous components which are simpler to 

compute than the polynomial itself. By arguing about these 

components it is therefore possible to obtain lower bounds on the 

complexity of non-homogeneous polynomials. 

Let p€S[X] be given by equation 5.2, and let k=min{deg(m)mcmon(p)}. 

The lower envelope of p is given by 

le(p)= 	 p M. 
deg(m)=k m 

Similarly, if K=max{deg(m) mcmon(p) }, then the higher envelope of 

p is given by 

he(p)= 	 M. 
deg )=K m  

Informally, le(p) (he(.p)) is obtained from p by preserving only 

the terms of minimal (maximal) degree. Assuming we restrict our 
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attention to seniirings for which the map t, ; defined by equation 

5.3, is indeed a homomorphism, the following properties of lower 

envelopes can be deduced (p 1 1p2 cS[x]): 

If deg(le(p 1 ))=deg(le(p 2 )) then 

le(p 1 e 	 le (p2)' 

If deg(le(p 1 ))<deg(le(p 2 )) then le(p 1 (D p 2 )=le(p 1 ). 

le(p 1 (&p2 )=le(p 1 )®le(p2 ). 

Similar relations hold for the higher envelope. The complexity 

of a polynomial and that of its higher and lower envelopes are 

related as follows: 

Lemma 5.4 The ®(e)-complexity of p is no smaller than the 

®() -complexity of le (p) (he(p)). 

Proof From the properties of lower and higher envelopes listed 

above, it is clear that any computation for pcS[X} may be 

restructured, by appropriately discarding some of its additions, 

into a computation of le(p) (he(p)). 	The additions to be discarded 

are those whose summands have lower (higher) envelopes of unequal 

degrees. 	 0 
Let us now turn to the semirings M and M+. We shall 

investigate how the structure of a polynomial is determined by the 

function it represents. 	We assume that pcM[X] (pcM+[x]) is given 

-314 

cm. 
1 1 

where c.;r+ , m.cN. 	The function f represented by p is 

f(u)=f(u
1 , ... ,u)-mjn(<m.u>+c), 

1ik 	1• 

where <u-v> denotes the scalar product of u and v. We shall 

obtain a characterisation of the class of polynomials which represent 

a given function f; this characterisation rests on the basic 



separation theorem in convexity theory, due to Farkas, whose 

statement follows. 

Theorem 5.5 	Let a,a.cff, b,b.cR for i=1,...,k. 	The following 

two assertions are equivalent: 

The system.of inequalities 

<a..U>b. 	i=1,...,k 
1 	 1 

implies the inequality 

<au> b. 

•fXk such that 

A. 	O 
1 

a=Z A.a. 

7X, b. 

Proof- See [9],  theorem 4. 	0 
The following theorem, informally stated, tells us that any 

polynomial representing a given function is composed of a fixed 

set Of "essential terms" together with a (possibly empty) set of 

"redundant terms"; the set of possible redundant terms has an 

elegant characterisation. 

Theorem 5.6 Let fcP(M) be a polynomial function over M. There 

exists a unique set of terms T={c.mj1it}. such that if p 

represents f in M[X] then 

Each term of T occurs in p; 

If cm is a term of p then there exist 

such that: 

X.O,  
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Proof 	Associate with f the setGr(f)c R 	which is bounded 

above by the graph of f. 

Gr(f) 	(U 11 . .. ,u ,v) Ivf (u 11 ... ,u ) } 

={(u,v)Iv(<m..u>+c,) for  

Gr(f) is the intersection of k closed halfspaces corresponding to 

the k terms of p, and has non-empty interior (unless p=co). 

There is a unique minimal family of halfspaces whose intersection 

yields Gr(f), each halfspace being bounded by a hyperplane which 

contains one of the n-dimensional faces of the n+1 dimensional 

polyhedron Gr(f). It follows that there is a unique set T of 

terms of p which appear in any polynomial representing f. This 

deals with part (i) of the theorem - the characterisation of the 

remaining terms of p follows almost immediately from theorem 5.5. 

For if cm is a redundant term of p then: 

mm 
(<in •u>+c.) 

1it 

which is equivalent to the assertion that in R n+1 the system of 

inequalities 

<m..U>+c. u 
1 	1 	n+1 

implies the inequality 

<mu>+c u 
n+1 

where u 1 R is an independent variable. Denoting the vector 

(U
1 
 ,. 

.., n n+1 
u ,u ) by u, the assertion may be rewritten as 

<(m 1 _l).u*>_c,  

implies 

<(m,-1) u> 

which by theorem 5.5.is equivalent to the existence of 

.,X t with the properties 

A ~n 	•_i , 	iL,. . • 
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(m,-1)= 	X.(m.,-1) 

-c 

The result follows immediately. 	0 

The characterisation of redundant terms supplied by theorem 

5.6 yields a unique representation theorem for certain classes of 

functions. 

Theorem 5.7 Let p,qM[x] represent the same function. Then 

(1) If p is linear then p=q. 

(ii) If le(p) (he(p)) is linear then le(p)=le(q) 

(he (p) =he (q) ) . 

Proof 

Let T={c.m.} be the set of essential terms occurring 

both in p and q. We claim that no other term occurs in 

p or q. 	Indeed, let cm be a term of. p (or q). Then, 

by theorem 5.6, m= 	X,m. with X.O, Zx.=i. 	However, 

the m. are 0-1 valued vectors and no non-trivial convex 
1 

combination of them can yield an integer valued vector 

(the interior of the unit cube does not contain lattice 

points). Thus the monomial m occurs in T and so cmCT. 

Let k=min deg(m). 	We claim that the terms of le(p) 
1 	 1 

(le(q)) are precisely the minimal degree terms of T. 

If deg(m.)=k then cm. occurs in le(p) and le(q). On 

the other hand, let cm be a term of le(p) (or le(q)). 

Then deg(m)=k and, by th. 5.6, m= ZX.m. with XO, 

X.=1. 	But deg(m)= TX .deg(m.) min deg (m.)=k, and 

equality can occur only if X=O whenever deg(m)>k. 

Thus m is a convex combination of the minimum degree 

monomials in T, and, by the same argument used in (i), 

it follows that cmcT. The proof for higher envelopes 

is similar. 	 0 
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The relevance of the unique representation theorem is that it 

allows us to relate the complexities of polynomial functions and 

formal polynomials representing them. 

Corollary 5.8 Let pM[X] represent the function fcP(m). Then: 

(i) If p is linear, then the OM-complexity of f is equal 

to the (WED) -complexity of p. 

(ii). If le (p) (he (p)) is linear, then the ®(e)-complexity of 

f is no smaller than the (e)-complexity of le (p) (he (p)). 

Proof Use cor. 5.3, th. 5.4 and th. 5.7. 	0 
When the domain of computation is restricted to non-negative 

numbers, there is greater freedom in choosing representations for 

functions, as the following analogue of th. 5.6 suggests. 

Theorem 5.9 Let ftP (M+)  be a polynomial function over M. There 

exists a unique set of terms T={c.m .j1it} such that if p represents 

f in M+[X]  then: 

Each term of T occurs in p. 

If cm is a term of p then there exist 

such that 

X.O 	i1,.,.,t; 

z 
M 

11 

x:c. 

Proof The construction of the set of redundant terms T is 

identical to that of theorem 5.6. 	For part (ii) of the theorem, 

suppose that cm is a redundant term of p. Then 

nmm 
.) VuCR , uO > <m.u>+c 1it ¼<m .u>+c 

 

which is equivalent to the assertion that in R n+1  the set of 

inequalities 

u.O, j=1,...,n 

<in. u>+c u 	,  
1 	1 n#1 
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implies the inequality 

<m u>+cu 
n+1 

where u+1c  R is an independent variable. Denoting the vector 

(U1 ,...,U,u 1 ) by u and the j 	 unit vector by e., the 

assertion may be rewritten as 

<e..u*>O, j=1,. .. 

implies 

<(rn,-1) .u*> ~ _c 

which by theorem 5.5 is equivalent to the existence of 

X
1 
 ,... ,X n+t wi th  the properties 

A.0, i=1,..,. ,n+t 

(m,-1)= Y xe 
+ 	

(m-1) 

-05 X 	(-c). n+1 	1 
i=1 

The result follows immediately. 	0 
The unique representation theorem for M is rather weaker than 

the corresponding one (th. 5.7) for M. 

Theorem 5.10 Let p,qE:M+[x] represent the same function. Then 

If le(p) is linear, then le(p)=le(q) 

If p is linear and homogeneous, then p=le(q). 

Proof 

The argument in proving th. 5.7 carries over if we 

replace the appeal in the proof to th. 5.6 by one to 

th. 5.9. (There is no analogous argument for higher 

envelopes. 

If p is homogeneous, then p=le(p) and (ii) follows from 

(i). 	 0 
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Corollory 5.11 	Let peM[X] represent the function ftP (M+).  Then 

If le(p) is linear, then the O(ED)-complexity of f is 

no smaller than the ()-complexity of le(p). 

If p is linear and homogeneous, then the ®(e)-complexity 

of f is equal to the O(ED)-complexity of p. 

Proof Use cor. 5.3, th. 5.4 and th. 5.10. 	0 

5.4 A Combinatorial Lower Bound Argument 

In this section, we restrict our attentionto computations in 

B[X], the semiring of formal polynomials over the Boolean semiring 

B. The results obtained here extend to other semirings by the 

considerations introduced in sections 5.2, 5.3. 	Throughout the 

following, r will denote an arbitrary computation in B[X] with 

result vertex p and res(p)=pcB[X]. Vei V0  ,E will respectively 

denote the set of ED-labelled vertices, ®-labelled vertices and 

edges, of r. 

Let us now extend some of our earlier notation. 	If ct is in 

the vertex set V of r then mon(a) is the monomial set of res(c) 

and deg(c) is the degree of res(c). pred(c&) will denote the set 

of predecessors of c. r is said to be linear (homogeneous) if 

res(cL) is a linear (homogeneous) polynomial for all ceV. 	We now 

show that when obtaining lower bounds on the 0-complexity of 

computing a certain linear (homogeneous) polynomial, we can as well 

restrict ourselves to computations which are themselves linear 

(homogeneous) 

Lemma 5.12 Suppose that pEB[X1,F computes p and that r is 

optimal in the sense that no r' computing p has fewer ®-vertices. 

Then 

r is linear if and only if p is. 

r is homogeneous if and only if p is. 
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(iii) If a, are in the vertex set V of r, is a descendant 

of a and mcmon(a) then mon(s) contains a monomial of the 

form mm'. 

Proof 

(i) The only if part is immediate from the definition of 

linearity. For the other implication, suppose to the 

contrary that p is linear and that acV with res(a) not 

linear. The conditions thatr is acyclic and that p is 

the unique vertex of outdegree 0 in r imply that there 

is a directed path a=a01 a 11  ... ,a.=p fromato p  in r. 

Consider two adjacent vertices a,a. 1  in the path with 

the property that a.+1  is linear but a. not. 	It must 

be the case that a 1+1 is a 0-vertex, and that its 

predecessor a.distinct from a. has res()=0. 	But then 

res(a.+1)=O and a. 1  could be replaced by an input vertex 

labelled by 0. The amended computation would have one 

fewer 0-vertex, contradicting the optimality of r.. 

(il) 
Analogous to (i). 

(iii) 	 0 

As the polynomials for which we will be obtaining lower bounds 

are both linear and homogeneous,parts (i) and (ii) of the previous 

lemma assure us that we may safely confine attention to computations 

which are both linear and homogeneous, and we assume henceforth 

that r has these properties. 	Part (iii) of the lemma captures 

the property of computation in B[X1 which makes it amenable to 

treatment in the style of [34] or of the present chapter. Stated 

informally, once a monomial has been created, it must find its way 

into the final result; this "conservation of monomials" ensures 

that no "invalid" monomials are formed, and severely limits the rate 

at which monomials may be accumulated in the computation. Let us 
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now introduce some definitions which help make precise this idea. 

If acV, then the complement of a is the set 

complement(a)=(m=x 1 1x2 2 . . .x 	lVm'cmon(a) ,'cmon(p)} 

and the content of a is the set 

content(a)={mm'jmEcomplement(a) ,m'cmon(a)}. 

We remark that content(a) cmon(p). 

The fundamental construction on which our argument rests is 

that of the parse tree of a monomial, which is now described. If 

acV and mcmon(a), m;,^-1 (the unit monomial), then the parse tree of 

m rooted at a is denoted by PT(a,m) and is a recursively defined 

subtree of r. 	We will, in fact, define PT(a,m) by specifying its 

edge set E(a,m); the vertex set of PT(a,m) then contains those 

vertices in V which are endpoints of edges in E(cL,xn). 	The 

recursive definition of E(ct,m) is as follows: 

a is an input vertex: 	Define E(a,m) to be 0. 

a c V 	 Let pred(a)={,y}. 

Since mErnon(a) we may deduce that either mmon() or 

mcmon(y) (or both). 	Without loss of generality we may 

suppose the former. 	Define E(a,m) in that case to be 

E(,m)U { (,a) }. 	Note that although some, freedom may 

exist in choosing between and y the definition may be 

made good by providing an ordering on the predecessors of a. 

ac V®  : 	 Again let pred(a)={, -r}. 	Since 

mcmon(a) there must exist m 1 emon(), m2Emon(y) such that 

M=M 1m2 . 	We may suppose that m 1  is not equal to 1, the 

unit monomial, for if it were the homogeneity of r would 

imply res()=1 and hence res(a)=res(y). 	A smaller 

computation for p could then be obtained by removing 

the vertex c from r and restructuring. By a similar 

argument we may suppose m 2 ;;^-1. 	Define E(ct,m) to be 
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E(,m1 ) uE(y,m2 )U{(,.ct),(y,a)}. (Again m and m 2  may not 

be uniquely defined, but we may provide a rule for 

choosing such a pair.) 	The diagrams 5.1 and 5.2 are 

added as an aid to visualising the construct. 

That PT(c,m) is well defined is a consequence of r being 

acyclic, it only remains to check that it is indeed a tree. But 

if PT(a,m) is not a tree then it must contain two distinct 

directed paths from some vertex to a . Now if mcmon(8), three 

applications of lemma 5.12 (iii) yield that mon(ct) contains a 

monomial of the form m2m', which violates the linearity of r. 

The parse tree of a monomial is intended to be an intuitively 

appealing construct; essentiàllyit. is a family tree which charts 

the generation of that monomial within the computation. Those 

familiar with the work of Ehrenfeucht and Zeiger [7] will note 

the similarity with the "parse function" which is defined there on 

elements of regular sets. An important property of parse trees 

is the following: 

Theorem 5.13 Let m be an element of mon(p). 	If a is in the 

vertex set of PT(p,m) then mccontent(a). 

Proof Following the recursive construction of PT(p,m), let 

mcmon(ct) be the monomial whose parse tree PT(a,m) is precisely 

the subtree of PT(p,m) rooted at a. 	We are done if we can show 

that for each a in the vertex set of PT(p,m) there exists a 

monomial m' such that 
a 

mm' =m 	 (5.4) 

mc n c ;on (p) 	Vncmon(a). 	 (5.5) 

For if 5.4, 5.5 are satisfied, m' complement (ct) imacmon(a) and 

hence m=m m' c content (a). 	The existence of m' satisfying a 

equations 5.4, 5.5 is established by induction on the vertices of 

PT(p,m) 
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M 	The hypothesis is true for the root, p. 	Take in' =1, 

then 5.4, 5.5 are trivally satisfied. 

Assume true for ED-vertex a.. Let be the predecessor 

of a in PT(p,m) and let in' satisfy 5.4, 5.5. 	To see 

that the hypothesis holds for , note that, by 

construction, m= m and that 5.4 may be satisfied by 

taking m=m! ... Also, since 

{m18nlncmon(8) }c{m nlncmon(a)} 

={m'n I nemon(a)} 
cmon(p), 

5.5 is satisfied. 

Assume true for 0-vertex a. 	Let pred(a)={8,y},  and 

let in' satisfy 5.4, 5.5. 	We show that the hypothesis 
CL 

holds for 8 (and by symmetry for y). 	Set in =m'm 

and observe that, since m in' =m in' m =m in' =m, 
88 	8a y a  

equation 5.4 is satisfied. 	Additionally: 

(mnIncmon(8)}={m' mnlncmon(8) } 

c{m
a' nlnEmofl(a)} 

c mon (p) 

which verifies 5.5 for $•. 	 Q 
Theorem 5.13 suggests a method for obtaining lower bounds. 

r contains Imon(p)j parse-trees corresponding to the distinct 

monomials of p. 	Distinct parse-trees may share vertices of F, 

but the amount of sharing that takes place is limited by the 

previous theorem. 	In order to make this qualitative argument 

precise we introduce a weight function for parse-trees. 

Suppose T is a parse tree in F. Define the weight of T, 

w(T) by 

w(T) = T I content  (a) I_i 
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with summation being over all 8-vertices in T. 

Theorem 5.14 	Y 	w(PT(p.,m))V I 
mcmon(p) 

.(= 8-complexity of 1'). 

Proof Denote by U(m) the set of 8-vertices of PT(p,m). Then: 

	

w(PT(p,m)) = 	 content(c)I' 
Incmon(p) 	 mcmon(p) cU(m) 

= Z 
aevo  

	

: 	{mImccontent(ct)}I. content(cL) 
aevo  

(by theorem 5.13) 

=Iv I 	D 8 

Now suppose that for a specified linear, homogeneous 

polynomial p we have some bound on the content of vertices in 

the computation. Specifically, we assume the existence of a 

function c(,) of two integer variables which satisfies 

We use c to construct a lower bound on w(PT(a,m)) which depends 

only on the degree of c. 

Theorem 5.15 If the function w*(.) of one integer variable 

is defined by 

W* (1) =0 
	

(5.6) 

• 	mm 
w* ( 1 )= l<<k{w* (j)+w* (k)+1/c(j,k)} (i2) 	 (5.7) 

j+k=i 

then w(PT(c,m))w*(deg(a)) for all c&V, mcmon(c). 	In particular 

w (PT (p,m))w* (deg (p)). 

Proof Since r is acyclic we may perform a topological sort 

([1]p.70) of the vertices V of r, that is to say order the 

vertices in such a way that each edge of r is directed from a 

vertex lower in the order to one higher. We proceed by induction 

on this order. 	The hypothesis is clearly true when deg(a)=O 

and the induction step trivial if aeV 	Assume, therefore, 
ED 
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that ccV®,  pred()={8,y} and let i=deg(ct). 	Then 

w(PT(,m))=w(PT(,m)).+W (PT (y,m . 	 & ))+ICOflteflt(  

~ *(deg ()) +w*(deg ( y))±1/c (deg (),deg( y)) 

(by inductive hypothesis) 

mm {w*(j)+w*(k)+1/c(j,k) 
} 

j+k= i 

__w*(i) 	0 

It may be remarked that the theorem remains true if the 

equalities of 5.6, 5.7 are replaced by inequalities (). This 

observation can be useful if an exact solution to the original 

equations is hard to obtain. 

Corollary 5.16 For linear, homogeneous pcB[X] 

Imon(p) .w*(deg(p) ) 0-complexity of p 

Proof Take r in theorem 5.14 to be a computation for p which 

minimises IV® J, obtaining 

w(PT(p,m)) 0-complexity of p. 
mcmon(p) 

Applying theorem 5.15 we obtain 

w*(deg(p)) 0-complexity of p 	 0 
mcmon (p) 

In the next section we compute content bounds for specific 

polynomials and derive the corresponding weight bounds. We 

show that for several polynomials the lower bound implied by 

corollary 5.16 is tight. 	In order to help solve the recurrences 

5.6, 5.7 for practical examples we introduce a final lemma. 

Lemma 5.17 	If for all integers j,k satisfying 1jk-2, 

4j+kn, the inequality 

1/c(j+1,k-1)+1/c(1,j)-1/c(j,k)-1/c(1,k-1)0 

holds, the solution to the recurrences 5.6, 5.7 is 

i-i 
w* U) 	5 1/c(1,i') 	(2in) 

i' =1 
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Proof 	by induction on i. Trivially true for i=2,3, otherwise 

mm 	
j-i 	 k-i 

w*(i)=1jk 	1/c(1,j')+ 	i/c(i,k') 	.i-j/c(j,k) 

	

j+k=i I j'=i 	 k'=i 

= mm 	g(j) 
iji/2 

regarding j as an independent variable and k as dependent. We 

observe that g is a monotonically increasing function in its 

range 1j 	./2j  since g(j+i)-g(j)=i/c(i ,j)-i/c(i ,k-1)+1/c(j+1,k-1) 

-1/c(j ,k) 

O by stated condition. 

Thus w*(i)=g(i) 

i-1 

D 

5.5 The Complexity of Specific Polynomials 

(i) Iterated matrix multiplication 

Suppose X 	X 	X 	are dXd matrices; 
13 

(1i,jn). 	We are interested in the number of multiplications 

required to compute the product 

(XW ... X). 	® 
i==d 112 1213 1314 

We note that any computation for the above can be transformed 

into a computation for the related polynomial 

(1) 	(2) 	(n) 	(n+1) 
P= 	x ..........x. 	x. 

	

11 11 	 11 	1 1 
l_lk_Q 	1 2

.
2 3 	n n+i n+i 1 

by the addition of at most d2  -vertices. The number of 

multiplications necessary for matrix multiplication is thus no 

smaller than ( 0-complexity of p)-d 2 . 

The first step in establishing a bound on the complexity of 

p is to compute a suitable content bound c(,). 	Suppose q is 

a polynomial with indeterminates of the form x. Define the 
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index set I to be the set of superscripts of indeterminates 

occurring in q:. 	Now consider polynomials, a,b,c, of degrees 

r(1),s(1),n-r-s+1, with the property that mon(abc)çmon(p). By 

considering the form of monomials of p we see immediately that 

-t 
I ,I ,I are disjoint and, moreover, Ii I=rjIb I=s,III=nrs+i. 

	

a b c 	 a . 

Hence {± "b'1c } is a partition of {i,2,. ..,n+1}. 	Define the 

set A of articulations to be 

A={kj (2kn+1, k and k-i are in distinct index sets) 

v(k=1, 1 and n+i are in distinct index sets)}. 

Next consider a general element of mon(abc) 

	

(1) 	(2) 	(ni-i) 
x. 	x. 

	

11 	11 	 1 	1 
i2 	23 	n+ii 

Observe that if k is an articulation (keA) then the subscript 'k 

is necessarily fixed by the condition mon(abc) ç mon(p); otherwise 

is free to assume any of the d possible values 1,....,d. Hence 

mon(abc) In A +1 

If r+s<n+i then I IbI;='Ø  which implies IA1243; if r+s=n+1 then 

Ia 1Ib ;døI=ø and jAI 2 . 	Consequently we take as our content bound 

c (r, s)=I  d12  (r+s<n+1) 

(r+s=n+i). 

The recurrence relations 5,6, 5,7 are easily solved in this 

case, where c(,) is essentially a constant. The condition of 

lemma 5.17 is trivially satisfied, from which we obtain 

n 
w*(n+1)= 	1/c(i,i) 

ii 

=(n-1) 	+d
2n) 	(i-n) 

Hence by cor. 5.16: 

®-complexity of p[(n_1)d(2+dUfu]Imon(p)I=(n_1)d3+d2 

and, by our initial observation, the number of multiplications 

required for matrix multiplication is (n-1)d 3 . (For the case 
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n=2, this result is implied by a stronger one, obtained by 

Paterson and others [17,25,27,], for the monotone Boolean matrix 

product.) 	The obvious algorithm, derived from the definition of 

matrix multiplication yields an upper bound 

illustrates that our bound is tight. Note 

and homogeneous the conditions of cor. 58, 

and the lower bound is valid for matrix mul 

+ 
R,M,M 

of (n-1)d3  and 

that since p is linear 

5.11 are satisfied 

iplication over 

(ii) Iterated wrapped convolution 

(1) 	(2) 	_(n) 	 _(k) 	(k) 
Suppose x 	,x 	...,x 	are d-vectors; x 	=X . (0id-1). 

The wrapped convolution of these vectors is the k-vector y whose 

components are given by 

yj= 	
(2) 

d) 	i 	2 	
in 

As before we' define the related polynomial 

- 	 (1) 	(2) 	(n) 	(n+1) 
j +...+i 	EO(inod d) 	 1 	1 

X 	X 	•..X. 	X. 

n 	n+1 
(n+1) 

where x 	is a d-vector, and remark that the number of 

multiplications required to compute y is at least (0-complexity 

of p)-d. 

Consider polynomials a,b,c of degrees r,s,n-r-s+1 with 

the property that mon(abc)cmon(p). As before define the index 

set 
'q 
 of a polynomial q to be the set of all superscripts 

occurring in the indeterminates which form q. Again, 'a"b'1c 

form a partition of {1,2,...,n+11. 	If we now consider a 

general monomial 

(1) 	(2) 	(n+1) 
m a mbmc 1 

=x. 	
1 

x. 	...x 1. 
1 	2 	n+1 

of mon(abc), we see from the definition of p that 
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+ T 1k + 	ik_O (mod d) 

kCI 
a 	

ke 
Ib

kcl 
C 

and, letting m range over mon(awhile holding mblm fixed,. we 

deduce that 	i is congruent to a constant, modulo d. Similar 

ke I a 

arguments apply to 'b"c and hence Imon(abc)j is bounded by the 

number of assignments which can be made to i 1 ,i 2 ,...,i
+1 
 which 

fix the three above sums. If r+s<n+1, then I a b 
,I ,I

c 
 are all 

non-empty and the number of assignments which can be made is 

n-2 n-i 
d 	; if r+s=n+1 then i=Ø and there are d 	possible assignments. 

Our content bound is thus 

c (r,$)=Id n-2 
=

d' 2  (r+s<n+1) 

dIll (r+s=n+1) 

Observing that this bound is identical to that derived in the 

previous example we can immediately write down 

and so by cor. 5.16 

c&-complexity 
	(1-n)

-complexity of p[(n-i)d 	+d 	1.Imon(p) I 

=(n-1)d2+d. 

The number of multiplications required to compute the wrapped 

convolution is thus at least (n-i)d2 . That this bound is tight 

may be seen by considering the algorithm derived from the 

definition. Again the bound is valid for R,M and M+. 

(iii) Permanent 

Suppose X is an nxn matrix of indeterminates x..(1i,jn). 

The permanent function on X is defined to be 

per (X)p 	® 	X11)  x 2,ir(2) 	n,ii(n) 
rcS(n) 

where S(n) is the set of all permutations of the first n natural 

numbers. 	In its arithmetic interpretation, the permanent was 
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introduced in chapter 2-and its importance as the generating 

function for perfect matchings in bipartite graphs discussed. 

It will be recalled that the permanent is algebraically complete; 

we should not expect therefore to be able to compute :the permanent 

using a number of arithmetic operations bounded by a polynomial 

in n, even if arbitrary constants are allowed.. We shall in 

fact show that in any monotone computation of the permanent 

(i.e. computation in R[X]) there..are an exponential number of 

multiplications. 

Re-interpreting the semiring operations, , as min,+, 

the significance of the permanent is that it computes the minimum 

weight of a perfect matching in a bipartite graph (the so-called 

"assignment problem"). In contrast to the arithmetic 

interpretation, the problem of finding a minimum weight matching 

in a bipartite graph is tractable and an 0(n 3 ) algorithm can be 

found in Lawler [16]. 

To study the complexity of monotone computation of the 

permanent we first determine a content bound, c(,). Suppose 

a,b and c are polynomials of degrees r,s and n-r-s respectively, 

with mon(abc)c mon(p). 	If q is a polynomial with indeterminates 

x. ., we denote by I 
q 	q 
and J the sets 

1.J  

I ={ilx. occurs in q} q 	13 

J =iIx. occurs in q}. 
q 	ij 

If we consider a general element of mon(abc) 

mam=x 	x 	...x a b c 	1,11(1) 2,7r(2) 	n,rr(n) 

we can see that the sets I 
a b c ,I ,I are disjoint and 

Ia r l Ibl =S1  II=n-r-s 

so that {iIIb,I}iis a partition of 1,2,...,n}. 	Since ir is a 
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permutation, the same argument yields that 	 is also a 

partition. 	Elements of rnon(abc.) correspond to permutations ir 

which observe the restrictions 

Tr (I )=J , Tr (.I )=J , Tr (I )=J a a 	b b 	C C 

The total number of such permutations is clearlyr!s!(n-r-s)! 

and so we may take as our content bound 

c(r,$)=r!s! (n-r-s)! 

We claim that this bound satisfies the condition of lemma 5.17. 

In order to show this we need the following easily verified lemma: 

Lemma 5.18 	If rO, s2 then (r 'S)ar(s+l) 
	0 

For the particular content bound we have just computed the 

condition of lemma 5.17 becomes 

Vr,s satisfying 1rs-2, 4r+sn: 

1/(r4-i) ! (s-i)! (n-r-s) 1+1/r! (n-r-1) !-1/r!s! (n-r-s) !-i/(s-i) I (n-s) !O 

By multiplying throughout by r! (s-i)! (n-r-s)! the following 

equivalent condition is obtained 

Vr,s satisfying 1rs-2, 4r+sn: 

(r+i)i+(n-r-s)
nr 	-1(n-s 

-i 

 n-r-sJ 

Finally 1  making the substitution t=r+s, we arrive at a final 

equivalent condition 

Vt,r satisfying 4tn, 22rt-2: 

i+() i_(r) 	O 	(5.8) 

In fact, it proves easier to show that f(t,r)O in the slightly 

extended range 4tn, 22rt-10 Our approach will be to show 

that f(t,r), with t fixed, is a monotonically decreasing function 

of r in the range 22rt-1. 	The problem is thus reduced to 

showing f(t,r) to be non-negative when r assumes its maximum value 

ice. 	t-1)/j. 
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For the monotonicity of f, consider the difference 

f(t,r-1)-f(t,r). 	From the definition of f we have 

1+(n-r)-l_ 	I 1 (n_t+r)_1 O 	(5.9) 

Forming differences of corresponding terms in equations 5.8, 5,9 

we obtain 

-1 n-r) 
e [1-(n-r)/(t-r)]+1/(t-r)(t-r+1) 

-1 

+(n-tn-t 
+r) • [1-(n-t+r)/r] 

n-r - 
 

n-t )-n-t)  -( =l/r(r+l)_(nt) (n-t) (t-r) 1 +1/(t-r)t -r+1) /nt+r 

(n-t
By lemma 5.18, the binomial coefficient

n-r
) is bounded below by 

/\ 
(n-t) (t-r+1) while the binomial coefficient( 

n-t+r  us bounded by 
\ nt / 

(n-t) (r+1). 	Replacing each coefficient by its bound the terms 

of. right hand side cancel in pairs, yielding 

i.e. that f is a monotonically decreasing function of its second 

argument. 

It only remains to show that f is non-negative when its 

second argument assumes its maximum value, i.e. that 

f(t, t-1)/j)O 	Vt,4tn. 

Considering the cases when t is respectively odd and even: 

f(t, (t-1)/2) 

1 + (n- + n-t-  

	

(n_t 
	

\ n-t 

Me 

and f(t,4t-1) 

=(t)1+n-4t 
	 -1 
-1 	

t-1 -1 

	

+(n-It ) 
	 -(

n-
n-t ) 

=4/t(t+2)+(n-tn_t\ 	[1-(n-4t)/t] 
t ) 

=4/t(t+2) 7 n-t\ 2 (n-t) t 1 . 
i.n-t ) 
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By-lemma 5.18, (: t) is bounded below by (n-t)(t+1), and hence 

f(t,5t-1)0. 

Invoking lemma 5.17, whose condition we now see to be 

satisfied we deduce 

n-i 
w*(n) 	i/(i-i)!(n-i)! 

i= 1 

= 

=(2 1 1)/( fl l)! 

By cor. 5.16 

0-complexity of pn! (2'1 -l)/(n-l)! 

=n(2 1 i) 

This lower bound is in fact achievable using a perinanental 

equivalent of Laplace's expansion rule for determinants. This 

is essentially a dynamic programming method: the permanents of all 

ixi submatrices contained in the first i rows of X (the 

"subpermanents" of the first i rows) are computed using the values 

obtained for the stthpermanents of the first i-i rows. 	Clearly 

we can obtain variants of this algorithm by permuting rows of X 

and transposing X; what is more interesting is that the optimal 

algorithm lacks uniqueness in a non-trivial way, this stemming 

from the observation that several "shapes" of parse tree all have 

optimum weight. More specifically, the value of 

w*(i)+w*(j)i1/c(i,j) 

is a constant for all non-negative integers i,j summing to n-i, 

which leads to the following family of optimal algorithms for 

1tn-2: 

(1) Evaluate all txt subpermanents of the first t rows 

using Laplace's expansion. 
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Evaluate the (n-t-1)X(n-t-1) subpermanents of the rows 

t+1,t+2,...,n-1 in the same way. 

Use the results of (1) and (2) to compute all 

(n-1)x(n-1) subpermanents of the first n-i rows. 

From (3) compute per(X) by Laplace's expansion. 

We remark that, once more, the lower bound is valid for R,M and M+o 

(iv) Hamiltonian circuit polynomial 

Suppose again that X is an nxn matrix of indeterminates 

x1 (iiin). 	The Hamiltonian circuit polynomial is 

HC P® X. j•) X2 	....X nx n ) 1, ii( 	2, Tr 	n,rr(n) C(n  

where C(n) is the set of all cyclic permutations of the first n 

natural numbers. 	Identifying each indeterminate x,. with the 

(i,j) edge of the complete graph K on the n vertices {1,2,... 

it will be seen that monomials of p correspond to Hamiltonian 

circuits in K. Over R the polynomial can be viewed as the 

generating function for Hamiltonian circuits in the complete graph, 

while the corresponding interpretation for M is that of finding 

the shortest circuit which visits all the vertices of a graph 

the so-called "Travelling Salesman Problem". 

In the usual way, we let a,b,c be polynomials of degrees 

r,s,n-r-s respectively with mon(a.bc) ç mon(p). 	Using the same 

reasoning as for the permanent, a,b and c define two partitions 

of (1,2,...,n1 namely 

{i a' 
b

i , c 
	a1 } aid (J , b c j ,j }. 

If we consider a general monomial of abc 

m m,m =x 	(1) X 2 	...x a 	c 	1 	,ir(2) 	n,ir(n) 

we have 

ir(I 
a 	 b 	b 
)=J , 7T (I )=J , Tr (I )=J a  c c 

- 112 - 



and so Imon(abc - -. 1 is bounded by the number of cyclic permutations 

ir which. satisfy these constraints. 	Suppose we fix mb,m i.e. fix 

ir on I 
b c U I ; we wish to know the number of possible choices of m 

a 

i.e. the number of ways of extending 71 to I. Define 

Tr* :I +1 
a a 

a iT*(  W)=IT ( i ) 

where a is the smallest positive number such that T(.i)I (such 

an a exists since 71 is cyclic). 	Note that 71 is completely 

determined by rr*  and the restriction of w to 
1b '  'c 	We 

observe that 7r  is a cyclic permutation, and hence the number 

of distinct permutations rr which agree on I U I is bounded by 

the number of cyclic permutations on r objects 

i.e. Imon(a) 1 (r-1)! 

similarly Imon(b) I(s-i)! 

and 	Im9n(c)1:5(rl-r-s-1)-! - 	(r+s<n) 

=1 	 (r+s=n) 

the second case case being the degenerate one where 1=0. 

Consequently we take as content bound 

	

(r-1) ! (s-i)! (n-r-s-i) ! 	(r+s<n) c(r,$)= 

I(r-I)!(s-1)! 	 (r-i-s=n) 

By an argument completely analogous to the case of the permanent, 

we can show that this bound satisfies the condition of lemma 5.17 

and hence 

n-2 
w*(n)=i/(n_2)!+ Z1/(i-i)!(n-j-2)! 

n-2 -3)/ 

i= 1 

=1/(n-2) !+ 1 (n 	(n-3)! 

=[(n-2)2 3 +1]/(n2)! 

By cor. 5.16r 
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0-complexity of p(n-1)! [(n-2)2 3' +1J/(n-2)! 

=(n-.1) 

Again this bound is valid for the semirings R,M and M, and 

is attainable. 

Denote by N the set containing the first n natural numbers 

i.e. N={1,2,..,n}. 	Let p 
i,S,j 

for i,jN, ScN-{i,j}.be the 

polynomial whose monomials correspond 1-1 with the simple paths 

in K which start at vertex i, terminate at vertex j and visit 

exactly those vertices in S. A dynamic programming approach may 

be used to compute p 1 	for all permissi.ble j,S; the relevant ,S,j 

relations are 

(jeN\1) 

i,S,j 	® p i,S\i,i x.. (jeN\1,S;90). 
iS 

Generating the set {p1 	.HsI=5} .0f polynomials from the set ,. 

1,S,jI SI=s-1} can be achieved using s(n_1)( 2)multiplications; 

by iterating this process we can compute p1 	
1 • 	

in 

(n_2 (n-i) 	) 

=(n-1) (n-2) Z (S-1) 

(n-3) 
=(n-1)(n-2)2 	multiplications. 

n.. 
Now HC = ®p. 	 x flxfl j=2 1,N{1,j},j ji 

which can be computed in 

(n-3) 
(n-1)(n-2)2 	+(n-i) multiplications. 

A polynomial closely allied to the Hamiltonian circuit 

polynomial is the generating function for simple. paths between 

two distinguished vertices of a complete graph. Define the 

simple paths polynomial to be 

Sp = 	
pi nxn ScN-{i,n} ,S,n 
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so that monomials correspond to simple paths from vertex 1 to 

vertex n in the complete graph K. We remark that 0-complexity 

of HC( 1)X( 
1) 0-complexity of p 1 N-'{l n} n  since a computation 

for the latter may be transformed into, one for the former by 

changing the inputs x. to x 1 . Hence the lower bound for 

HC 	implies a lower bound of (n-2) [(n-3)2 4 +1] multiplicationsnxn  

) for p 1,.N-{1,n,n 	However p 1,N-{1,n},n=he(SP 	and so, by nxn. 

theorem 5.4 and corollary 5.8, we obtain a lower bound of 

(n-2) [(n-3)2 4 +lJ multiplications for SPx  when working with 

the semirings R and M (but. not M+,  where a minimum length path 

between two vertices is necessarily simple - the significance of 

this observation will be discussed in the next section.) 

(v) Spanning tree polynomial 

Suppose X is an nxn matrix of indeterminates x.. (1i,jn). 

Define the spanning tree polynomial to be 

ST 	== 	® X2it(2)X3,t(3)00•X nxn 	 n,t(n) 
tET(n) 

where T(n)={t:{2,3,...,n}-{1,2,..,n}IVjk, tk(i)=,l}. 

The polynomial is the generating function of directed trees 

spanning K and rooted at vertex 1. The lower bouhd obtained 

for this polynomial is not claimed to be attainable; it is in any 

case difficult to envisage the form that an optimal monotone 

computation would take in this case. We therefore content 

ourselves with a crude bound on the content of a vertex, which 

is, however, good enough to yield an exponential lower bound on 

the 0-complexity of ST 
flX n 

Let a,b,c be polynomials of degrees r,s,n-r-s-1 satisfying 

mon(abc)c mon(p). 	In the usual way we define the index set 

of a polynomial q to be 
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I ={ix. is an indeterminate of q} 
q 	13 

and note that {i ,Ib,I}  is a partition of {2,3,...,n}. 

Let. X (2in) be defined by 

X.={x. x. is an indeterminate of a,b or c} 
1 	2j U 

ObvIousiyix.i is bounded by the number of distinct 

indeterminates which appear in ST, i.e. (n-U, but this 

trivial bound may be improved through the following observation. 

Suppose i CI and i CI ;then the indeterminates x. 	,x. ... cannot a a 	b b 	 11 i,i 
a.b 	a 

both appear inLJX., for if they did X. would appear in a,. .x 

would appear in b and the invalid monomial x. x. m would 
11,1 aD b1

a 
appear in mon(abc). . Thus a better restriction is 

fl_n 2  ZlX i 	_ lIl .lIbi_iIbl.iIl_iIHIi 

=(n-i) 2 -rs-s (n-r-s-i) - (n-r-s-1) r 

=(n-1) 2 -rs- (r+s) (n-r--i) 

(n-1) 2_  (r+s) (n-r-s-i). 

The number of monomials in mon(abc) is clearly bounded by the 

number of functions t, 

t:{2,3,... ,n}+{i,2,...,n} 

which respect x i,t(i)
1 

cx. for all i t  2in; this number is just 

Ii lxii. 	This product is maximised, subject to the constraint 

on the sum 	lxii, when lXi i is independent of i, thus: 
i=2 

mon(abc)l[I lxi 
i=2 

and a (crude) content bound is 

It is an elementary observation that any parse tree rooted at p 

must contain at least one 0-vertex, a, whose degree lies in the 
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range [.n/3,2n/3].. 	The content of this vertex ct is bounded by 

content (a) 	'max 	c(r,$) 
n/3r+s2n/3 

Now c(r,$) is dependent only on the sum (r-fs) and achieves its 

maximum in the stated range at r+s=2n/3. Hence 

Icontent(a)I[(n- l) -2n(n-3 )/9 (n-1 )] '  

=[(7n2-12n+9)/9(n-1)] (n-i) 

(7n/9) (n-i) 	(n2) 

The weight of any parse tree rooted at p is certainly bounded 

below by [content(a)1_1 and hence, by theorem 5.14 

0-complexity of p  mon(p) (9/7n) (n-i)  

The cardinality of mon(p) is precisely the number of directed 

spanning trees, rooted at 1, of the complete graph K. The 

number of such trees is n' 2  (see Moon (221), from which 

0 	
(n-2) 

-complexity of pn 	(9/7n) (n-i) 

=n1(9/7)' (n-i) 

Thus we obtain an ex 

is, for the problems 

trees of a graph, or 

minimum weight. 

5.6 	Discussion of 

In the previous 

onential bound valid for R,M, and M+,  that 

of counting the number of directed spanning 

of finding in a graph such a tree of 

Results 

section, lower bounds were obtained for 

the 0-complexity of a wide range of functions in different 

semirings. 	Some of the results, such as the exponential lower 

bound for the minimum spanning tree computation, stand in stark 

contrast to the known tractability of the problem, and raise 

questions as to the relevancy of the results to actual computations. 

The lower bounds can therefore be interpreted in two complementary 

ways: on the one hand they deny the existence, for many problems, 

of fast "combinatorial" algorithms which work independently of 
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the domain of computation, while on the other hand they affirm 

the power of algorithms which exploit the algebraic idiosyncracies 

of a specific problem. Let us use the results of the previous 

section to explore the efficiency which can be gained by using 

less restrictive models of computation. 

Our model of computation suffers from two weaknesses; the 

more obvious is the restriction on the allowed operations. In 

the arithmetic case, only computations not involving subtraction 

were considered. That such a restriction could entail an 

exponential penalty was already known; Valiant [42] treats the 

example of the generating function of perfect matchings in a 

planar graph. In the same vein, the results presented here 

indicate ran  exponential gap for the spanning tree polynomial. 

From example (v) of the previous section we learn that any 

monotone arithmetic computation for the spanning tree polynomial 

-1 	(n-i) 
requires at least n (9/7) 	multiplications, while in contrast, 

if negative constants are allowed, the same polynomial can be 

expressed as an nxn determinant whose elements are linear 

combinations of the indeterminates (see for example Moon [22]). 

The determinant may be evaluated via the method of Aho et al. 

[i], coupled with the matrix multiplication technique of 

52 
Schonhage, using Q(n 2. ) multiplications/divisions; an 

observation of Strassen [38] allows the divisions to be 

eliminated at the expense of increasing the number of 

52 
multiplications to O(n 3. ). 

Even for functions which have polynomial monotone complexity, 

subtraction is still helpful. 	From example (i) we have that, 

in the monotone case, multiplication of two nxn matrices requires 

at least n3  multiplications, whereas, allowing negative constants, 
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 2 52 
Schonhage's method [33] computes the product in (n 

multiplications, Similarly a gain can be achieved for the 

convolution of example (ii) using the fast Fourier transform 

method ([11 p.257). 	A very modest gain can be demonstrated for 

the permanent function of example (iii) : any monotone computation 

requires at least 
(2n11) 

 multiplications, however, using a 

modification of the inclusion-exclusion technique of Ryser ([231, 

p.158), the same computation can beeffected using subtraction in 

only (fl.1)2n1+3  multiplications. 	The interest in this case is 

that, although small, the complexity gap is 1the only one known for 

a 0-1 polynomial which is algebraically complete in the sense of 

chapter 2. 

All this evidence points to the value of complex algorithms 

which exploit the particular characteristics of the domain of 

computation, in this case the ability to form monomials which 

cancel out in subtle ways in the result. Of particular interest 

is the power of linear algebra to make tractable polynomials whose 

monotone complexity is exponential. 	In contrast, it is note- 

worthy that augmenting the allowed set of operations with division 

and performing computation over the rational functions is of 

limited value, as division can be simulated by truncated power 

series (Strassen [381). 

The second weakness of the model is less obvious, since it 

is not usually encountered in algebraic complexity. What is 

essentially a straight-line algorithm (s.l.a) model is used to 

measure the complexity of computation, neglecting the additional 

computational power that branching (test and branch instructions) 

can provide. 	It is well known (see for example Strassen [391) 

that branching cannot help in the computation of polynomials over 
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an infinite field, so that the model is adequate for R in this 

respect. The situation is however completely different in M or 

where branching can yield dramatically shorter computations. 

To return to the example of the spanning tree polynomial ((v) of 

the previous section), we learn that n- 1 (9/7) (n-i)  additions are 

necessary to compute the polynomial using a straight-line algorithm, 

whereas the same polynomial can be computed in 0 (n 2  log n) mm, + 

operations if branching is allowed ([16],p.348). 	As another 

demonstration of an exponential gain, we might consider the 

permanent, which over M+  is connected with the minimal assignment 

problem. In the min, + algebra, the computation of the permanent 

requires n(2'-1) additions, but with branching the same 

computation can be performed using only 0(n 3 ) operations ([161, 

p.205). Indeed, we can paraphrase Valiant [42] and assert that 

"branching can be exponentially powerful". 

A final lesson we may drawn is that the algebraic 

idiosyncrasies of different semirings can cause functions 

described by the same formal polynomial to have radically 

different complexities. 	In fact, only one consistent relation 

emerged from a study of the semirings considered here: it is 

always easier to compute a 0-1 polynomial over B than M,M+  or R. 

(Loosely speaking, checking the existence of a solution to a 

problem is always easier than finding an optimum solution or 

counting their number.) 	This gap can be exponential: the 

spanning tree polynomial ST has exponential complexity over 

M,M+ and R, but polynomial over B. Over B, ST W=1 iff the 

graph whose adjacency matrix is X has a directed spanning tree 

rooted at 1, that is to say if a directed path exists from each 

vertex to i. However the latter condition may be checked by 
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* 
computing the transitive closure X of X and-ing the elements 

* 
in the first column of X, a procedure which can be accomplished 

in 0(n3 ) operations ([11, p.199). 	Another interesting case is 

provided by the simple paths polynomial SP of example (iv). If 

x.. is the length of edge (i,j) in K, then SPnxn(X) represents, 

over M,M+, the length of a minimum simple path from vertex 1 to, 

vertex n. In M this is equal to the minimum length of a path 

from 1 to n and can be computed in 0(n 3 ) operations ([11, p.202). 

Over M, however, the polynomial has exponential complexity. The 

same exponential bound is valid, over R, for the problem of 

enumerating simple paths (where X is the adjacency matrix of the 

graph). 
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