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Abstract

Traditional information theory and communication theory assume that decoders are
noiseless and operate without transient or permanent faults. Decoders are also tradi-
tionally assumed to be unconstrained in physical resources like materiel, memory, and
energy. This thesis studies how constraining reliability and resources in the decoder
limits the performance of communication systems. Five communication problems
are investigated. Broadly speaking these are communication using decoders that are
wiring cost-limited, that are memory-limited, that are noisy, that fail catastrophically,
and that simultaneously harvest information and energy. For each of these problems,
fundamental trade-offs between communication system performance and reliability or
resource consumption are established.

For decoding repetition codes using consensus decoding circuits, the optimal trade-
off between decoding speed and quadratic wiring cost is defined and established.
Designing optimal circuits is shown to be NP-complete, but is carried out for small
circuit size. The natural relaxation to the integer circuit design problem is shown to
be a reverse convex program. Random circuit topologies are also investigated.

Uncoded transmission is investigated when a population of heterogeneous sources
must be categorized due to decoder memory constraints. Quantizers that are optimal
for mean Bayes risk error, a novel fidelity criterion, are designed. Human decision
making in segregated populations is also studied with this framework. The ratio
between the costs of false alarms and missed detections is also shown to fundamentally
affect the essential nature of discrimination.

The effect of noise on iterative message-passing decoders for low-density parity-
check (LDPC) codes is studied. Concentration of decoding performance around its
average is shown to hold. Density evolution equations for noisy decoders are derived.
Decoding thresholds degrade smoothly as decoder noise increases, and in certain
cases, arbitrarily small final error probability is achievable despite decoder noisiness.
Precise information storage capacity results for reliable memory systems constructed
from unreliable components are also provided.

Limits to communicating over systems that fail at random times are established.
Communication with arbitrarily small probability of error is not possible, but schemes
that optimize transmission volume communicated at fixed maximum message error
probabilities are determined. System state feedback is shown not to improve perfor-
mance.
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For optimal communication with decoders that simultaneously harvest informa-
tion and energy, a coding theorem that establishes the fundamental trade-off between
the rates at which energy and reliable information can be transmitted over a single
line is proven. The capacity-power function is computed for several channels; it is
non-increasing and concave.
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sions with Rüdiger Urbanke and Emre Telatar. The initial ideas for the problems
studied in Chapters 6 and 7 came to mind when sitting at a synthetic biology bench
with Team Biogurt and when taking an STS class with David Mindell, respectively.
Figure 7-2 was created with assistance from Justin Dauwels.

Although works stemming from collaborations with Julius Kusuma, Vinith Misra,
Mitya Chklovskii, Ha Nguyen, and Ram Srinivasan do not appear in this thesis, the
interactions have also greatly enhanced my research experience.

An important part of graduate school for me was talking to fellow students. Be-
sides those already mentioned, I would like to single out Adam Zelinski, John Sun,
Demba Ba, Ahmed Kirmani, DanWeller, Aniruddha Bhargava, and Joong Bum Rhim
in STIR; Mukul Agarwal, Peter Jones, Barış Nakiboğlu, Mesrob Ohannessian, and
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Chapter 1

Introduction

Communication, computation, and decision systems process information, yet are con-
strained by their physical manifestations. There are costs in constructing, maintain-
ing, operating, and disposing of physical systems. Moreover construction and op-
eration are subject to the vagaries of noise. The traditional approach to studying
information systems uses systems-theoretic concepts, distinguished by concern with
mathematical properties rather than physical attributes. Motivated by several practi-
cal physical considerations, this thesis reopens and reexamines some of the traditional
black boxes of systems-theoretic mathematical abstraction. Focus is placed on com-
munication under resource constraints and in the presence of noise, not only in the
channel but also elsewhere in the system.

The basic goal of communication is to transmit a message to a distant point
through a noisy channel so that it may be recovered with acceptable fidelity while
operating under resource constraints. The definition of fidelity depends on the desired
end-to-end utility that a communication system is to provide. Constraints are specific
to the physical resources that may be brought into use.

A communication system is said to solve a communication problem if it simulta-
neously meets fidelity and resource requirements when communicating a sufficiently
large message. Much of information theory delimits which problems are solvable and
which are not. Communication systems that operate at the edge of solvability are
said to be optimal; communication theory is concerned with designing systems that
are optimal or near-optimal. This thesis determines limits of solvability and finds op-
timal communication systems for several communication problems. In broad terms,
these problems (with appropriate fidelity criteria) are:

• communication under wiring cost-limited consensus decoding,

• communication for a population of sources under memory-limited decoding,

• communication under noisy message-passing decoding,

• communication with decoders that fail catastrophically at random times, and

• communication with decoders that harvest both information and energy.

A point-to-point communication system typically has five parts: an information
source, an encoder, a channel, a decoder, and an information destination, as depicted
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Figure 1-1. Schematic diagram of a general point-to-point communication system, following [1,
Figure 1].

in Figure 1-1. The channel is almost always thought to be noisy [1]. Physical proper-
ties of any of the five parts may govern whether a communication problem is solvable,
but as noted, this thesis deals with limits imposed by decoder complexity, reliability,
or energy.

The statistical problem of detection is to gain information from a mixture of the
wanted signal and the unwanted noise, whether or not the source message is encoded
with an error-control code. Modeling messages and signals as chance variables, denote
the source message W , encoded signal X, received signal Y , and received message
Ŵ . The decoder tries to compute something useful from the received realization
y. For example, the decoder may be tasked with producing a decoded signal x̂ to
minimize average symbol error probability with respect to X, or with producing a
received message ŵ to minimize a fidelity criterion such as Bayes risk or maximum
error probability with respect to W .

By introducing redundancy to protect against channel noise, channel coding may
increase the distance between signals in signal space and lead to better fidelity. A
central goal of channel coding is to design an encoder-decoder pair that allows reliable
communication over noisy channels at information rates close to the capacity promised
by Shannon’s noisy channel coding theorem [1]. In the quest for channel capacity,
computational complexity of decoding has traditionally provided practical obstacles
[2–4]. For example, a code chosen at random may achieve capacity, but require
exponential decoding complexity.

Besides notions of complexity in an abstract computational model, decoder reli-
ability or resource constraints may provide direct limits to practical channel coding.
It has been suggested in other fields, such as cryptography when discussing adversary
abilities [5], thermodynamics when discussing the abilities of Maxwell’s demon [6,7],
and sensor networks when discussing the abilities of sensor nodes [8], that physical
resources are more fundamental as constraints than computational ones. Results pre-
sented in this thesis demonstrate ways in which constrained decoder materiel and
reliability may limit the performance of communication systems.

As listed above, several specific problems are considered under the general theme
of unreliable and resource-constrained decoding. The basic motivations for these
problems are briefly given here; fuller descriptions are provided in Section 1.2.

When manufacturing physical decoding circuits, one might be concerned about
material costs in construction. Electronic circuits are built from costly logic gates,
circuit components, wires, and heat sinks. Neural circuits are made from costly neural
tissue. As an example, several works suggest that interconnect complexity, a form
of wiring cost, is rather restrictive for implementing message-passing decoders for
sparse graph codes [9]. Trading decoding performance for circuit simplicity would

16



help reduce the capital costs in building decoders.

Costs of provisioning information storage capacity on circuits may also be particu-
larly limiting since memory is a physically-limited resource that impacts information
processing performance. Indeed, memory registers consume much area on decoding
circuits [10]. Reducing communication requirements to reduce information storage
capacity at the decoder may expand the class of communication problems that are
solvable.

In addition to infrastructure costs like wiring and memory, unreliability in op-
erating decoding circuits is also constraining. Traditional information and coding
theory implicitly assume that noise is localized in the channel and that the decoder
operates without error. When computations are performed on faulty hardware, noise
will manifest in the decoder. In fact Hamming’s original development of parity-check
codes [11] was motivated by applications in computing rather than in communication.
Two kinds of decoder unreliability are studied in the thesis: transient and permanent.

Low-power decoding circuits are subject to transient noise for the same reasons as
communication channels including thermal agitation, cosmic radiation, and interfer-
ence from other signals. Techniques for modifying circuit operation such as voltage
scaling can significantly reduce decoder power consumption but also reduce signal-
to-noise ratios within the circuit. Nanoscale decoding circuits may additionally be
subject to random quantum effects.

Catastrophic decoder failures may occur due to energy exhaustion, component
failures [12], or adversarial actions. It is often impossible to fix decoders after failure
[13] and so they cause one kind of permanent fault faced by communication systems.
Unreliable manufacturing processes that produce devices different than designed lead
to other kinds of permanent faults [14, 15].

Beyond their effect on decoder reliability, one might wonder whether energy con-
straints are also directly limiting. Surprisingly, there is no fundamental thermody-
namic requirement for noiseless decoding to consume energy [16], however current
technologies and any practical future technology will consume energy [17–20]. Given
that energy is consumed by (noisy) decoders and energy limitations exacerbate de-
coder operation noise, it is of interest to determine the limits of embedding energy
for decoding in the transmitted signal itself.

Section 1.1 reviews the relationship between engineering theory and engineering
practice, describing how models mediate between the physical world and the world
of mathematical abstraction. Section 1.2 summarizes the main contributions of the
thesis.

� 1.1 Models and Fundamental Limits in Engineering Theory

Some have forcefully argued that “what every engineer needs is a good set of limit
theorems” [21], say, limits to how much communication systems can be improved if all
of the ingenuity of the engineer were brought to bear on the problem. Limit theorems,
however, are deduced within engineering systems theories rather than within physical
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theories.1 They are properties of what Galileo called “machines in the abstract,”
as opposed to “machines in the concrete,” characterized in structural and functional
terms rather than in material ones.

An intellectual technology to mediate between the physical world and the world
of mathematics is needed, a technology to convert large classes of machines in the
concrete into a single machine in the abstract that is ripe for mathematical analysis.
Systems-theoretic models—often represented in block diagram form—are precisely
such a technology. Models convert inductive problems into deductive ones [23] by
defining closed universes for deductive reasoning [24], where notions of fundamental
limits and optimal systems are definable.

The abstraction of a physical engineering problem into a mathematical one re-
quires that some properties of the ‘real thing’ are captured by the model. The pro-
cess of abstraction must be so good that the black boxes of the model need not be
reopened and reexamined.

Traditional models of communication systems take components to be noiseless, re-
liable, and unconstrained [25], but ‘real’ physical communication systems have noisy,
unreliable, and constrained components. In moving from Hartley’s early work [26]
to the basic information theory problem [1, 27], Shannon introduced noise in the
communication channel as well as transmit power constraints. In separate lines of
work, fault-tolerant computing theory introduced noise into models of computational
devices [14, 21, 28–33]. There has been little or no prior work on models of commu-
nication systems where the decoder is a faulty computer, because the decoder box of
Figure 1-1 is thought to be reliable.

As given in the 2008 update of the International Technology Roadmap for Semi-
conductors (ITRS)2 and elsewhere, recent technological trends imply that the tradi-
tional black boxes of information-theoretic modeling are inadequate for addressing
future challenges. Decoder costs and reliability will be governing constraints.

This thesis takes steps in bridging the gap from noiseless and unconstrained mod-
els to noisy and resource-limited reality. Investigating novel communication system
models leads to improved understanding of fundamental limits on the engineering
problem of communication.

� 1.2 Outline and Contributions

The central goal of the thesis is to move from the communication system of Figure 1-
1 to the communication system of Figure 1-2, which has unreliable and resource-
constrained decoding. Chapter 2 introduces noise into the channel by closing switch
Á and reviews background material; switch Á remains closed throughout the rest of
the thesis. Switches Â–Æ are transitorily closed in Chapters 3–7, respectively, to study
various extensions of the basic communication problem. Closing switch Â leads to
an explicit consideration of material cost limitations. Closing both switches labeled

1Physical theories are theories that detail natural laws, whereas engineering systems theories are
theories of what can and cannot be built, a question that implies myriad engineering possibilities [22].

2The overall objective of the ITRS is to present the consensus of the semiconductor industry on
the best current estimate of research and development needs for the next fifteen years.
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Figure 1-2. Schematic diagram of a point-to-point communication system with unreliable and
resource-constrained decoding.

Ã leads to limited memory for source side information. When switch Ä is closed,
there is transient noise in decoding. Switch Å is closed to introduce the possibility of
catastrophic channel failure, generalizing decoder failure. Both switches labeled Æ are
closed to consider energy transmission alongside information transmission. Chapter 8
concludes the thesis, briefly considering closing several of the switches simultaneously.

Chapter 2: Background

The background chapter reviews relevant results in information theory, coding theory,
and statistical signal processing. In particular, the problem of reliable communication
is described both for systems that use uncoded transmission and for systems that
transmit coded signals. Performance criteria including maximal error probability,
Bayes risk, and average error probability are defined. Some codes that achieve optimal
performance under wholly unconstrained decoding are given. Finally, versions of the
noisy channel coding theorem are stated [1].

Chapter 3: Infrastructure Costs—Wires

Integrated circuits are built from gates and the wires to connect them. The per-
formances of these circuits depend on the electrical properties of the wiring such as
resistance, conductance, and inductance [34]. Load for driving gates increases with
wire capacitance; signal delay increases with wire resistance, capacitance, and in-
ductance; and signal noise increases with inductive and capacitive coupling between
wires. These electrical properties depend not only on the wire material, but also
on geometric properties such as length [35]. The cost of wires, which may be much
more restrictive in neuronal circuits [36] than in integrated circuits, also increases
with length. The cost of a wire is often quadratic in its length [37,38]. As such, it is
desirable to have circuit topology and placement such that wires are short in length.
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This chapter discusses the problem of communication using repetition codes with
distributed consensus decoders [39] that have limited wiring length. Trade-offs be-
tween algebraic notions of decoding speed and algebraic notions of wiring cost are
established. It is shown that separated topology design and node placement yields
optimal circuit design. The design problem is shown to be NP-complete, but is carried
out for small circuit size. A natural relaxation of the design problem is shown to be a
reverse convex minimization problem. The performances of some random ensembles
of decoders are studied.

The results of this chapter provide physical limits on the performance of decoders
and may also have conceptual implications for the design and layout of future decoding
circuits.

Chapter 4: Infrastructure Costs—Memory

Though memory is outwardly an informational resource, it is ultimately limited by
physical resource constraints [40]. Limited decoder memory can reduce the fidelity
of communication within informational communities where many different kinds of
sources may want to communicate with the same destination. In such heterogeneous
informational communities that additionally use uncoded communication, each pos-
sible source may yield a different optimal decoding metric. Since universal decoding
methods [41] cannot be used with uncoded communication due to the lack of block
length asymptotics, and since memory constraints may only allow a small finite set
of decoding metrics to be used, mismatched decoding [42] may result. The size of the
finite set determines the level of mismatch. This chapter considers communication
for heterogeneous communities under memory-limited decoding.

In particular, when the source is selected at random from a population of sources,
it is assumed that both the encoder and the decoder have access to perfect source
state information, but that the decoder has limited adaptability due to the memory
constraint. As a consequence, only a finite set of detection rules are used; the rule
is almost surely mismatched if the family of sources is parameterized by an abso-
lutely continuous random variable. Choosing the best subset of decoding metrics is
a quantization problem, equivalent to quantizing prior probabilities for hypothesis
testing over a population of objects. Nearest neighbor and centroid conditions are
derived using mean Bayes risk error as a distortion measure for quantization. A high-
resolution approximation to the distortion-rate function is obtained. Implications for
human decision-making and the information economics of social discrimination are
also presented.

Since any practical decoder has limited adaptability and universal decoders may
not always be appropriate, results in this chapter give fundamental limits for hetero-
geneous uncoded transmission and hypothesis testing.

Chapter 5: Operation Reliability—Transient Faults

In communication theory, it is traditionally assumed that decoding algorithms per-
form without fault. Noise, however, provides a fundamental limit to computation
systems just as it does to communication systems. This chapter determines limits in
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processing noisy signals with noisy circuits. Performance analysis of noisy message-
passing decoders for sparse graph codes shows that arbitrarily small error probability
in communication is possible for some decoders at certain noise levels and is not for
others.

Extending [43], concentration of decoder performance around its ensemble average
performance is demonstrated even when noise is introduced into message-passing
and local computation. Given this concentration result, density evolution equations
for faulty iterative decoders are derived. In one model, computation of nonlinear
estimation thresholds shows that performance degrades smoothly as decoder noise
increases, however arbitrarily small probability of error is not achievable. In another
model, probability of error may be driven to zero, with a decoding threshold that
decreases smoothly with decoder noise. Thus, iterative decoding is robust to noise
in the decoder. Comments on system optimization are also provided. In addition
to the communication problem, the problem of constructing reliable memories from
unreliable components is discussed.

The results in this chapter provide insights into the fundamental limits of process-
ing unreliable signals with unreliable circuits.

Chapter 6: Operation Reliability—Permanent Faults

Separately from transient faults, decoders may also suffer permanent catastrophic
failure due to energy exhaustion or component deterioration. Since it is slightly
more general to model decoder failure as channel failure, this chapter establishes
information-theoretic limits for channels that may fail at random times and presents
optimal coding and decoding schemes.

Channels that fail at random times are finite-state semi-Markov channels. Com-
munication over these channels with arbitrarily small probability of error is not pos-
sible. Making use of results in finite block length channel coding, sequences of block
lengths that optimize transmission volume communicated at fixed maximum message
error probabilities are determined. A dynamic programming formulation shows that
channel state feedback does not improve performance.

Since any communication system will eventually fail when viewed at a suitably
long timescale, the results of this chapter are of interest in many settings.

Chapter 7: Operation Costs—Energy

The penultimate chapter starts by describing the notion of reversible computing in
the thermodynamics of computation [16], showing that a decoder need not dissipate
energy if it is noiseless and has no memory constraints. As argued in Chapters 4–6,
however, decoders are unreliable and memory-limited and must dissipate energy. To
counter energy shortages, a transmitter might embed energy in the communication
signal to help the receiver read the message.

The remainder of the chapter establishes the fundamental trade-off between the
rates at which energy and reliable information can be transmitted over a single
noisy line. A capacity-power function is defined and a coding theorem is given.
The capacity-power function is a non-increasing concave ∩ function. Capacity-power
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functions for several channels are computed. A suboptimal approach of time-sharing
between energy reception and information reception, which requires simpler decoding
circuitry, is also discussed.

This chapter reverses the view of a signal as separate from the communication
medium over which it is transmitted, an abstraction established during the pre-history
of information theory [44]. This new model of energy and information flowing together
may be particularly important for future distributed energy/information systems.

Chapter 8: Conclusion

The conclusion chapter first recapitulates the main ideas and results presented in the
thesis. Then some directions for extending the thesis are given. Finally, the chapter
discusses analyzing and optimizing communication systems that are simultaneously
subject to several of the constraints and sources of unreliability presented in the
preceding chapters.
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Chapter 2

Background

The central task of communication decoders is to convert received signals into re-
ceived messages. This background chapter first discusses the general problem of
reliable communication and describes several performance criteria that are used to
judge communication quality. Next, codes that improve communication quality when
used with reliable, unconstrained decoders are reviewed. Finally, implementation of
decoders is briefly discussed and the noisy channel coding theorem is presented.

Several texts on statistical signal processing [45,46], coding theory [2,47–49], and
information theory [50–54] cover the material in this chapter much more deeply and
completely, from several different perspectives.

� 2.1 The Problem of Reliable Communication

The goal of reliable communication is to transmit a message to a distant point through
a noisy channel so that it may be recovered with high fidelity. As drawn in the
schematic diagram Figure 1-1, there are five parts to a communication system.

The source message is modeled in probabilistic terms as a sequence of chance
variables, W k

1 = (W1,W2, . . . ,Wk) which are drawn from a common alphabet W
according to a probability distribution pWk

1
(·), defined for all k.1

The encoder converts the source message into a block of n channel symbols and
is specified as a sequence of transition probability assignments pXn

1 |Wk
1
(·|·) defined for

all n. The output of the encoder is a sequence of channel input chance variables,
Xn

1 = (X1, X2, . . . , Xn) which are drawn from a common alphabet X . Often the
encoder is a sequence of deterministic maps, rather than a sequence of non-degenerate
transition probability assignments.

The channel is defined mathematically as a sequence of transition probability as-
signments between the channel input space and the channel output space, pY n

1 |Xn
1
(·|·),

for all n. The channel output chance variables, Y n
1 = (Y1, Y2, . . . , Yn) are drawn from

the common alphabet Y .
There are two kinds of decoders that are employed for different but related pur-

poses. One decodes messages whereas the other decodes signals. A message decoder
is specified as a sequence of transition probability assignments pŴk

1 |Y n
1
(·|·) for all n.

1There are communication scenarios that assume semi-infinite sequences of source symbols, to
be encoded into a semi-infinite sequences of channel symbols using tree codes [52, Chapter 10]. This
thesis restricts attention to the block coding setting.
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Figure 2-1. Factor graph of communication system with message decoding.
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Figure 2-2. Factor graph of communication system with signal decoding.

The information destination receives a sequence of reconstruction chance variables,
Ŵ k

1 = (Ŵ1, Ŵ2, . . . , Ŵk) which are drawn from the common alphabet Ŵ . On the other
hand, a signal decoder tries to recover the transmitted codeword symbols rather than
the original message. It is specified as a sequence of transition probability assignments
pX̂n

1 |Y n
1
(·|·) for all n. The information destination for a signal decoder receives a se-

quence of chance variables, X̂n
1 = (X̂1, X̂2, . . . , X̂n) which are drawn from a common

alphabet X̂ . Just like encoders, decoders may be deterministic.

As described, the source message W k
1 , encoded signal Xn

1 , received signal Y n
1 ,

and received message Ŵ k
1 (or decoded signal X̂n

1 ) chance variables obey the Markov
information pattern implicit in Figure 1-1: W k

1 ↔ Xn
1 ↔ Y n

1 ↔ (Ŵ k
1 , X̂

n
1 ). Adopting

a factorization view of communication, as in [55, Section 2.5] and elsewhere, one
can convert directed block diagrams of point-to-point communication systems into
Forney-style factor graphs [56, Section III.D], Figures 2-1 and 2-2. The half-edges
and edges represent variables whereas the boxes represent probabilistic constraints.
The undirected factor graph gives a behavioral view of a communication system [57],
rather than an input-output view.

Among the three factor constraints in a communication system, the encoder and
decoder are usually thought to be under design and the channel is thought to be fixed.
In several sensing settings, the encoder is fixed as an identity map [58–60], leading
to uncoded transmission. In other contexts, the channel might be designable [61]. In
all systems considered in the thesis, the decoder is open to design under resource and
reliability limitations. The decoder is designed to use the factor constraints and the
received signal to determine what was transmitted.

� 2.2 Bayes Risk and Error Probabilities

To define criteria for judging communication performance, first consider systems that
have just one source symbol, k = 1, and employ message decoding rather than signal
decoding. Restriction to k = 1 does not lead to much loss of generality, since a
super-alphabet of size |W|k can be defined for any k.

One might define a general distortion function between W and Ŵ and measure
its expected value, maximum value, or probability of exceeding a fixed threshold.
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Indeed, this is the basis for rate distortion-theoretic investigations of communication
[55,62,63]. In this thesis, specific notions of fidelity are considered.

Bayes risk and various error probabilities are typically defined for cases when
Ŵ = W . For pairs of letters (w, ŵ) ∈ W × W , there is a non-negative Bayes cost
cij incurred when (w = i, ŵ = j) is realized. The Bayes risk J of a communication
system is the expected value of the Bayes cost:

J = EW,Ŵ [c] =

|W|∑
i=1

|W|∑
j=1

cij Pr[W = i, Ŵ = j].

The average probability of message error, P avg
e = Pr[Ŵ ̸= W ], is a special case of

Bayes risk when

cij =

{
0 i = j

1 i ̸= j.

The average message error probability may also be written in terms of conditional
message error probabilities λw = Pr[Ŵ ̸= w|W = w]:

P avg
e = EW

[
Pr[Ŵ ̸= w|W = w]

]
= EW [λw].

The maximum message error probability is a worst-case alternative to average
error probability:

Pmax
e = max

w∈W
λw.

Clearly P avg
e ≤ Pmax

e .

Some communication systems perform signal decoding to produce an estimate
X̂n

1 of the transmitted signal Xn
1 and then use a surjective mapping to produce Ŵ .

For optimal (and reasonable non-optimal) communication systems of this type, the
average message error probability is also given by

P avg
e = EXn

1

[
Pr[X̂n

1 ̸= xn1 |Xn
1 = xn1 ]

]
.

Without need for the surjective mapping, average symbol error probability may be
defined:

P sym
e =

1

n

n∑
i=1

Pr[X̂i ̸= xi|Xi = xi].

Clearly P sym
e ≤ P avg

e ≤ Pmax
e .

When there are several source message symbols, k > 1, a stringent maximax error
requirement for message decoding may be defined:

Pmaximax
e = max

i∈{1,2,...,k}
Pmax
e (i),

where Pmax
e (i) is the maximum message error probability for message i.

Definitions of error probability directly generalize to cases when W ⊂ Ŵ , however
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there are alternatives to the natural generalization. One widely adopted set of defini-
tions stem from incomplete or errors-and-erasures decoding [2,64], where Ŵ = W∪⊖
and the special output symbol ⊖ indicates a declared message erasure. A declared
message erasure is not counted as an error.

� 2.3 Codes and Optimal Decoders

This section examines codes by ‘tearing’ [57] the encoder factor constraint in Fig-
ures 2-1 and 2-2 into specific code constraints. Discussion of decoding procedures that
optimize the performance criteria developed in Section 2.2 are interleaved throughout
the development.

Uncoded Transmission

The starting point of the discussion is uncoded transmission, where W = X , n = 1,
and pX|W is an identity map. The factor graph for the encoder is shown in Figure 2-3,

where = indicates an equality constraint.
The decoder that minimizes Bayes risk for such an uncoded transmission system

follows from optimal hypothesis testing [46]. To develop the main idea, it is easiest
to restrict attention to the binary case, W = {0, 1}.

There is a message prior probability, pW , which is alternatively denoted by pW (0) =
P0 and pW (1) = 1−P0. The channel properties yield likelihood functions for the two
possible messages: pY |W (y|0) and pY |W (y|1). The decoder is specified as a determin-
istic decision rule, fD(·), that maps every possible received signal Y to one of the
two messages, i.e., fD : Y 7→ {0, 1}, thereby partitioning Y into two disjoint decision
regions. More generally fD(·) is the transition probability assignment pŴ |Y , with

Ŵ = W , but it can be shown that deterministic tests are always sufficient to achieve
optimal performance [46, Section 2.6.1].

For fixed Bayes costs, c00, c01, c10, and c11, the decision rule is chosen to be the
one that minimizes the Bayes risk:

fD(·) = argmin
f(·)

J(f),

where J(f) is the Bayes risk of the communication system under decision rule f . The
optimal decision rule fD is the likelihood ratio test:

pY |W (y|1)
pY |W (y|0)

fD(y)=1

R
fD(y)=0

P0(c10 − c00)

(1− P0)(c01 − c11)
. (2.1)
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When the two quantities compared in decision-making are equal, either choice yields
the same Bayes risk. The decision rule that optimizes for average error probability
reduces to

pY |W (y|w = 1)

pY |W (y|w = 0)

fD(y)=1

R
fD(y)=0

P0

1− P0

.

When |W| is greater than two, the same basic ideas hold. The optimal decoding
rule can be structured as a procedure of eliminating one possible message at a time
through a sequence of |W| − 1 binary comparisons similar in form to likelihood ratio
tests [46, Section 2.8]. A simple example of optimal decoding is as follows.

Example 2.1. Consider W = {0, 1} with equiprobableW and a unit-variance additive
white Gaussian noise communication channel used for uncoded transmission. The
likelihood functions are:

pY |W (y|w = 0) =
e−

1
2
y2

√
2π

and

pY |W (y|w = 1) =
e−

1
2
(y−1)2

√
2π

.

The decoder is charged with minimizing Bayes risk with Bayes costs c00 = c11 = 0 and
c01 = c10 = 1. Bayes risk with these costs is the average message error probability.
Now the optimum decision rule is:

y
fD(y)=1

R
fD(y)=0

1
2
.

The performance of this optimum rule is computed first in terms of the false alarm
probability P I

e = Pr[fD(Y ) = 1|W = 0] and the missed detection probability P II
e =

Pr[fD(Y ) = 0|W = 1].

P I
e =

∫ ∞

1/2

e−
1
2
y2

√
2π

dy

and

P II
e = 1−

∫ ∞

1/2

e−
1
2
(y−1)2

√
2π

dy.

These error probabilities can be expressed in terms of the Q-function

Q(z) = 1−Q(−z) = 1√
2π

∫ ∞

z

e−
1
2
ζ2dζ (2.2)

as
P I
e = Q

(
1
2

)
and

P II
e = 1−Q

(
−1

2

)
= Q

(
1
2

)
.
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Thus the best Bayes risk possible in this communication problem is:

J = pW (w = 0)
[
c00(1− P II

e ) + c01P
II
e

]
+ pW (w = 1)

[
c11(1− P I

e ) + c10P
I
e

]
= 1

2
P II
e + 1

2
P I
e = Q

(
1
2

)
.

One may further note that in this example, J = P avg
e = Pmax

e .

Repetition Codes

In uncoded transmission, error-control codes are not employed. The encoding process,
however, may allow channel errors to be more easily detected and corrected by the
decoder. In particular, embedding signals in higher dimensional spaces may increase
distances between them. The simplest kind of code is a repetition code.

In a repetition code of length n, pXi|W is an identity map for each i = 1, 2, . . . , n,
as depicted in the factor graph shown in Figure 2-4. The same basic optimal Bayesian
hypothesis testing decoding procedure may be used as in the uncoded case. For some
channels with Y = X , the optimal decoding rule reduces to a majority vote over the
channel output coordinates.

In general, there can be several factor graphs that correspond to a given code.
For example, a repetition code of length 8 can be drawn in tail-biting trellis form or
tree form, as shown in Figure 2-5, or other forms. As will become apparent in later
chapters, the choice of factor graph with an associated natural decoding algorithm can
significantly impact decoding performance and decoder complexity. General factor
graph synthesis is an open problem [65].

The following example shows that repetition coding can reduce error probability.

Example 2.2. Consider the same source and channel as in Example 2.1 but using a
repetition code of length n. The optimal decision rule is:

1
n

n∑
i=1

yi

fD(y)=1

R
fD(y)=0

1
2
.

The error probabilities of this scheme are:

P I
e = P II

e = Q

(
n/2√
n

)
= Q

(√
n

2

)
.

Therefore the average and maximum message error probabilities are:

Pmax
e = P avg

e = Q

(√
n

2

)
.

Since Q(z) is the tail probability of a standard Gaussian distribution, it decreases in
z and goes to zero as z → ∞. Therefore, Pmax

e → 0 and P avg
e → 0 as n→ ∞.

Notice that the optimal decision rule compares the average value of the chan-
nel output realizations to a fixed threshold. Such an optimal decision rule can be
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Figure 2-5. Two distinct factor graphs of repetition coding.

implemented using consensus decoding, as in Chapter 3.
Increasing the length of a repetition code drives the error probability to zero for

communication systems with almost any kind of practical channel under optimal
decoding, not just in Example 2.2.

Linear Codes

In general, codes are subsets of X n. The difficulty in code design is in choosing
good subsets. Repetition codes are the simplest of codes, however there are more
complicated ones that may be more useful.

An example of a code is a binary Hamming code of length n = 7 [11], shown
in Table 2.1. The code is a subset of 16 sequences from the 128 sequences possible
in {0, 1}7. In channel coding, there are two other standard notions of quality be-
sides fidelity: block length and number of messages represented. These three main
communication system parameters are:

• block length n,

• number of messages M , and

• fidelity J , P avg
e , Pmax

e , or P sym
e .

For the Hamming code, the block length is n = 7 and the number of messages is
M = 16.
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0000000
0001011
0010110
0011101
0100111
0101100
0110001
0111010
1000101
1001110
1010011
1011000
1100010
1101001
1110100
1111111

Table 2.1. An (n = 7) binary Hamming code.

Many good codes are linear codes [2,66], drawn from a channel input alphabet X
that is a finite field F|X |. Linear codes satisfy certain linear constraints that may be
expressed in terms of parity-check matrices or generator matrices and form a subspace
of X n. In Forney-style factor graphs, the constraints may be expressed graphically
using parity-check constraints, + , and equality constraints. Parity-check constraints
enforce even parity among the variables corresponding to connected edges. Parity-
check constraints are also called check nodes and through some misappropriation of
terminology, equality constraints are also called variable nodes.

A linear code that maps k source symbols into n channel symbols can be com-
pletely described by any set of k linearly independent codewords of length n. Arrang-
ing these basis codewords into a k × n matrix yields the generator matrix G. The
generator matrix is often useful for encoding.

A linear code may also be described in terms of a parity-check matrix. Since
the code is a linear subspace of dimension k in an ambient space of dimension n, it
has an orthogonal linear subspace of dimension n− k, which is called the dual code.
The generator matrix for the dual code is an (n− k)× n matrix, which is called the
parity-check matrix H for the original code. The parity-check matrix is often useful
for decoding.

The (n = 7,M = 16) binary Hamming code above is linear and has generator
matrix

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


32



=

X1

=

X2

=

X3

=

X4

=

X5

=

X6

=

X7

+
�
�
�
�
�

@
@

@
@
@

Q
Q

Q
Q
Q
Q

QQ

HHHHHHHHHH

+
�

�
�

�
�

A
A
A
A
A

Q
Q

Q
Q
Q

Q
QQ

+
�

�
�

�
�

�
��

�
�

�
�

�

A
A
A
A
A

Figure 2-6. Factor graph of (n = 7) binary Hamming code.

and parity-check matrix

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .

The parity-check matrix can be used to draw the factor graph shown in Figure 2-6,
again tearing the general encoding constraints into specific code constraints.

Optimal decoding for linear codes is still specified by optimal Bayesian hypothesis
testing for an alphabet of size M = |W|k. If all messages are equiprobable, then
maximum likelihood (ML) decoding is optimal.

Low-Density Parity-Check Codes

A particular subclass of linear codes are the low-density parity-check (LDPC) codes
[43, 49, 67]. As evident in name, the parity-check matrices of these codes are sparse
and they equivalently have sparse factor graphs. In fact, they are typically defined
through their factor graphs. Recall, however, that although a factor graph determines
a code, the opposite is not true [65].

The standard ensemble of (dv, dc)-regular binary LDPC codes of block length n,
Cn(dv, dc), is defined by a uniform measure on the set of labeled bipartite factor graphs
with variable node degree dv and check node degree dc. There are n variable nodes
corresponding to the codeword letters and ndv/dc check nodes corresponding to the
parity-check constraints.

The designed codebook size of the code is M = 2n(1−dv/dc), though the actual
codebook size might be higher since not all checks may be independent; the true size
converges to the design size for large n [49, Lemma 3.22].

One may also consider irregular codes, Cn(λ, ρ) characterized by the degree dis-
tribution pair (λ, ρ). Generating functions of the degree distributions, λ(ζ) and ρ(ζ),
are functions defined to be λ(ζ) =

∑∞
i=2 λiζ

i−1 and ρ(ζ) =
∑∞

i=2 ρiζ
i−1, where λi and

ρi specify the fraction of edges that connect to nodes with degree i. The design size

is 2n(1−
∫ 1
0 ρ(ζ)dζ/

∫ 1
0 λ(ζ)dζ).

A particular LDPC code is typically chosen at random from an ensemble of LDPC
codes. As for other linear codes, optimal Bayesian decoding procedures or ML de-
coding procedures may be developed.

33



Perfect Codes

Another class of codes that arise in communication are perfect codes [47, Chapter
7]. A perfect code is one for which there are equal-radius spheres centered at the
codewords that are disjoint and that completely fill X n. The repetition codes, the
binary (n = 7,M = 16) Hamming code, and the binary linear (n = 23,M = 4096)
Golay code [68] are the only linear perfect codes. There are a few more nonlinear
perfect codes [69,70].

The optimal Bayesian decoding procedure for perfect codes is often very simple.

Modifying Codes

Since the design of good codes is difficult, modifying existing codes is often useful.
For linear codes, there are six basic ways of modifying a code. Letting r = n − k,
these are:

• Extending. Fix k, increase n, increase r. Corresponds to adding = and +
vertices and new edges to connect them to existing vertices in a factor graph.

• Puncturing. Fix k, decrease r, decrease n. Corresponds to deleting = and +
vertices and all edges connecting them to remaining vertices in a factor graph.

• Lengthening. Fix r, increase n, increase k. Corresponds to adding = vertices
and new edges to connect them to existing + vertices in a factor graph.

• Shortening. Fix r, decrease n, decrease k. Corresponds to deleting = vertices
and all edges connecting them to + vertices in a factor graph.

• Augmenting. Fix n, increase k, decrease r. Corresponds to deleting + vertices

and all edges connecting them to = vertices in a factor graph.

• Expurgating. Fix n, decrease k, increase r. Corresponds to adding + vertices

and new edges to connect them to existing = vertices in a factor graph.

Augmenting and expurgating are opposite operations, as are lengthening–shortening
and extending–puncturing. Lengthening is dual to extending, whereas puncturing is
dual to shortening.

Many of these code modification procedures also apply to nonlinear codes. For ex-
ample, augmenting adds extra codewords to a general codebook, whereas expurgating
removes codewords from a codebook.

Optimal Decoding Performance

The optimal decoding procedure for communication systems that use codes is given
by optimal Bayesian hypothesis testing, but computing the precise error probabilities
of systems that use complicated coding schemes is often difficult.

The optimal error probability can be computed in the special case of perfect, linear
codes transmitted over discrete memoryless, symmetric channels, with codewords
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chosen equiprobably. In this setting, the optimal decoding rule reduces to choosing the
codeword closest to the received output sequence, measured using Hamming distance
[53, Problem 2.13]. Identical computations also hold for linear codes that are not
perfect, but that use errors-and-erasures decoding based on decoding spheres.

To compute error probability, it is convenient to determine the distances between
various codewords. For linear codes, the multiset of distances from a given codeword
to all other codewords is identical to the multiset of distances from any other given
codeword to all other codewords, including the all-zero codeword (which is part of
any linear code). Thence, considering the profile of the codeword Hamming weights
is sufficient. Let Aℓ denote the number of codewords of weight ℓ in a linear code. The
(n + 1)-dimensional vector with components Aℓ is called the weight distribution of
the code. For the binary Hamming code, this vector is

[1, 0, 0, 7, 7, 0, 0, 1] .

For the binary Golay code, this vector is

[1, 0, 0, 0, 0, 0, 0, 253, 506, 0, 0, 1288, 1288, 0, 0, 506, 253, 0, 0, 0, 0, 0, 0, 1] ,

as computed exhaustively [2, Table 5.3].

Consider channels that make independent errors with probability ε in each com-
ponent and transmit correctly with probability 1 − ε. Each of the |X | − 1 wrong
symbols occur with probability ε/(|X |− 1). Each pattern of h errors has probability:

p(h) =

(
ε

|X | − 1

)h

(1− ε)n−h

The sphere radius of a perfect code is denoted ρ. Overloading notation, the decoding
radius of errors-and-erasures decoding for other linear codes is also fixed at ρ such
that 2ρ+ 1 is less than the minimum distance of the code.

The probability of correct message reception is:

ρ∑
v=0

(
n

v

)
εv(1− ε)n−v,

computed by finding the probability of a codeword only being perturbed to within
its sphere of radius ρ.

Let Nh
ℓ (s) be the number of error patterns of weight h that are at distance s from

a codeword of weight ℓ. Using type-counting combinatorics, this is:

Nh
ℓ (s) =

∑
0≤i≤n
0≤j≤n

i+2j+h=s+1

(
n− ℓ

j + h− ℓ

)(
ℓ

i

)(
ℓ− i

j

)
(|X | − 1)j+h−1(|X | − 2)i.
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Since decoding is limited to ρ apparent errors, the probability of error is

Pmax
e = P avg

e =
n∑

h=0

(
ε

|X | − 1

)h

(1− ε)n−h

ρ∑
s=0

n∑
ℓ=1

AℓN
h
ℓ (s).

For sphere-based errors-and-erasures decoding, there is a further erasure probability.
For complete decoding of perfect codes, on the other hand, error and correct reception
events partition the space.

Example 2.3. Consider equiprobably choosing a codeword from the (n = 7,M = 16)
binary Hamming code and transmitting it over a binary symmetric channel with
crossover probability ε. If the all-zero codeword is transmitted, the probability of cor-
rect reception under optimal decoding is:

(1− ε)7 + 7ε(1− ε)6,

and so the probability of error is

Pmax
e = P avg

e = 1− (1− ε)7 − 7ε(1− ε)6.

This can alternatively be verified using the more extensive formula involving Aℓ.

Implementing Decoders

This section has described codes and optimal decoders for them. For short algebraic
codes, optimal decoders may be implementable [71, 72], but often implementation
of optimal decoders and analysis of optimal performance is very difficult. To ease
these difficulties, upper and lower bounds as well as suboptimal decoders have been
developed. The various suboptimal decoders include joint typicality decoding used
for proving theorems in information theory, iterative message-passing decoding for
low-density parity-check codes [67] and optimization-based decoding for low-density
parity-check codes [73,74]. Many of these decoding algorithms are based on the factor
graphs of the encoding constraints. Moreover, suboptimal decoding methods are often
sufficient to prove the information-theoretic coding theorems stated next.

� 2.4 Information-Theoretic Limits

Information-theoretic limits on the fundamental trade-offs among the three block
coding parameters (n,M, Pe), as a function of channel noise properties, are given in
this section. For simplicity, the section is restricted to discrete, memoryless systems
with message decoding and k = 1. Many of the stated results can be generalized to
less restrictive scenarios, see e.g. [75, 76].

A discrete memoryless channel (DMC) is characterized by a finite input alphabet
X , a finite output alphabet Y , and the transition probability assignment pY |X(y|x).
Since the channel is memoryless, its block length n extension is an n-fold product
distribution. An (n,M) block code, t, for a DMC is defined by a deterministic
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encoding function which maps messages to channel inputs:

f t
E : {1, . . . ,M} 7→ X n

and a decoding function which maps channel outputs to messages:

f t
D : Yn 7→ {1, . . . ,M}.

The set {1, . . . ,M} is the message set W . The sequences f t
E(1), . . . , f

t
E(M) in X n are

codewords and the set of these is the codebook.

Channel inputs are described by chance variables Xn
1 , where X

n
1 = f t

E(W ). The
corresponding outputs are the chance variables Y n

1 . Recovered messages are Ŵ and
satisfy Ŵ = f t

D(Y
n
1 ).

The maximum probability of message error, Pmax
e , is used as the fidelity criterion

here. For any n, it is desirable to have small Pmax
e (and thereby small P avg

e and
P sym
e ) as well as to have large M . To determine the fundamental trade-off among

(n,M, Pmax
e ), define the maximal number of messages achievable for a given block

length and target error probability as:

M∗(n, η) = max{M : ∃ a system (t, f t
E, f

t
D) of length n with Pmax

e < η}.

Although exact expressions for the maximal code size M∗ are only known in
very special cases (e.g. when perfect codes are optimal), it can be bounded and ap-
proximated using information-theoretic quantities like channel capacity and channel
dispersion.

Let the mutual information between the input and output of DMC pY |X with
input distribution pX (and output distribution pY (y) =

∑
x∈X pY |X(y|x)pX(x)) be:

I(pX , pY |X) =
∑
x∈X

∑
y∈Y

pY |X(y|x)pX(x) log
pY |X(y|x)
pY (y)

.

The channel capacity C is defined to be

C = max
pX

I(pX , pY |X)

and the set of capacity-achieving input distributions is

Π = {pX : I(pX , pY |X) = C}.

The channel dispersion is defined to be

V = min
pX∈Π

var

[
log

pY |X(y|x)
pY (y)

]
.

The following theorem bounds the asymptotic behavior of logM∗ in terms of n
and Pmax

e by using an expression arising from the Berry-Esseen form of the central
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limit theorem.

Theorem 2.1 ( [77]). For a DMC with capacity C and dispersion V , and 0 < η ≤ 1/2,

logM∗(n, η) = nC −
√
nV Q−1(η) +O(log n),

where Q−1(·) is the inverse of the Q-function (2.2) and standard asymptotic notation
is used [78].

It is often of interest to consider the information rate communicated through a
communication system rather than (n,M). The definition of channel capacity also
has an operational interpretation as the best achievable information rate that can be
communicated through a given DMC. The operational interpretation is an asymptotic
one, for n→ ∞.

Given a target maximum probability of error value η, 0 < η ≤ 1, a rate R is said
to be η-achievable for the DMC pY |X if for any δ > 0 and sufficiently large n, there
exist communication systems (t, f t

E, f
t
D) with code parameters (n,M) such that

1
n
logM > R− δ

and
Pmax
e < η.

The supremum of η-achievable rates is called the operational η-capacity of the channel.
Furthermore, a rate is said to be achievable if it is η-achievable for all 0 < η ≤ 1.

The supremum of achievable rates is called the operational capacity of the channel.

Theorem 2.2. For a DMC with capacity C and 0 < η ≤ 1, the operational η-capacity
is equal to:

C

log |X | − h2(η)− η log(|X | − 1)
,

where h2(·) is the binary entropy function.

Theorem 2.3. For a DMC with capacity C, the operational capacity is also C.

One can note that this result follows directly by considering Theorem 2.1 in the
n → ∞ regime. There are several ways of proving the achievability and converse
parts of the information-theoretic limits stated in Theorems 2.1–2.3.

One way of finding upper bounds to M∗ is through a sphere-packing argument.
The basic idea is that achieving η-reliability will require decoding spheres of a minimal
radius. Dividing the volume of the entire signaling alphabet |X |n by the volume of
the decoding sphere yields a bound on M∗.

Showing achievability may follow a random coding argument. In particular, the
random codebook T = t is chosen from an ensemble of codebooks and the choice is
revealed to both the encoder and the decoder. The expected error performance of the
communication system (T, fT

E , f
T
D) with respect to pT (t) is measured. For capacity,

this error probability is shown to be arbitrarily small with increasing block length n.
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The achievability proof then essentially uses the mean value theorem to argue for the
existence of at least one particular t that is achievable, further using code expurgation.
Achievability arguments for η-capacity additionally require rate-distortion theory and
the separation principle.

The information-theoretic limits given in this section determine the performance
parameters of optimal codes. No restrictions arising from physically implemented
decoding were made. The remainder of the thesis considers unreliable decoders and
resource-constrained decoders. Under such decoding, information-theoretic converses
remain valid but achievability results do not. Optimal performance may be far from
the converse bounds given here.
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Chapter 3

Infrastructure Costs—Wires

Communication decoders are physical constructs and the materials from which they
are built can be costly. Computational elements such as logic gates, memory cells for
local information storage, and the wires to connect together the various parts of a
decoder are all costly. Restrictions on computational elements for general computa-
tion problems are considered in circuit complexity theory [79, Chapter 10] (see also
Section 5.6 of this thesis) whereas restrictions on memory for general computation
problems are considered in space complexity theory [79, Chapter 8] (see also Chap-
ter 4 of this thesis). The study of wiring restrictions for computation problems is
similarly of general interest.

More concretely, the wires used to connect computational elements in decoding
circuits are costly [34,80–84]. For example, Thies [85] noted that “wiring has long been
identified as an eventual limiter of integrated circuit performance, but the National
Technology Roadmap for Semiconductors (NTRS) now estimates that without radical
material, design, or architectural innovations, this point will be reached [soon].”

Whereas most previous systems-theoretic works that consider information pro-
cessing circuits have ignored their spatial aspects, cf. [86, 87], this chapter considers
trade-offs between functionality and spatially-driven wiring costs. To explore this
decoder design question with specificity, focus is placed on the trade-off between
decoding speed and wiring costs incurred in constructing consensus circuits for opti-
mally decoding binary repetition codes. The goal is to choose circuit structures that
yield fast decoding but that require short wires. A functionality-cost function that
captures the optimal trade-off is defined in the sequel.

As suggested in Example 2.2, the optimal decoding rule for repetition codes trans-
mitted over symmetric channels may involve comparing the average value of the sev-
eral channel output values to a fixed constant. This average value can be computed
in a distributed circuit using consensus algorithms [39, 88, 89].1 Algebraic proper-
ties of circuits determine convergence speeds of consensus algorithms run on them;
Appendix 3.A reviews certain relevant aspects of algebraic graph theory including
definitions of eigenratio and algebraic connectivity of graphs. The eigenratio of a
circuit graph determines the convergence speed of the distributed decoding algorithm
studied here [39,90]. The algebraic connectivity of a circuit graph has also been used

1Alternative implementations of optimal decoding for tree-structured factor graphs are possible
using either the sum-product algorithm or parallel fusion. Reasons for using consensus are provided
in Section 3.1.
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to describe convergence speeds of distributed consensus algorithms [88, 91–93]. This
is the functionality of the circuit.

As suggested in Figure 2-5, different factor graphs may be used to represent the
equality constraints in repetition codes. In fact, any connected graph of equality
constraint vertices generates a repetition code. The connectivity pattern of the factor
graph chosen to represent a repetition code implies a natural consensus decoding
circuit, where messages are passed along edges in the circuit graph. The choice of
representation therefore determines the eigenratio and algebraic connectivity of the
circuit graph.

A primary aspect of the problem formulation in this chapter is embedding an
abstract graph structure in physical Euclidean space [94]. Although there are sev-
eral theories of drawing graphs in space,2 an adjacency model where the geometry
respects the binary relations of adjacency/nonadjacency between vertices [100,101] is
used here. In particular, this chapter considers graph drawing in Euclidean space to
minimize wiring cost that is quadratic in edge length [38, 102], a method which also
has certain aesthetic appeal [103,104]. It is shown that any given graph has an optimal
cost-minimizing placement in Euclidean space, so the choice of code representation
also determines the wiring cost of the decoding circuit.

The remainder of the chapter is organized as follows. Section 3.1 describes con-
sensus decoding of repetition codes, including deriving decoding graphs from factor
graphs, and error performance of decoding. Section 3.2 determines functionality in
terms of the convergence speed of consensus decoding on graphs. Section 3.3 expli-
cates the placement of decoding graphs in physical space to make decoding circuits
as well as the wiring costs of decoding circuits under optimal placement. Section 3.4
defines functionality-cost trade-offs for decoding circuits. Section 3.5.1 gives an NP-
completeness result for decoding circuit structure design; Section 3.5.2 gives proper-
ties of the circuit design problem and lists small optimal circuits; and Section 3.5.3
provides a natural reverse convex relaxation that may be useful for designing large
decoding circuits. The performance of random decoding circuits is presented in Sec-
tion 3.6. Section 3.7 provides further discussion of results.

� 3.1 Consensus Decoding of Repetition Codes

The communication problem investigated in this chapter is that of optimally decod-
ing binary repetition codes transmitted over binary-input, memoryless channels with
output alphabet Y ⊆ R.

Recall from Section 2.3 that the decision rule fD(·) that optimizes average error

2Topological graph theory is concerned with drawing a graph on a surface so that no two edges
cross [95]; surfaces of interest are the closed orientable surfaces: sphere, torus, double torus, triple
torus,. . . . Alternatively, the metric theory of embeddings [96,97] and the theory of graph separators
[98] are concerned with drawing a graph in another graph while minimizing the distortion in the
graph distances. For finite graphs there is a simple semidefinite program which computes their
Euclidean distortion [99].
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probability for a repetition code with W = X = {±1} is:

pY n
1 |W (yn1 |w = 1)

pY n
1 |W (yn1 |w = −1)

fD(yn1 )=1

R
fD(yn1 )=−1

P0

1− P0

,

where P0 = Pr[W = −1]. When transmitting a binary repetition code over a memo-
ryless channel,

pY n
1 |W (yn1 |w) =

n∏
i=1

pYi|W (yi|w).

By considering log-likelihoods ratios:

ℓi = log
pYi|W (y|1)
pYi|W (y| − 1)

,

and applying some algebraic manipulations, the optimal decoding rule fD(·) reduces
to comparing the average value of local log-likelihood ratios ℓ̄ = 1

n

∑n
i=1 ℓi to the fixed

threshold
1

n
log

P0

1− P0

.

A memoryless channel is binary-input, symmetric if it satisfies

pYi|Xi
(yi = y|xi = 1) = pYi|Xi

(yi = −y|xi = −1).

When transmitting a repetition code over such a channel, fD(·) compares the average
value of the channel outputs 1

n

∑n
i=1 yi themselves to a fixed threshold.

For the special case given in Example 2.2 of Gaussian channels and P0 = 1/2, but
with X = {±1} instead of X = {0, 1}, the optimal decision rule is to test whether
the average value of the (yi)

n
i=1 is positive or negative. This is also true for arbitrary

channel noise variance σ2 (rather than fixing σ2 = 1).

The optimal decoding rule as derived thus far is a mathematical formula, but no
physical implementation is specified. One approach is to compute the ℓi near where
the decoder receives its inputs yi, and then collect, average, and threshold them at
some other point in the circuit, using a so-called parallel fusion circuit topology. Such
an implementation is not robust to failure of the fusion center and does not provide
the final solution at each point in the circuit.

If the factor graph used to describe the repetition code is a tree, e.g. the second
graph shown in Figure 2-5 but not the first, and the number of vertices is known
everywhere, the sum-product algorithm for the factor graph [56] yields an exact dis-
tributed way to optimally decode, with the final solution available everywhere. A
loopy circuit has redundancy to protect against wire failure, but the sum-product al-
gorithm operating on a loopy factor graph does not yield optimal solutions. For both
optimality and robustness to circuit failures, the algorithm could be implemented
on a subcircuit that is a tree, however the circuit would need active monitoring and
reconfiguration to change the operative subcircuit in response to failures. Robustness
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Figure 3-1. Circuit graphs for consensus decoding of repetition codes with tail-biting trellis factor
graph and tree-structured factor graph.

of sum-product decoding to circuit failures is further discussed in [105].

For general circuit topologies with any degree sequence and the possibility of
loops, distributed inference algorithms built on distributed averaging algorithms may
be used. In distributed inference, all nodes in a circuit receive and agree upon the
result of the final computation [106–108], contrary to settings with a fusion center
that performs final processing [109–112]. Distributed inference is very robust to local
circuit element failure.

An iterative consensus decoding algorithm is naturally built on any factor graph
for the repetition code, e.g. ones shown in Figure 2-5. There is a direct mapping
between the factor graph and a circuit graph that implements the decoding algorithm,
as shown in Figure 3-1. Conversion is accomplished by changing half-edges in the
factor graph into vertices, •, in the circuit graph, connecting them according to the
constraints, and then merging the constraints until no extraneous connections remain.
Vertices in the circuit graph provide input/output functionality as well as perform
local computations, whereas edges are used to pass messages.

Each vertex i has a state variable σi(t) ∈ R which is updated during each iteration
t of the algorithm. The initial state is

σ⃗(t = 0) = [ℓ1, . . . , ℓn]
T .

Vertices iteratively pass messages to their neighbors in the circuit graph based on
weighted averaging of the current state and keep what they pass as their state variable.
In particular,

σ⃗(t) = Wσ⃗(t− 1) = W tσ⃗(0) for t ≥ 1,

where W is the weight matrix of the decoding algorithm and has the same sparsity
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pattern as the adjacency matrix A of the decoding circuit graph. The weight matrix
is chosen so that all edges have equal weight β:

W = I − βL,

where I is the identity matrix and L is the graph Laplacian of the decoding circuit
graph.

At each time step t, a thresholding operation is performed at each vertex i:

σi(t)

fDi
(yn1 )=1

R
fDi

(yn1 )=−1

1

n
log

P0

1− P0

where fDi
(·) is the decoding function for symbol i.

Let the Laplacian spectral radius be λn(L). If the decoding circuit graph is con-
nected and β is bounded as 0 < β < 2/λn(L), it can be shown that limt→∞ σ⃗(t) exists
and satisfies

lim
t→∞

σi(t) =
1

n

n∑
i=1

σi(0) =
1

n

n∑
i=1

ℓi = ℓ̄,

for all i = 1, . . . , n [90]. Consequently the limiting performance of the decoding
algorithm at every vertex, P avg

e (t) as t → ∞, is the optimal performance of the
parallel fusion decoding algorithm [39]. Since the state variables σi at every vertex
surely converge to the same value, the final decoded message Ŵ ∈ {±1} can be taken
from any vertex.

� 3.2 Convergence Speeds of Decoding Circuits

It is of central interest to study how quickly the decoding algorithm drives the error
probability to its optimal value: the faster the better. To do so, the convergence
speed of σ⃗ to ℓ̄ is studied. Convergence speed of decoding for weight matrix W is
measured using the convergence factor

r(W ) = sup
σ⃗(t) ̸=ℓ̄

∥σ⃗(t+ 1)− ℓ̄∥2
∥σ⃗(t)− ℓ̄∥2

and associated convergence time

τ(W ) =
1

log(1/r(W ))
.

The goal is to minimize r(W (β, L)) through the choice of the weight matrix parameter
β and the structure of the circuit graph, L.

The optimal weight

β∗ =
2

λ2(L) + λn(L)
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is determined by the algebraic connectivity λ2(L) and the Laplacian spectral radius
λn(L) for any decoding circuit graph structure L [90, (23)]. The convergence factor
with optimal weight β∗ is

r(L) =
1− ρ(L)

1 + ρ(L)
,

where ρ(L) = λ2(L)/λn(L) is the eigenratio [39, (6)]. Minimizing r(L) is equivalent
to maximizing ρ(L). Decoding algorithms on circuit graphs with large eigenratio
converge quickly.

The algebraic connectivity of a circuit graph λ2(L) has been found to determine the
speed of convergence of several consensus algorithms related to the one presented. See
e.g. [88, 91–93] and references therein. Therefore, these related consensus algorithms
converge quickly on circuit graphs with large algebraic connectivity.

Kar et al. assert that ρ(L) = λ2(L)/λn(L) is more sensitive to variations in λ2(L)
than variations in λn(L). Hence they develop topology constructions that optimize
λ2(L) [39]. Rad et al. demonstrate that graphs optimized for ρ(L) also have large
λ2(L) [93]. Some comparisons as to whether decoding circuits with large λ2(L) also
have large ρ(L), once wiring cost constraints are imposed, are presented in later
sections.

A few previous works have considered optimizing λ2(L) or ρ(L) through the choice
of graph topology [39, 113–115]. Ramanujan graphs [116], a particular class of ex-
pander graphs, have been found to have extremal properties [39]; see also [117].

� 3.3 Wiring Costs of Decoding Circuits

A physical decoding circuit is determined not only by the adjacency matrix (or equiv-
alently the Laplacian matrix) of the circuit graph, but also by the physical placement
of the vertices in Euclidean space. Through placement, the logical notions of vertices
and edges in circuit graphs are transformed to the physical notions of nodes and wires
in circuits. This section argues that wiring cost that is quadratic in length may be
appropriate and then reviews results from graph drawing that demonstrate how to
layout a circuit to minimize wiring cost [102].

Recall from Chapter 1 that quadratic wire cost is motivated by electrical and
material properties that vary quadratically with wire length W . An example of such
a property is the delay introduced by metal interconnects. The latency of an RC-
limited interconnect can be expressed as:

ρε

HT
W 2,

where ρε is the resistivity-permittivity factor of the metal, H is the metal height,
T is the insulator thickness, and W is the interconnect length [37, (3)]. As noted
there [37], “the W 2 factor represents system-level opportunities to improve latency
through the use of new microarchitectures that serve to ‘keep interconnects short.”’

As another example, the maximum information rate that can be carried by a

46



simple electrical interconnection is

B0A
1

W 2
,

where A is the cross-sectional area of the conductor,W is the interconnect length, and
B0 is essentially a constant [85, (6)]. Neural wiring has similar quadratic cost [38].

If nodes are positioned on the real line at s = (s1, s2, . . . , sn), si ∈ R, then a
wire connecting nodes i and j will have cost (si − sj)

2. If nodes are in the plane at
(s, u) = ((s1, u1), . . . , (sn, un)) , (si, ui) ∈ R2, then a wire connecting nodes i and j
will have cost (si − sj)

2 + (ui − uj)
2. Similarly in three-dimensional Euclidean space.

The total wiring costs W1,W2, . . . ,Wd, . . . in d-dimensional Euclidean space are the
sums of the costs of individual wires.

The problem of drawing a graph to minimize quadratic wiring cost reduces to a
problem in algebraic graph theory [38,102]. Consider the wiring cost for a circuit with
adjacency matrix A and nodes on the real line at s. To establish the sum-of-squares
property of the graph Laplacian, the wiring cost W1 may be expressed as follows.

W1 =
1

2

n∑
i=1

n∑
j=1

(si − sj)
2Aij

=
1

2

n∑
i=1

n∑
j=1

(s2i − 2sisj + s2j)Aij

=
1

2

(
n∑

i=1

s2i

n∑
j=1

Aij − 2
n∑

i=1

n∑
j=1

sisjAij +
n∑

j=1

s2j

n∑
i=1

Aij

)

=
n∑

i=1

s2i

n∑
j=1

Aij −
n∑

j=1

∑
i:i̸=j

sisjAij

= sT (D − A)s = sTLs.

Two non-triviality constraints should be imposed on the wiring cost-minimizing
placement. First, all nodes are required to not be right on top of each other. Second, a
normalization that sT s = 1 is imposed, so that nodes are not arbitrarily close to being
right on top of each other. This provides a measurement scale to the problem. Under
these non-triviality constraints, the Courant-Fischer theorem implies that the optimal
placement s should be the unit eigenvector associated with λ2(L). The wiring cost
incurred for optimal placement in one-dimensional Euclidean space is W1 = λ2(L).

If the network is to be drawn in two-dimensional Euclidean space with horizontal
placement s and vertical placement u, it follows from simple geometry that the wiring
cost is W2 = sTLs + uTLu. If a further non-triviality constraint that the horizontal
placement must be orthogonal to the vertical placement is imposed,3 then the optimal

3 If the circuit is to simultaneously sense and decode the output of a channel that is a band-
limited field, a reason for imposing this non-triviality constraint may be related to sampling. Stable
sampling requires the entire space to have reasonable sampling density [118].
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placement has s be the eigenvector associated with λ2(L) and u be the eigenvector
associated with λ3(L). The cost incurred isW2 = λ2(L)+λ3(L). In three dimensions,
the cost is W3 = sTLs+ uTLu+ vTLv and under optimal non-trivial placement, the
cost is W3 = λ2(L) + λ3(L) + λ4(L).

One can note the following separation principle:

Theorem 3.1. There is an optimal non-trivial placement of circuit nodes in Eu-
clidean space for any given choice of circuit graph topology A.

Proof. The result follows directly, since for each A there is an optimal eigenplacement
that incurs cost

Wd(A) =
d+1∑
i=2

λi(L(A))

for embedding in Euclidean space Rd for any d = 1, . . . , n− 1.

In practice a circuit graph will be embedded in R2 or R3.

� 3.4 Functionality-Cost Trade-off

Having defined circuit functionality in terms of either ρ(L) or λ2(L) and having defined
circuit cost in terms of optimized wiring costs in Euclidean space Wd, the trade-
off between functionality and cost is studied. Large λ2(L) is desirable to enhance
functionality whereas small λ2(L) is desirable to reduce costs. If the optimization
problem were written in Lagrangian form, one could say that the cost term promotes
circuits where spatially close nodes are connected, whereas the functionality term
promotes long-range wires; in some sense, the cost-functionality trade-off involves
optimizing the number of long-range connections.

Following Theorem 3.1, the circuit design problems posed here optimize circuit
graph topology and involve algebraic graph theory. Fix the number of vertices of the
graph Γ at n (the block length of the repetition code) and denote the Laplacian as
L(Γ). Also fix a dimension d, 1 ≤ d < n, as the dimension of the Euclidean space in
which the circuit is to be built, e.g. d = 2, or d = 3. Then the set of circuit graphs Γ
that meet a wiring cost constraint Wd under optimal placement is

G(Wd) =

{
Γ :

d+1∑
i=2

λi(L(Γ)) ≤ Wd

}
. (3.1)

The design problems to be solved are as follows.

Problem 3.1 (Eigenratio). Find the following functionality-cost function:

bρ(Wd) = max
G∈G(Wd)

ρ(L(G)) = max
G∈G(Wd)

λ2(L(G))

λn(L(G))
. (3.2)
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Also find optimizing graphs

G∗
ρ(Wd) = argmax

G∈G(Wd)

ρ(L(G)) = argmax
G∈G(Wd)

λ2(L(G))

λn(L(G))
. (3.3)

Problem 3.2 (Algebraic Connectivity). Find the following functionality-cost
function:

bλ(Wd) = max
G∈G(Wd)

λ2(L(G)). (3.4)

Also find optimizing graphs

G∗
λ(Wd) = argmax

G∈G(Wd)

λ2(L(G)). (3.5)

When d = 1, the objective function and the constraint coincide. Primary interest
here, however, is in d = 2 or d = 3.

One might also consider the opposite problems of finding Wd(bρ) and Wd(bλ).
There may be slight differences, just like there are slight differences between the
cost-distortion function and the distortion-cost function in information theory [55].

Problems 3.1 and 3.2 formalize optimization of decoding functionality under in-
frastructure cost constraints. There has been some previous work looking at trade-offs
between functionality and cost in physical networks. For spatial distribution networks,
the relationship between the lengths of paths from each node to the root node and
the sum of the lengths of all paths in the network is discussed in [87]. Elsewhere, it
has been suggested that neuronal networks are not exclusively optimized for minimal
global wiring, but also for factors including minimization of computational processing
steps [119].4 A trade-off between algorithm performance and communication cost has
also been discussed as a network design problem [91]. Ghosh and Boyd briefly discuss
optimizing λ2(L) when costly links may be added to a network [113].

� 3.5 Optimal Decoding Circuits with Costly Wires

The goal of this section is to design optimal consensus decoding circuits under wiring
cost constraints by solving Problems 3.1 and 3.2.

� 3.5.1 Optimization is NP-Hard

The decoding circuit design problems as defined are optimizations over graph Lapla-
cians, which are discrete objects. A Laplacian matrix is symmetric, positive semidef-
inite, each row sums to zero, and its off-diagonal elements are either zero or minus
one. Conversely, if L is any n×n matrix that satisfies these conditions, then it is the
Laplacian of some graph on n nodes [121]. The set of Laplacian matrices is

L = {L ∈ Rn×n : L = LT , L ≽ 0, L1⃗ = 0, Lij ∈ {0,−1} for i ̸= j}.
4Note however that when discussing ‘processing,’ average path lengths rather than measures that

take actual computations into account are used; see also [36,120].
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Since L is a discrete space, the optimization problems are integer programs, which
are often difficult to solve. The difficulty of solving the algebraic connectivity with
wiring costs problem, Problem 3.2, may be analyzed using computational complexity
theory [122].

Before proceeding, define the decision version of the optimal algebraic connectivity
optimization problem without any wiring cost constraints.

Problem 3.3. Maximum Algebraic Connectivity Augmentation

• Given an undirected graph G = (V,E), a non-negative integer k, and a non-
negative threshold θ,

• Seek a subset A ⊆ Ec of size |A| ≤ k such that the graph H = (V,E ∪ A)
satisfies λ2(H) ≥ θ.

Now impose wiring costs on this decision problem to obtain the problem of interest.

Problem 3.4. Maximum Algebraic Connectivity Augmentation with Wiring
Costs

• Given an undirected graph G = (V,E), a non-negative integer k, a non-negative
threshold θ, and a non-negative wiring cost Wd,

• Seek a subset A ⊆ Ec of size |A| ≤ k such that the graph H = (V,E ∪ A)
satisfies λ2(H) ≥ θ and

∑d+1
i=2 λi(H) ≤ Wd.

The first thing to note is that when given a solution to Problem 3.4, it may be
verified in polynomial time.

Theorem 3.2. Problem 3.4 is in class NP.

Proof. Eigenvalues of a matrix of size n×n can be computed in polynomial time O(n3)
with Gaussian elimination, so as to verify the algebraic connectivity and wiring cost
requirements.

Although a solution to Problem 3.4 can be verified in polynomial time, finding a
solution may be difficult. Some lemmas needed to prove the computational complexity
of finding a solution are given after the statement and proof of this main result.

Theorem 3.3. Problem 3.4 is NP-complete.

Proof. Problem 3.4 is in class NP, by Theorem 3.2. Moreover, one can restrict Prob-
lem 3.4 to Problem 3.3 by only allowing instances having Wd = nd. This is the
largest wiring cost possible for a graph with n vertices (achieved by a complete graph,
Lemma 3.2). Since Problem 3.3 is a special case of Problem 3.4 and it is NP-complete
(Lemma 3.1), the result follows from the special-case reduction [122].

Lemma 3.1 ( [123]). Problem 3.3 is NP-complete.

Proof. Constructing a reduction from 3-colorability by creating a graph that is three
disjoint copies of the graph G and making use of algebraic connectivity properties of
the complete tripartite graph yields the desired result.

Lemma 3.2. The complete graph on n vertices, n > 2, has the following Laplacian
eigenspectrum: λ1 = 0, λ2 = · · · = λn = n.
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Figure 3-2. Eigenratio as a function of quadratic wiring cost under optimal non-trivial placement
in R2 for all connected graphs on n = 7 vertices. The upper convex hull of these achievable
functionality-cost points is denoted by the gray line. Points on the upper convex hull are circled.

� 3.5.2 Small Optimal Decoding Circuits

Although designing decoding circuits optimally is computationally difficult, optimal
circuits of small size can be determined. This design procedure is carried out here
and exact solutions are found.

One may list all connected unlabeled graphs on n nodes [124, A001349] and cal-
culate their cost and functionality values [125]. Since cospectral graphs exist, the
number of graphs that need to be checked is smaller than the number of connected
unlabeled graphs; the number of unlabeled graphs with distinct Laplacian spectra are
given in [126, Table 1]. Besides using the sense of optimality defined in Problems 3.1
and 3.2, a stronger sense of optimality—seeking points on the upper convex hull of
functionality-cost pairs—is considered here.

First, optimal decoding circuits of size n = 7 are computed. Figure 3-2 shows the
eigenratio ρ(L) as a function of optimized 2-dimensional wiring cost W2 = λ2(L) +
λ3(L) for all possible connected circuit graphs. The upper convex hull of achievable
functionality-cost points, the boundary of optimality, is also shown. Figure 3-3 shows
the eigenratio as a function of optimized 3-dimensional wiring cost W3 = λ2(L) +
λ3(L) + λ4(L).

Considering algebraic connectivity as the notion of functionality, Figure 3-4 shows
λ2(L) as a function of optimized 2-dimensional wiring cost W2; the upper convex hull
is the straight line dλ2(L) = Wd, in this case 2λ2 = W2. Figure 3-5 shows λ2(L) as
a function of optimized 3-dimensional wiring cost W3. Again, the achievable straight
line upper bound dλ2(L) = Wd, here 3λ2(L) = W3, is evident. In fact, this upper
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Figure 3-3. Eigenratio as a function of quadratic wiring cost under optimal non-trivial placement
in R3 for all connected graphs on n = 7 vertices. The upper convex hull of these achievable
functionality-cost points is denoted by the gray line. Points on the upper convex hull are circled.

bound always holds and is always achievable.

Proposition 3.1. Solutions to the algebraic connectivity problem, Problem 3.2, sat-
isfy

bλ(Wd) ≤
Wd

d
,

and there exists at least one circuit that achieves the bound with equality for any
admissible n and d.

Proof. Choose an admissible pair n and d. The bound

dλ2(L) ≤
d+1∑
i=2

λi(L)

follows directly from the ordering λ2(L) ≤ λ3(L) ≤ · · · ≤ λn(L), and therefore optimal
graphs must obey

bλ(Wd) ≤
Wd

d
=

1

d

d+1∑
i=2

λi(L).

The bound is achievable with equality for complete graphs, which have dλ2(L) =
Wd = nd, as follows from Lemma 3.2.

The five optimal decoding circuits in R2, in the sense of upper convex hull for
the eigenratio, are shown in Figure 3-6; they are drawn in a minimum wiring cost
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Figure 3-4. Algebraic connectivity as a function of quadratic wiring cost under optimal non-trivial
placement in R2 for all connected graphs on n = 7 vertices. The upper convex hull of these achievable
functionality-cost points is denoted by the gray line. Points on the upper convex hull are circled.
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Figure 3-5. Algebraic connectivity as a function of quadratic wiring cost under optimal non-trivial
placement in R3 for all connected graphs on n = 7 vertices. The upper convex hull of these achievable
functionality-cost points is denoted by the gray line. Points on the upper convex hull are circled.

53



Figure 3-6. All circuits that are on the upper convex hull of achievable eigenratio-cost points in
R2. Circuits drawn in a minimal wiring cost configuration (note that this may not be unique, even
up to translation/rotation if some eigenvalues have multiplicity greater than 1).

n k(n) Kλ(n) Kρ(n) Kλ∩ρ(n)

2 1 1 1 1
3 2 2 2 2
4 6 3 3 3
5 21 8 3 3
6 112 22 4 4
7 853 62 5 5
8 11117 231 6 6

Table 3.1. Number of optimal decoding circuits in R2

configuration in order of increasing wiring cost. Three of these five decoding circuit
graphs are also optimal in R3.

Although the optimal circuits have some aesthetic appeal, they do not have any
extremal properties in terms of symmetry, as measured by circuit graph automorphism
group order.

The optimal decoding circuits for the eigenratio problem in R2 are a strict subset
of the optimal circuits for the algebraic connectivity problem in R2. There are 62 non-
isomorphic circuit graphs that lie on the upper convex hull; some of these circuits
are shown in Figures 3-6 and 3-7. The fact that the optimal circuits for Problem 3.1
are a strict subset of the optimal circuits for Problem 3.2 for n = 7 is an example of
assertions that optimizing λ2(L) leads to optimal ρ(L) [39, 93].

The solution containment property, that decoding circuits that achieve perfor-
mance on the upper convex hull of bρ(Wd) are a subset of the decoding circuits that
achieve performance on the upper convex hull of bλ(Wd), holds for small n circuits
but does not hold in general. Tables 3.1 and 3.2 list the number of connected graphs
k(n) [124, A001349], how many are optimal for algebraic connectivity Kλ(n), how
many are optimal for eigenratio Kρ(n), and how many optimal graphs for eigenratio
are also optimal for algebraic connectivity Kλ∩ρ(n). Among the 14 rows in the tables,
the containment property holds for 13 of them. It does not hold for decoding circuits
in R3 of size n = 8, since Kλ∩ρ(8) < Kρ(n).

Figures 3-8 and 3-9 show results for n = 8 in R2; there are many similarities
to the n = 7 case. Observe that there are many more functionality-cost points
for the larger dimension, as also evident in Table 3.1. The counterexample to the
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Figure 3-7. Some other circuits that are on the upper convex hull of achievable algebraic
connectivity-cost points in R2. Circuits drawn in a minimal wiring cost configuration (note that
this may not be unique, even up to translation/rotation if some eigenvalues have multiplicity greater
than 1).

n k(n) Kλ(n) Kρ(n) Kλ∩ρ(n)

2 1 1 1 1
3 2 2 2 2
4 6 3 3 3
5 21 2 2 2
6 112 10 9 9
7 853 21 5 5
8 11117 61 6 4

Table 3.2. Number of optimal decoding circuits in R3
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Figure 3-8. Eigenratio as a function of quadratic wiring cost under optimal non-trivial placement
in R2 for all connected graphs on n = 8 vertices. The upper convex hull of these achievable
functionality-cost points is denoted by the gray line. Points on the upper convex hull are circled.

containment property for n = 8 in R3 is displayed in Figures 3-10 and 3-11. These
figures demonstrate that the general principle that circuits optimal for the eigenratio-
cost trade-off are good for the algebraic connectivity-cost trade-off remains reasonably
valid if not precisely so.

� 3.5.3 Natural Relaxation is Reverse Convex Minimization

Although the previous section presented some general results, the focus was on exact
solutions for small circuit size. Exhaustive numerical solutions may be determined for
larger numbers of nodes, but the task of listing graphs on larger n becomes computa-
tionally difficult. Given that even simple decoding networks-on-chip [127], neuronal
networks of small organisms [36,128], and small wired sensor networks have n≫ 10,
there is value in studying the natural relaxation to Problem 3.2, which may be useful
for designing large decoding circuits.

Let CL be the convex hull of the set of all Laplacian matrices, L. CL is the set
of symmetric, positive semidefinite matrices, with zero row sums, and off-diagonal
elements between minus one and zero.

CL = {L ∈ Rn×n : L = LT , L ≽ 0, L1⃗ = 0,−1 ≤ Lij ≤ 0 for i ̸= j}.

The Courant-Fischer idea essentially yields concavity properties of λ2(L).

Proposition 3.2. The algebraic connectivity λ2 is a concave function of L on CL.
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Figure 3-9. Algebraic connectivity as a function of quadratic wiring cost under optimal non-trivial
placement in R2 for all connected graphs on n = 8 vertices. The upper convex hull of these achievable
functionality-cost points is denoted by the gray line. Points on the upper convex hull are circled.
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Figure 3-10. Eigenratio as a function of quadratic wiring cost under optimal non-trivial placement
in R3 for all connected graphs on n = 8 vertices. The upper convex hull of these achievable
functionality-cost points is denoted by the gray line. Points on the upper convex hull are circled;
two of these points are further marked by red squares.
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Figure 3-11. Algebraic connectivity as a function of quadratic wiring cost under optimal non-
trivial placement in R3 for all connected graphs on n = 8 vertices. The upper convex hull of these
achievable functionality-cost points is denoted by the gray line. Points on the upper convex hull are
circled. Red squares give the performance of the circuits marked in Figure 3-10.

Proof. Each L ∈ CL is positive semidefinite and has λ1(L) = 0, with corresponding
eigenvector 1⃗. Thus λ2(L) may be expressed as

λ2(L) = inf{sTLs : ∥s∥2 = 1 and 1⃗T s = 0}.

For each s ∈ Rn that satisfies ∥s∥2 = 1 and 1⃗T s = 0, sTLs is a linear (and therefore
also concave) function of L. The formula shows that λ2(L) is the infimum of a family
of concave functions in L, and is therefore also a concave function of L.

A generalization of Proposition 3.2 also holds and is proven similarly.

Proposition 3.3. The sum of the k smallest eigenvalues of L,

g(L) =
k∑

i=2

λi(L)

is a concave function of L.

Proof. The sum of the smallest eigenvalues may be expressed in variational form as

g(L) =
k∑

i=2

λi(L) =
k∑

i=1

λi(L)

= inf{trace
[
STLS

]
: S ∈ Rn×k and STS = I}.
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Note that STLS is a linear (and therefore also concave) function of L. The formula
shows that g(L) is the infimum of a family of concave functions in L, and is therefore
also a concave function of L.

Recall the algebraic connectivity problem, Problem 3.2, but now consider matrices
in CL rather than in L. This relaxed problem is a reverse convex program, defined
as follows.

Definition 3.1 ( [129]). The optimization problem

min f(z)

subject to z ∈ D\C

is a reverse convex program when f(z) is a convex function, D is a closed convex set,
C is an open convex set, and D and C are given by explicit convex inequalities.

Proposition 3.4. Considering L ∈ CL, the optimization problem:

max λ2(L)

subject to
d+1∑
i=2

λi(L) ≤ Wd

is a reverse convex program.

Proof. The function λ2(L) is concave, by Proposition 3.2. Maximizing a concave func-
tion is equivalent to minimizing a convex function, so the first condition is satisfied.
The set CL is a closed convex set given by an explicit convex inequality. The wiring
cost constraint excludes the set{

L ∈ CL :
d+1∑
i=2

λi(L) > Wd

}
,

which by Proposition 3.3, is an open convex set given by an explicit convex inequality.
Thus the second condition is satisfied.

One may note that without the wiring cost constraint, the natural relaxation
would have been a convex program [113]. There are several standard techniques for
solving reverse convex programs [129–131], which may be used for the relaxed version
of the cost-limited algebraic connectivity optimization problem. A heuristic such as
rounding may be used to convert a solution for the relaxed problem into a solution
for the algebraic connectivity problem, Problem 3.2.

Good decoding circuits for the wiring cost-limited eigenratio problem can then be
found from circuits that have large algebraic connectivity.

It remains to implement and test this relaxation-based circuit design method.
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Figure 3-12. Algebraic connectivity as a function of quadratic wiring cost under optimal non-
trivial placement in R2 for 100 random graphs each on n = 500 vertices for several different values
of κ. An upper bound is denoted by the gray line.

� 3.6 Random Decoding Circuits

As an alternative to explicitly designing decoding circuits, one might wonder whether
decoding circuits chosen at random perform well. Random circuits may be easier
to manufacture at nanoscale [132]. Olfati-Saber studied the algebraic connectivity
of graphs created by randomly rewiring regular lattices [133], along the lines of the
Watts-Strogatz small-world graph ensemble [134]. The Erdös-Rényi random graph
ensemble is obtained when all edges are randomly rewired, so that any edge is an
i.i.d. Bernoulli random variable. Through simulations, it was found that increasing
the level of random rewiring can greatly increase the algebraic connectivity while
not increasing the Laplacian spectral radius too much. Thus the random rewiring
procedure can also increase the eigenratio by a large amount.

Some simulations of Erdös-Rényi random graphs were carried out to test whether
the random ensemble yields decoding circuits that provide good trade-offs between
convergence speed and wiring cost. Figures 3-12 and 3-13 display the algebraic con-
nectivities and wiring costs of 100 random circuits each of size n = 500 for several
different edge existence probabilities κ. The upper bound from Proposition 3.1 is
shown for comparison. As evident, random circuits perform well. Figures 3-14 and
3-15 display the eigenratios and wiring costs of these random circuits.

Beyond the simulation results, one might wonder whether one can use random
matrix theory [135, 136] to say something more. The following concentration results
that hold asymptotically almost surely can be proven.
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Figure 3-13. Algebraic connectivity as a function of quadratic wiring cost under optimal non-
trivial placement in R3 for 100 random graphs each on n = 500 vertices for several different values
of κ. An upper bound is denoted by the gray line.
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Figure 3-14. Eigenratio as a function of quadratic wiring cost under optimal non-trivial placement
in R2 for 100 random graphs each on n = 500 vertices for several different values of κ.
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Figure 3-15. Eigenratio as a function of quadratic wiring cost under optimal non-trivial placement
in R3 for 100 random graphs each on n = 500 vertices for several different values of κ.

Theorem 3.4 ( [137, 138]). The algebraic connectivity λ2(L) and Laplacian spectral
radius λn(L) of an Erdös-Rényi random graph with n vertices and probability κ of an
edge being present asymptotically almost surely satisfy the following. For any ϵ > 0,

κn− f+
ϵ (n) < λ2(L) < κn− f−

ε (n)

and
κn+ f−

ε (n) < λn(L) < κn+ f+
ϵ (n),

where
f+
ϵ (n) =

√
(2 + ϵ)κ(1− κ)n log n

and
f−
ϵ (n) =

√
(2− ϵ)κ(1− κ)n log n.

This further implies that:

Corollary 3.1. The Laplacian eigenvalues λi(L) of an Erdös-Rényi random graph
with n vertices and probability κ of an edge being present asymptotically almost surely
satisfy the following. For any ϵ > 0,

κn− f+
ϵ (n) < λ2(L) ≤ λ3(L) ≤ · · · ≤ λn(L) < κn+ f+

ϵ (n).

Proof. Follows directly from Theorem 3.4 by noting that f−
ϵ (n) < f+

ϵ (n) and the
ordering λ2(L) ≤ λ3(L) ≤ · · · ≤ λn(L).
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Figure 3-16. Eigenratio as a function of quadratic wiring cost under optimal non-trivial placement
in R for 100 random graphs each on n = 500 vertices for several different values of κ. The asymptotic
approximation from random matrix theory is shown as a gray line.

These concentration results imply that for large n, a decoding circuit constructed
according to a graph selected from the Erdös-Rényi ensemble will almost surely behave
like any other. Moreover, the decoding speed parameters will be approximately given
by relatively simple functions of n and κ:

λ2(L) ≈ κn−
√
2κ(1− κ)n log n

and

ρ(L) ≈
κn−

√
2κ(1− κ)n log n

κn+
√

2κ(1− κ)n log n
.

As shown in Figure 3-16 for n = 500 and decoding circuits in R (where W1 = λ2(L)),
these asymptotic approximations do predict the properties of randomly designed de-
coding circuits well.

� 3.7 Discussion

This chapter used the framework of consensus decoding of binary repetition codes
to convey the concept that material costs of decoding circuits might limit function-
ality. Moving beyond repetition codes, one might consider the effects of wiring cost
limitations on general factor graph synthesis [48, Chapter 11], [65].

Problem 3.1 and Problem 3.2 formalized trade-offs between functionality, as mea-
sured by convergence speed of decoding, and wiring cost, as measured under optimal

63



placement. Using an enumerative strategy for the NP-complete problem, some opti-
mal circuits for small n were found. An approach based on reverse convex program
relaxations was suggested as a principled method for designing larger circuits that
are close to optimal. Random design of decoding circuits was also investigated, using
the Erdös-Rényi graph ensemble. It would be of further interest to test other random
graph ensembles, such as exponential random graphs [139–142].

The basic mathematical formulation of the problem considered in this chapter
may also inform engineering general distributed systems [88], such as sensor networks.
These systems are often tasked to perform distributed detection, which is equivalent
to decoding repetition codes. Like wiring, free-space radio propagation has quadratic
attenuation cost in the length of the links. Moreover, nodes may be positioned in
space to optimize performance.

The results given in this chapter may not only have conceptual implications for
synthesis of engineered systems, but also for analysis of natural information-processing
systems [36, 38, 119, 120]. One may further note that the eigenratio determines the
speed of synchronization of networks of coupled oscillators [143, 144] and that the
algebraic connectivity is central to rubber elasticity theory in polymer science [145].

� 3.A Review of Algebraic Graph Theory

The eigenvalues and eigenvectors of certain matrices associated with graphs are often
of central importance in understanding the properties of dynamical systems defined
on those graphs.

Let G = (V,E) be a graph with vertex set V of cardinality n and edge set E ⊆
V × V . Let A be the adjacency matrix of the graph. Let dj indicate the degree of
vertex j and let D be the degree matrix of the graph, which takes value dj along
the diagonal and value 0 otherwise. The Laplacian matrix of a graph, L, satisfies
L = D − A. Explicitly, its entries are

Lij =


−1, (i, j) ∈ E

di, i = j

0, otherwise.

The Laplacian matrix is sometimes called the Kirchhoff matrix. The eigenvalues of L
are denoted λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). Since L is symmetric, all of its eigenvalues
are real and eigenvectors corresponding to different eigenvalues are orthogonal.

Let K be the n × |E| incidence matrix, where the columns are indexed by the
edges and the rows are indexed by the vertices. After fixing an orientation for each
edge, and for each column, the matrix is constructed as follows. For each edge, place
+1 in the row corresponding to the positive end and −1 in the row corresponding to
the negative end; all other entries are zero. Evidently, L = KKT . If λ is an eigenvalue
of L with associated eigenvector s,

λ∥s∥2 = ⟨λs, s⟩ = ⟨KKT s, s⟩ = ⟨KT s,KT s⟩ = ∥KT s∥2 ≥ 0.
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Figure 3-17. A pair of non-isomorphic graphs with identical Laplacian spectra.

Thus the Laplacian matrix of every graph is positive semidefinite and its eigenvalues
are non-negative. Furthermore, since the row sums of L are all zero, the all-ones
vector 1⃗ is an eigenvector with eigenvalue λ1 = 0. The multiplicity of the eigenvalue
0 determines the number of connected components in the graph; if λ2(L) > 0, then
the graph is a single connected component.

The celebrated Courant-Fischer min-max theorems endow the eigenvalues with
certain optimality properties. In particular,

λ2(L) = min
{s∈Rn: s̸=0⃗ and s⊥1⃗}

⟨s, Ls⟩
⟨s, s⟩

,

where 0⃗ is the all-zero vector. This second smallest eigenvalue λ2(L) is called the
algebraic connectivity of the graph. The largest eigenvalue satisfies

λn(L) = max
{s∈Rn: s ̸=0⃗ and s⊥1⃗}

⟨s, Ls⟩
⟨s, s⟩

.

The largest eigenvalue λn(L) is called the spectral radius of the graph Laplacian. The
eigenratio, ρ(L) = λ2(L)/λn(L), may also be defined.

Several non-isomorphic graphs may share the same Laplacian eigenspectrum, how-
ever characterizing such cospectral graphs is difficult [126,146]. An example of a pair
of cospectral graphs is shown in Figure 3-17.

There is no precise characterization of how the Laplacian spectrum of a graph
changes when edges are added or deleted. There are bounds [147–149], including
ones on the relationship between λ2(L) and λn(L) [150].
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Chapter 4

Infrastructure Costs—Memory

The previous chapter was concerned with the costs of wiring in decoding circuits.
This chapter focuses on another resource that might be constrained in constructing
decoding circuits: memory. Though memory is outwardly an informational resource,
it is ultimately limited by physical resource constraints [40, 151–153]. This chapter
considers settings where memory constraints may limit the number of decoding rules
that can be stored by a decoder for situations where any member of a family of sources
might be communicating. It is assumed that both the encoder and the decoder
have access to perfect source state information, but that the decoder has limited
adaptability due to the memory constraint. As a consequence, only a finite set of
decoding rules may be used and the rule will almost surely be mismatched [42] if the
family of sources is parameterized by an absolutely continuous random variable.

To explore trade-offs between information storage at the decoder and information
transmission performance of the overall communication system, focus is placed on un-
coded transmission with Bayes risk optimal decoding. In particular, a class of sources
{p(θ)W (w)}Θ∈T is parameterized by the random variable Θ, which itself is distributed

according to pΘ(θ). That is to say, a source p
(θ)
W (w) is selected by drawing its identity

θ at random according to pΘ(θ). The memory constraint forces quantization of Θ
into K quantization cells that partition T .

For human decision-makers, one would expect K to be small since classical exper-
iments in cognitive science demonstrate that people have limited memory [157]. For
electronic decoders, one would expect K to be large but finite since there is typically
a fair amount of storage capacity [152]; high-rate quantization theory would therefore
be particularly relevant.

WhenK = 1, the decoder knows nothing about which source is feeding the channel
except the distributional characterization pΘ(θ), similar to the weighted formulation
of universal information theory [154]. WhenK > 1, knowledge of the quantization cell
may yield better decoding. Quantization of source identity Θ is similar to quantization
of channel state information for systems with rate-constrained feedback [155, 156].
For K → ∞, the precise source is known to the decoder and the problem reduces
to straightforward uncoded transmission, as described in Section 2.3. The goal here
is to choose a quantization scheme for Θ with 1 < K < ∞ cells that optimizes the
Bayes risk in decoding with respect to the class of sources and the communication
channel. The formulation is also extended to the setting where there are numerous
classes of sources that must be quantized.
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The remainder of the chapter is organized as follows. Section 4.1 frames the
problem of quantizing prior probabilities for Bayesian hypothesis testing (uncoded
transmission). Optimal low-rate quantization is discussed in Section 4.2; designs us-
ing dynamic programming and using the Lloyd-Max algorithm are derived using mean
Bayes risk error as a distortion measure for quantization. A high-resolution approxi-
mation to the distortion-rate function is obtained in Section 4.3. Examples are given
in Section 4.4. An extension to several classes of sources is provided in Section 4.5
and implications for human decision-making and the information economics of social
discrimination are presented. Section 4.6 gives some further discussion of results.

� 4.1 Population Decoding

Consider the uncoded transmission scenario with M possible messages, {0, . . . ,M −
1}. Message m has probability pm of being transmitted, pm = pW (m), and the
overall prior probability vector is θ = [p0, . . . , pM−1]

T , with non-negative entries
and

∑M−1
m=0 pm = 1, which is known. The message is transmitted over a channel

pY |X(y|x) = pY |W (y|w), and the decoder is to recover w from y. Optimal Bayesian
hypothesis testing, as described in Section 2.3, minimizes Bayes risk [158].

Now consider a family of sources {p(θ)W (w)}Θ∈T , each as above, with its own prior
probability vector drawn from the distribution pΘ(θ) supported on the (M − 1)-

dimensional probability simplex. The parameterized family of sources, ({p(θ)W (w)}Θ, pΘ(θ)),
is also called a population. If the prior probability vector of each source were used
perfectly by the decoder, then there would be no difference from standard Bayesian
hypothesis testing.

The setting considered here, however, limits the decoder to work with at most
K different prior probability vectors. A two-stage architecture with separation is
imposed. When there are more than K sources in the population, the decoder first
maps the true prior probability vector of the source being used to one of the K
available vectors and then proceeds to perform the optimal Bayesian hypothesis test,
treating that vector as the prior probabilities of the source.

An example of such a constrained decoding scenario is that of human decision
making, e.g. in sports officiating. A referee decides whether a player has committed a
foul using his or her noisy observation as well as prior experience. Players commit fouls
with different frequencies; some players are dirtier or more aggressive than others.
This normalized frequency is the prior probability for the ‘foul committed’ message.
Hence, there is a distribution of prior probabilities over the population of players.
If the referee tunes the prior probability to the particular player whose action is to
be decoded, performance improves. Human decision makers, however, are limited
in their information-processing capacity and only use a small number of categories
[159]. The referee is thus limited and categorizes players into a small number of
dirtiness levels, with associated representative prior probabilities, exactly the scenario
described above.

Previous work that combines decoding and quantization looks at quantization of
channel outputs, not source probabilities, and also only approximates the Bayes risk
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function instead of working with it directly, e.g. [160–162] and references therein and
thereto. In such work, there is a further communication constraint between the chan-
nel and the decoder, but the decision maker has unconstrained processing capability.
This work deals with the opposite case, where there is no further communication
constraint between the channel and the decoder, but the decoder is constrained.

The mapping from prior probability vectors in the population to one of K rep-
resentative probability vectors will be optimized using quantization theory, but first
mean Bayes risk error (MBRE) is defined as the fidelity criterion for quantization of
Θ. A brief look at imperfect priors appears in [163, Sec. 2.E], but optimal quanti-
zation was not considered. Further results show that small deviations from the true
prior yields small deviations in the Bayes risk [164,165].

� 4.1.1 Mismatch and Bayes Risk Error

This section defines mismatched decoding and how its performance is measured using
MBRE. It is restricted to the binary case, W = {0, 1}, where the channel implies
likelihood functions pY |W (y|0) and pY |W (y|1).

For a given source, let the prior probabilities be θ = Pr[W = 0] and 1 − θ =
Pr[W = 1]. A decoding function fD is designed to uniquely map each y to either 0
or 1 so as to minimize Bayes risk J , an expectation over the non-negative Bayes cost
functions cij (of which at least one is positive). Section 2.3 shows that fD should be
the likelihood ratio test. Recall that the two kinds of errors:

P I
e = Pr[fD(Y ) = 1|W = 0],

P II
e = Pr[fD(Y ) = 0|W = 1]

may be used to express the Bayes risk as

J = (c10 − c00)θP
I
e + (c01 − c11)(1− θ)P II

e + c00θ + c11(1− θ). (4.1)

It is often of interest to assign no cost to correct decisions, i.e. c00 = c11 = 0, which
is assumed in the sequel. The Bayes risk simplifies to

J(θ) = c10θP
I
e(θ) + c01(1− θ)P II

e (θ). (4.2)

In (4.2), the dependence of the Bayes risk and error probabilities on θ has been
explicitly noted. The error probabilities depend on θ through fD(·). The function
J(θ) is zero at the points θ = 0 and θ = 1 and is positive-valued, strictly concave,
and continuous in the interval (0, 1) [158,166,167].

When the true prior probability is θ, but fD(y) is designed according to the
likelihood ratio test (2.1) using some other value a substituted for θ, there is mismatch,
and the Bayes risk is

J(θ, a) = c10θP
I
e(a) + c01(1− θ)P II

e (a). (4.3)

The mismatched Bayes risk J(θ, a) is a linear function of θ with slope (c10P
I
e(a) −
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c01P
II
e (a)) and intercept c01P

II
e (a). Note that J(θ, a) is tangent to J(θ) at a and that

J(θ, θ) = J(θ).
Let Bayes risk error d(θ, a) be the difference between the mismatched Bayes risk

function J(θ, a) and the matched Bayes risk function J(θ, θ):

d(θ, a) = J(θ, a)− J(θ, θ)

= c10θP
I
e(a) + c01(1− θ)P II

e (a)− c10θP
I
e(θ)− c01(1− θ)P II

e (θ). (4.4)

Several useful properties of d(θ, a) as a function of θ and as a function of a may
be proven.

Theorem 4.1. The Bayes risk error d(θ, a) is non-negative and only equal to zero
when θ = a. As a function of θ ∈ (0, 1), it is continuous and strictly convex for all a.

Proof. Since J(θ) is a continuous and strictly concave function, and lines J(θ, a)
are tangent to J(θ), J(θ, a) ≥ J(θ) for all θ and a, with equality when θ = a.
Consequently, d(θ, a) is non-negative and only equal to zero when θ = a. Moreover,
d(θ, a) is continuous and strictly convex in θ ∈ (0, 1) for all a because it is the difference
of a continuous linear function and a continuous strictly concave function.

Lemma 4.1. Let C be an arbitrary constant and let β and γ be arbitrary positive
constants. Let G(a) = βP I

e (a) + γP II
e (a) + C. Then for any deterministic likelihood

ratio test fD(·), as a function of a ∈ (0, 1) for all θ, G(a) has exactly one stationary
point, which is a minimum.

Proof. Consider the parameterized curve (P I
e , P

II
e ) traced out as a is varied; this is a

flipped version of the receiver operating characteristic (ROC). The flipped ROC is a
strictly convex function for deterministic likelihood ratio tests. At its endpoints, it
takes values (P I

e = 0, P II
e = 1) when a = 1 and (P I

e = 1, P II
e = 0) when a = 0 [158],

and therefore has average slope −1. By the mean value theorem and strict convexity,
there exists a unique point on the flipped ROC at which

dP II
e

dP I
e

= −1.

To the left of that point: −∞ < dP II
e /dP

I
e < −1, and to the right of that point:

−1 < dP II
e /dP

I
e < 0.

For deterministic likelihood ratio tests, β d
da
P I
e(a) < 0 and γ d

da
P II
e (a) > 0 for all

a ∈ (0, 1) and positive constants β and γ [158]. Therefore, if

γdP II
e

βdP I
e

< −1,

i.e.
γdP II

e

da

da

βdP I
e

< −1,

then

γ
dP II

e

da
> −βdP

I
e

da
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and

β
dP I

e

da
+ γ

dP II
e

da
> 0.

In the same manner, if
γdP II

e

βdP I
e

> −1,

then

β
dP I

e

da
+ γ

dP II
e

da
< 0.

Combining the above, the function βP I
e(a) + γP II

e (a) has exactly one stationary
point in (0, 1), which occurs when the slope of the flipped ROC is −β/γ. Denote
this stationary point as as. For 0 < a < as, −1 < dP II

e /dP
I
e < 0 and the slope of

βP I
e(a) + γP II

e (a) is negative; for as < a < 1, −∞ < dP II
e /dP

I
e < −1 and the slope of

βP I
e(a) + γP II

e (a) is positive. Therefore, as is a minimum.

Theorem 4.2. For any deterministic likelihood ratio test fD(·) and for any fixed θ,
as a function of a ∈ (0, 1) the Bayes risk error d(θ, a) has exactly one stationary
point, which is a minimum.

Proof. As a function of a, the Bayes risk error d(θ, a) is directly seen to be of the
form βP I

e(a)+γP
II
e (a)+C. Hence, by Lemma 4.1 it has exactly one stationary point,

which is a minimum.

Definition 4.1. A continuous function f : R 7→ R is defined to be quasiconvex when
one of the following hold:

• f is non-decreasing,

• f is non-increasing, or

• there is a point c in the domain of f such that for t ≤ c (and t in the domain
of f), f(t) is non-increasing and also for t ≥ c (and t in the domain of f), f(t)
is non-decreasing.

An alternate definition is through a Jensen-like inequality. The function f is
quasiconvex if and only if:

f(λx+ (1− λ)y) ≤ max(f(x), f(y))

for any x, y in the domain of f and any 0 ≤ λ ≤ 1.

Definition 4.2. The function f is defined to be strictly quasiconvex when

f(λx+ (1− λ)y) < max(f(x), f(y))

for any x, y in the domain of f and any 0 ≤ λ ≤ 1.

Corollary 4.1. For any deterministic likelihood ratio test fD(·), as a function of
a ∈ (0, 1) for all θ, the Bayes risk error d(θ, a) is strictly quasiconvex.
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Proof. Follows directly from Theorem 4.2.

Theorem 4.3. Let the function

g(a) =

∫ b2

b1

d(θ, a)pΘ(θ)dθ

for some arbitrary b1, b2 ∈ (0, 1). The function g(a) has exactly one stationary point,
which is a minimum. Moreover g(a) is strictly quasiconvex.

Proof. The function g(a) can be expressed as:

g(a) =

∫ b2

b1

d(θ, a)pΘ(θ)dθ

=

∫ b2

b1

[J(θ, a)− J(θ, θ)] pΘ(θ)dθ

(a)
= C +

∫ b2

b1

J(θ, a)pΘ(θ)dθ

= C +

∫ b2

b1

[
c10θP

I
e(a) + c01(1− θ)P I

e(a)
]
pΘ(θ)dθ

= C + c10P
I
e(a)

∫ b2

b1

θpΘ(θ)dθ + c01P
I
e(a)

∫ b2

b1

(1− θ)pΘ(θ)dθ

(b)
= C + βP I

e(a) + γP I
e(a),

where the quantity C is defined to be C = −
∫
J(θ, θ)pΘ(θ)dθ in step (a) and the

quantities β and γ are defined to be β = c10
∫
θpΘ(θ)dθ and γ = c01

∫
(1− θ)pΘ(θ)dθ

in step (b).
Then the result follows from Lemma 4.1.

As will become evident, these properties of d(θ, a) and g(a) are useful to design
optimal quantizers.

The third derivative of d(θ, a) with respect to θ is

− c10θ
d3P I

e(θ)
dθ3

− 3c10
d2P I

e(θ)
dθ2

− c01(1− θ)d
3P II

e (θ)
dθ3

+ 3c01
d2P II

e (θ)
dθ2

, (4.5)

when the constituent derivatives exist. When the third derivative exists and is con-
tinuous, d(θ, a) is locally quadratic, which is useful to develop high-rate quantization
theory for Bayes risk error fidelity [168].

To design quantizers of Θ, the MBRE E[d(θ, a)] will be minimized.

� 4.2 Optimal Quantization Design

Optimal fixed-rate quantizers for pΘ(θ) under Bayes risk error distortion are now
derived. A K-point quantizer partitions the interval [0, 1] (the two-dimensional prob-
ability simplex) into K regions R1, R2, . . . , RK . There is a representation point ak
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Figure 4-1. The intersection of the lines J(θ, ak), tangent to J(θ) at ak, and J(θ, ak+1), tangent
to J(θ) at ak+1, is the optimal interval boundary bk.

to which elements of each of these quantization regions Rk are mapped. For regular
quantizers, the regions are subintervals R1 = [0, b1], R2 = (b1, b2], . . . , RK = (bK−1, 1]
and the representation points ak are in Rk.

1 A quantizer can be viewed as a nonlinear
function vK(·) such that vK(θ) = ak for θ ∈ Rk. For a given K, the goal is to find
the quantizer that minimizes the MBRE:

D = E[d(Θ, vK(Θ))] =

∫
d(θ, vK(θ))pΘ(θ)dθ. (4.6)

� 4.2.1 Local Optimality Conditions

There is no closed-form solution to optimal quantizer design, but an optimal quantizer
must satisfy the nearest neighbor condition, the centroid condition, and the zero
probability of boundary condition [169–172]. These conditions for MBRE are now
developed.

Nearest Neighbor Condition

With the representation points {ak} fixed, an expression for the interval boundaries
{bk} is derived. Given any θ ∈ [ak, ak+1], if J(θ, ak) < J(θ, ak+1) then Bayes risk error
is minimized if θ is represented by ak, and if J(θ, ak) > J(θ, ak+1) then Bayes risk
error is minimized if θ is represented by ak+1. The boundary point bk ∈ [ak, ak+1] is
the abscissa of the point at which the lines J(θ, ak) and J(θ, ak+1) intersect. The idea
is illustrated graphically in Figure 4-1.

By manipulating the slopes and intercepts of J(θ, ak) and J(θ, ak+1), the point of

1Due to the strict convexity of d(θ, a) in θ for all a shown in Theorem 4.1, quantizers that satisfy
the necessary conditions for MBRE optimality are regular, see [169, Lemma 6.2.1]. Therefore, only
regular quantizers are considered.
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intersection is found to be:

bk =
c01
(
P II
e (ak+1)− P II

e (ak)
)

c01 (P II
e (ak+1)− P II

e (ak))− c10 (P I
e(ak+1)− P I

e(ak))
. (4.7)

Centroid Condition

With the quantization regions fixed, the MBRE is to be minimized over the {ak}.
Here, the MBRE is expressed as the sum of integrals over quantization regions:

D =
K∑
k=1

∫
Rk

(J(θ, ak)− J(θ, θ)) pΘ(θ)dθ. (4.8)

Because the regions are fixed, the minimization may be performed for each interval
separately.

Define I Ik =
∫
Rk
θpΘ(θ)dθ and I IIk =

∫
Rk

(1 − θ)pΘ(θ)dθ, which are conditional
means. Then:

ak = argmin
a

{
c10I

I
kP

I
e(a) + c01I

II
k P

II
e (a)

}
= argmin

a
g(a), (4.9)

where g(a) is as in Theorem 4.3. Since g(a) has exactly one stationary point, which is
a minimum, (4.9) is uniquely minimized by setting its derivative equal to zero. Thus,
ak is the solution to:

c10I
I
k

dP I
e(a)
da

∣∣∣
ak

+ c01I
II
k

dP II
e (a)
da

∣∣∣
ak

= 0. (4.10)

Commonly, differentiation of the two error probabilities is tractable; they are them-
selves integrals of the likelihood functions and the differentiation is with respect to
some function of the limits of integration.

Zero Probability Boundary Condition

The third necessary condition for quantizer optimality arises when dealing with prob-
ability distribution functions that contain a discrete component. Suppose there is a
quantizer that satisfies the nearest neighbor and centroid conditions, has two adjacent
representation points a1 < a2 so that the corresponding boundary point b1 separating
R1 and R2 is the suitably defined midpoint, and that b1 is an element of R1. Now
suppose that this value of b1 has positive probability mass. We modify the quantizer
by reassigning b1 to R2, which clearly does not affect the incurred distortion. The
centroid ofR1 however is now shifted so that a1 is no longer optimal and the distortion
can be reduced by replacing a1 with the new centroid. This exercise demonstrates
the necessity of requiring that the random variable Θ must have zero probability of
occurring at a boundary between quantization regions. When pΘ(θ) is absolutely
continuous, the zero probability of boundary condition is automatically satisfied.
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Necessity and Sufficiency

Theorem 4.4 ( [169–172]). The nearest neighbor condition, the centroid condition,
and the zero probability of boundary condition are necessary for a quantizer to be
optimal.

If additional conditions are met, then the necessary conditions for optimality are
also sufficient for local optimality.2

Theorem 4.5. If the following conditions hold for a source Θ and a distortion func-
tion d(θ, a):

1. pΘ(θ) is positive and continuous in (0, 1);

2.
∫ 1

0
d(θ, a)pΘ(θ)dθ is finite for all a; and

3. d(θ, a) is zero only for θ = a, is continuous in θ for all a, and is continuous
and quasiconvex in a,

then the nearest neighbor condition, centroid condition, and zero probability of bound-
ary conditions are sufficient to guarantee local optimality of a quantizer.

Proof. Minor extension of results in [173], by relaxing the requirement of convexity
of d(θ, a) in a to quasiconvexity of d(θ, a) in a.

Note that the first and second conditions of Theorem 4.5 are met by common
distributions such as the uniform distribution and the family of beta distributions
[174]. The third condition is satisfied by Bayes risk error, as given in Theorem 4.1
and Corollary 4.1.

� 4.2.2 Design using the Lloyd-Max Algorithm

Alternating between the nearest neighbor and centroid conditions, the iterative Lloyd-
Max algorithm can be applied to find minimum MBRE quantizers [169, 171, 172].
The algorithm is widely used because of its simplicity, effectiveness, and convergence
properties [175].

Algorithm 4.1 (Lloyd-Max).

1. Choose an arbitrary set of initial representation points {ak}.

2. For each k = 1, . . . , K set Rk = {θ | d(θ, ak) ≤ d(θ, aj) for all j ̸= k}.
2By local optimality, it is meant that the {ak} and {bk} minimize the objective function (4.6)

among feasible representation and boundary points near them. More precisely, a K-level quantizer
vK is locally optimal if for some δ > 0,∫ 1

0

d(θ, vK(θ))pΘ(θ)dθ ≤
∫ 1

0

d(θ, uK(θ))pΘ(θ)dθ

for everyK-level quantizer uK with boundaries βk and representation points αk satisfying |βk−bk| <
δ for k = 1, . . . ,K − 1 and |αk − ak| < δ for k = 1, . . . ,K.
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3. For each k = 1, . . . , K set ak = argminaE[d(Θ, a) | Θ ∈ Rk].

4. Repeat steps 2 and 3 until change in average distortion is negligible.

5. Revise {ak} and {Rk} to satisfy the zero probability of boundary condition.

The average distortion decreases or remains the same after each execution of
steps 2 and 3. Under the conditions of Theorem 4.5, the algorithm is guaranteed
to converge to a local optimum [171]. The algorithm may be run several times with
different initializations to find the global optimum.

Further conditions on d(θ, a) and pΘ(θ) are given in [173] for there to be a unique
locally optimal quantizer, i.e. the global optimum. If these further conditions for
unique local optimality hold, then the algorithm is guaranteed to find the globally
minimum MBRE quantizer.

Design of globally optimal quantizers is considered again in Section 4.2.3 using
a different optimization algorithm, but first it is demonstrated that increasing the
number of quantization levels K does not worsen quantization performance.

Monotonic Convergence in K

Theorem 4.6. Let

D∗(K) =
K∑
k=1

∫
R∗

k

d(θ, a∗k)pΘ(θ)dθ (4.11)

denote the MBRE for an optimal K-point quantizer. This function D∗(K) monoton-
ically converges as K increases.

Proof. The MBRE-optimalK-point quantizer is the solution to the following problem:

min
K∑
k=1

∫ bk

bk−1

d(θ, ak)pΘ(θ)dθ

subject to b0 = 0

bK = 1

bk−1 ≤ ak, k = 1, . . . , K

ak ≤ bk, k = 1, . . . , K. (4.12)

Adding the additional constraint bK−1 = 1 to (4.12) forced aK = 1 and degeneracy
of the Kth quantization region. The optimization problem for the K-point quantizer
(4.12) with the additional constraint is equivalent to the optimization problem for the
(K − 1)-point quantizer. Thus, the (K − 1)-point design problem and the K-point
design problem have the same objective function, but the (K − 1)-point problem has
an additional constraint. Therefore, D∗(K − 1) ≥ D∗(K).

Since d(θ, vK(θ)) ≥ 0, D = E[d(Θ, vK(Θ))] ≥ 0. The sequence D∗(K) is nonin-
creasing and bounded from below and hence converges.
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Mean Bayes risk error cannot get worse when more quantization levels are em-
ployed. In typical settings, as in Section 4.4, performance always improves with an
increase in the number of quantization levels.

� 4.2.3 Design using Dynamic Programming

Design of absolutely optimal quantizers for many different fidelity criteria is possible
through dynamic programming for discrete-valued Θ [176]. This section shows the
applicability of this design procedure for the MBRE criterion. The same method can
also be used to design approximately optimal quantizers for absolutely continuous Θ
through discretization, but care is warranted [177].

Designing the vK for a fixed number of levels K that minimizes D involves de-
termining both the representation points {ak} and the boundaries {bk}, but due to
the centroid condition, there is an optimal {ak} for any given {bk} and so only the
boundaries {bk} are designed here. Recall that there is no loss of optimality by only
considering regular quantizers.

Let 1D(β1, β2) be the minimum value of the expected distortion when one repre-
sentation point is placed in the interval (β1, β2) ⊆ (0, 1):

1D(β1, β2) = min
a

∫ β2

β1

d(θ, a)pΘ(θ)dθ.

Notice that this is a centroid defined using function g(a) from Theorem 4.3. Also let

κD(β1, β2) be that function when κ ≥ 2 points are placed in the interval (β1, β2):

κD(β1, β2) = min
{ak}κk=1,{bk}

κ−1
k=1 :β1<b1<···<bκ−1<β2

κ∑
k=1

∫ bk

bk−1

d(θ, a)pΘ(θ)dθ

= min
{bk}κ−1

k=1 :β1<b1<···<bκ−1<β2

κ∑
k=1

1D(bk−1, bk),

where b0 = β1 and bκ = β2.

Notice that D∗(K) in (4.11) is the same as

KD(0, 1) = min
{bk}K−1

k=1 :0<b1<···<bK−1<1

K∑
k=1

1D(bk−1, bk),

where b0 = 0 and bK = 1. Let b∗1, b
∗
2, . . . , b

∗
K−1 be the optimizing boundary points

for KD(b∗0 = 0, b∗K = 1). By a reductio ad absurdum argument, it follows that
b∗1, b

∗
2, . . . , b

∗
K−2 must be the optimizing boundary points for K−1(b

∗
0, b

∗
K−1). Thus for

K > 1,

KD(b∗0, b
∗
K) = min

bK−1:b
∗
0<bK−1<b∗K

[KD(b∗0, bK−1) + 1D(bK−1, b
∗
K)] .

77



Similarly for any k, 1 < k ≤ K,

kD(b0, β) = min
b:b0<b<β

[k−1D(b0, b) + 1D(b, β)] . (4.13)

Moreover let the optimizing value be

b∗k−1(b0, β) = argmin
b:b0<b<β

[k−1D(b0, b) + 1D(b, β)] . (4.14)

The recursive partitioning structure suggested by the development above can be
formalized as a dynamic programming algorithm for finding the optimal quantizer.
The first two steps are preparatory, but are explicitly noted.

Algorithm 4.2 ( [176]).

1. Compute the values of 1D(β1, β2) for all (discrete) β1 and β2 in (b0, bN).

2. For each k = 2, . . . , K, compute kD(b0, β) and b
∗
k−1(b0, β) for all (discrete) β in

(b0, bN) using (4.13) and (4.14).

3. Set BK = bk.

4. For each k = K,K − 1, . . . , 2, set Bk−1 = b∗k−1(b0, Bk).

5. Set B0 = b0.

6. For each k = 1, . . . , K set Ak = argminaE[d(Θ, a) | Θ ∈ (Bk−1, Bk)].

Theorem 4.7 ( [176]). The boundaries {Bk}Kk=0 and representation points {Ak}Kk=1

returned by Algorithm 4.2 represent the optimal quantizer.

As noted by Sharma, step 1 of the algorithm involves minimizing the function g(a)
from Theorem 4.3 and may be computationally intense [176]. Since g(a) is strictly
quasiconvex, however, the computational burden can be greatly reduced using the
Fibonacci Search method. Fibonacci Search is a line search procedure for minimizing
a strictly quasiconvex function over a bounded interval [178, Chapter 8].

� 4.3 High-Rate Quantization Theory

High-rate quantization theory [175] may also be applied to the study of minimum
MBRE quantization. Note that the source alphabet [0, 1] is bounded and that only
fixed-rate quantization is studied. The distortion function for the MBRE criterion
has a positive second derivative in θ (due to strict convexity) and for many families
of likelihood functions, it has a continuous third derivative, see (4.5). Thus, it is
locally quadratic in the sense of Li et al. [168] and in a manner similar to many
perceptual, non-difference distortion functions, the high-rate quantization theory is
well-developed.
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Let

B(θ) = −1
2
c10θ

d2P I
e(θ)

dθ2
− c10

dP I
e(θ)
dθ

− 1
2
c01(1− θ)d

2P II
e (θ)

dθ2
+ c01

dP II
e (θ)
dθ

. (4.15)

Then at high rate, i.e. K large, d(θ, ak) is approximated by the following second order
Taylor expansion [168]:

d(θ, ak) ≈ B(θ)|θ=ak
(θ − ak)

2 , θ ∈ Rk. (4.16)

Assuming that pΘ is sufficiently smooth and substituting (4.16) into the objective of
(4.12), the MBRE is approximated by:

D ≈
K∑
k=1

pΘ(ak)B(ak)

∫
Rk

(θ − ak)
2 dθ. (4.17)

At high rate, a quantizer is well-described by a quantizer point density function
λ(θ). Integrating a quantizer point density over an interval yields the fraction of the
{ak} that are in that interval.

The MBRE is greater than and approximately equal to the following lower bound,
derived in [168] by relationships involving normalized moments of inertia of intervals
Rk and by Hölder’s inequality:

DL = 1
12K2

∫ 1

0

B(θ)pΘ(θ)λ(θ)
−2dθ, (4.18)

where the optimal quantizer point density is

λ(θ) =
(B(θ)pΘ(θ))

1/3∫ 1

0
(B(θ)pΘ(θ))

1/3 dθ
. (4.19)

Substituting (4.19) into (4.18) yields

DL = 1
12K2∥B(θ)pΘ(θ)∥1/3. (4.20)

� 4.4 Optimal Quantizers

This section presents examples of optimal quantizers. Consider the following scalar
source and channel model:

Y = w +N, w ∈ {0, µ}, (4.21)
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where N is a zero-mean, Gaussian random variable with variance σ2. The likelihoods
are:

pY |W (y|0) = N (y; 0, σ2) = 1
σ
√
2π
e−y2/2σ2

,

pY |W (y|µ) = N (y;µ, σ2) = 1
σ
√
2π
e−(y−µ)2/2σ2

. (4.22)

The two error probabilities are:

P I
e(θ) = Q

(
µ
2σ

+ σ
µ
ln
(

c10θ
c01(1−θ)

))
,

P II
e (θ) = Q

(
µ
2σ

− σ
µ
ln
(

c10θ
c01(1−θ)

))
. (4.23)

To use the centroid condition, the derivatives of the error probabilities are deter-
mined as follows.

dP I
e(θ)
dθ

∣∣∣
ak

= − 1√
2π

σ
µ

1
ak(1−ak)

e
− 1

2

(
µ
2σ

+σ
µ
ln
(

c10ak
c01(1−ak)

))2

, (4.24)

dP II
e (θ)
dθ

∣∣∣
ak

= + 1√
2π

σ
µ

1
ak(1−ak)

e
− 1

2

(
µ
2σ

−σ
µ
ln
(

c10ak
c01(1−ak)

))2

. (4.25)

By substituting these derivatives into (4.10) and simplifying, the following expression
is obtained for the representation points:

ak =
I Ik

I Ik + I IIk
. (4.26)

For high-rate analysis, the second derivatives of the error probabilities are needed.
They are:

d2P I
e(θ)

dθ2
= − 1√

8π
σ
µ

1
θ2(1−θ)2

e
− 1

8µ2σ2

(
µ2+2σ2 ln

(
c10θ

c01(1−θ)

))2 [
−3 + 4θ − 2σ2

µ2 ln
(

c10θ
c01(1−θ)

)]
(4.27)

and

d2P II
e (θ)

dθ2
= + 1√

8π
σ
µ

1
θ2(1−θ)2

e
− 1

8µ2σ2

(
µ2−2σ2 ln

(
c10θ

c01(1−θ)

))2 [
−1 + 4θ − 2σ2

µ2 ln
(

c10θ
c01(1−θ)

)]
.

(4.28)
By inspection, note that the third derivatives are continuous. Substituting the first
derivatives (4.24)–(4.25) and second derivatives (4.27)–(4.28) into (4.15), an expres-
sion for B(θ) can be obtained.

Examples with different distributions pΘ(θ) are presented below. All of the exam-
ples use scalar signals with additive Gaussian noise, µ = 1, σ = 1 (4.21). As a point
of reference, a comparison is made to quantizers designed under mean absolute error
(MAE) [179], i.e. d(θ, a) = |θ − a|, an objective that does not account for hypothesis
testing.3

3As shown by Kassam [179], minimizing the MAE criterion also minimizes the absolute distance
between the cumulative distribution function of the source and the induced cumulative distribution
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In the high-rate comparisons, the optimal point density for MAE [181]:

λ(θ) =
pΘ(θ)

1/2∫ 1

0
pΘ(θ)1/2dθ

is substituted into the high-rate distortion approximation for the MBRE criterion
(4.18). Taking R = log2(K), there is a constant gap between the rates using the
MBRE point density and the MAE point density for all distortion values. This
constant rate gap in the high-resolution regime is:

RMBRE(DL)−RMAE(DL) =
1

2
log2

(
∥pΘ(θ)B(θ)∥1/3

∥pΘ(θ)∥1/2
∫ 1

0
B(θ)dθ

)
.

The closer the ratio inside the logarithm is to one, the closer the MBRE- and MAE-
optimal quantizers.

Uniformly Distributed P0

First consider the setting in which all prior probabilities are equally likely. The
MBRE of the MBRE-optimal quantizer and a quantizer designed to minimize MAE
with respect to pΘ(θ) are plotted in Figure 4-2. (The optimal MAE quantizer for the
uniform distribution is the uniform quantizer.) The plot shows MBRE as a function
of K; the solid line with circle markers is the MBRE-optimal quantizer and the
dotted line with asterisk markers is the MAE-optimal quantizer. DL, the high-rate
approximation to the distortion-rate function is plotted in Figure 4-3.

The performance of both quantizers is similar, but the MBRE-optimal quantizer
always performs better or equally. For K = 1, 2, the two quantizers are identical,
as seen in Figure 4-4. The plots in Figure 4-4 show J(θ, vK(θ)) as solid and dotted
lines for the MBRE- and MAE-optimal quantizers respectively; the markers are the
representation points. The gray line is J(θ), the Bayes risk with unquantized prior
probabilities. For K = 3, 4, the representation points for the MBRE-optimal quan-
tizer are closer to θ = 1

2
than the uniform quantizer. Equivalently, the area under the

point density function λ(θ) shown in Figure 4-5 is concentrated in the center. Each
increment of K is associated with a large reduction in Bayes risk. There is a very
large performance improvement from K = 1 to K = 2.

In Figure 4-6, Figure 4-7, Figure 4-8, and Figure 4-9, similar plots to those above
are given for the case when the Bayes costs c10 and c01 are unequal. The unequal costs
skew the Bayes risk function and consequently the representation point locations and
point density function. The difference in performance between the MBRE-optimal

function of the quantized output. Since the induced distribution from quantization is used as the
population prior distribution for hypothesis testing, requiring this induced distribution to be close
to the true unquantized distribution is reasonable. If distance between probability distributions is
to be minimized according to the Kullback-Leibler discrimination between the true and induced
distributions (which is defined in terms of likelihood ratios), an application of Pinsker’s inequality
shows that a small absolute difference is required [180]. Although a reasonable criterion, MAE is
suboptimal for hypothesis testing performance as seen in the examples.
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Figure 4-2. MBRE for uniformly distributed Θ and Bayes costs c10 = c01 = 1 plotted on a
logarithmic scale as a function of the number of quantization levels K; the solid line with circle
markers is the MBRE-optimal quantizer and the dotted line with asterisk markers is the MAE-
optimal uniform quantizer.
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Figure 4-3. High-rate approximation of distortion-rate function DL for uniformly distributed Θ
and Bayes costs c10 = c01 = 1; the solid line is the MBRE-optimal quantizer and the dotted line is
the MAE-optimal uniform quantizer.
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Figure 4-4. Quantizers for uniformly distributed Θ and Bayes costs c10 = c01 = 1. J(θ, vK(θ)) is
plotted for (a) K = 1, (b) K = 2, (c) K = 3, and (d) K = 4; the markers, circle and asterisk for the
MBRE-optimal and MAE-optimal quantizers respectively, are the representation points {ak}. The
gray line is the unquantized Bayes risk J(θ).
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Figure 4-5. Optimal MBRE point density for uniformly distributed Θ and Bayes costs c10 = c01 =
1.

and MAE-optimal quantizers is greater in this example because the MAE-criterion
cannot incorporate the Bayes costs, which factor into MBRE calculation.

Beta Distributed Θ

Now, consider a non-uniform distribution for Θ, in particular the Beta(5, 2) distri-
bution. The probability density function is shown in Figure 4-10. The MBRE of
the MBRE-optimal and MAE-optimal quantizers are in Figure 4-11. Here, there are
also large improvements in performance with an increase in K. The high-rate ap-
proximation to the distortion-rate function for this example is given in Figure 4-12.

The representation points {ak} are most densely distributed where λ(θ), plotted
in Figure 4-13, has mass. In particular, more representation points are in the right
half of the domain than in the left, as seen in Figure 4-14.

� 4.5 Implications on Human Decision Making

The previous sections formulated the minimum MBRE quantization problem and
discussed how to find the optimal MBRE quantizer. Having established the mathe-
matical foundations of hypothesis testing with quantized priors, implications of such
resource-constrained decoding on civic life may be explored.

Consider the particular setting for human decision making mentioned in Sec-
tion 4.1: a referee determining whether a player has committed a foul or not using
both his or her noisy observation and prior experience. The fraction of plays in which
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Figure 4-6. MBRE for uniformly distributed Θ and Bayes costs c10 = 1, c01 = 4 plotted on a
logarithmic scale as a function of the number of quantization levels K; the solid line with circle
markers is the MBRE-optimal quantizer and the dotted line with asterisk markers is the MAE-
optimal uniform quantizer.
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Figure 4-7. High-rate approximation of distortion-rate function DL for uniformly distributed Θ
and Bayes costs c10 = 1, c01 = 4; the solid line is the MBRE-optimal quantizer and the dotted line
is the MAE-optimal uniform quantizer.
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Figure 4-8. Quantizers for uniformly distributed Θ and Bayes costs c10 = 1, c01 = 4. J(θ, vK(θ))
is plotted for (a) K = 1, (b) K = 2, (c) K = 3, and (d) K = 4; the markers, circle and asterisk for
the MBRE-optimal and MAE-optimal quantizers respectively, are the representation points {ak}.
The gray line is the unquantized Bayes risk J(θ).
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Figure 4-9. Optimal MBRE point density for uniformly distributed Θ and Bayes costs c10 =
1, c01 = 4.
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Figure 4-10. The probability density function pΘ(θ) for the Beta(5, 2) distribution.

87



0 1 2 3 4 5 6 7 8 9

10
−3

10
−2

NUMBER OF LEVELS K

M
E

A
N

 B
A

Y
E

S
 R

IS
K

 E
R

R
O

R
 D

Figure 4-11. MBRE for Beta(5, 2) distributed Θ and Bayes costs c10 = c01 = 1 plotted on a
logarithmic scale as a function of the number of quantization levels K; the solid line with circle
markers is the MBRE-optimal quantizer and the dotted line with asterisk markers is the MAE-
optimal uniform quantizer.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

M
E

A
N

 B
A

Y
E

S
 R

IS
K

 E
R

R
O

R
 D

RATE R (bits)

Figure 4-12. High-rate approximation of distortion-rate function DL for Beta(5, 2) distributed Θ
and Bayes costs c10 = c01 = 1; the solid line is the MBRE-optimal quantizer and the dotted line is
the MAE-optimal uniform quantizer.
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Figure 4-13. Optimal MBRE point density for Beta(5, 2) distributed Θ and Bayes costs c10 =
c01 = 1.

a player commits a foul is that player’s prior probability. There is a distribution of
prior probabilities over the population of players. As also mentioned in Section 4.1,
human decision makers categorize into a small number of categories due to limitations
in information processing capacity [159]. Decisions by humans may be modeled via
quantization of the distribution of prior probabilities and the use of the quantization
level centroid of the category in which a player falls as the prior probability when
decoding that player’s action. This is a form of bounded rationality [182–185], which
steps away from full rationality where people act optimally [186–189].

A referee will do a better job with more categories rather than fewer. A police
officer confronting an individual with whom he or she has prior experience will make
a better decision if he or she has the mental categories ‘law-abiding,’ ‘delinquent,’
‘criminal,’ and ‘nefarious,’ rather than just ‘good’ and ‘bad.’ Similarly, a doctor will
have a smaller probability of error when interpreting a diagnostic test if he or she
knows the prior probability of a positive result for many categorizations of patients
rather than just one for the entire population at large. Additional examples could
be given for a variety of decision-making tasks. Such implications are not surprising;
however, fairly interesting implications arise when additional features are added to
the decision-making scenario. In particular, the setting when the quantization of
distinct populations is done separately.
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Figure 4-14. Quantizers for Beta(5, 2) distributed Θ and Bayes costs c10 = 1, c01 = 4. J(θ, vK(θ))
is plotted for (a) K = 1, (b) K = 2, (c) K = 3, and (d) K = 4; the markers, circle and asterisk for
the MBRE-optimal and MAE-optimal quantizers respectively, are the representation points {ak}.
The gray line is the unquantized Bayes risk J(θ).
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� 4.5.1 Multiple Populations

Suppose a decision maker must deal with subpopulations that are distinguished ac-
cording to a socially observable part of identity like race [190]. For clarity and ease of
connection to empirical studies, we restrict to two groups and use ‘black’ and ‘white’
to denote them. The rational memory-constrained decision maker should ignore the
dimension of race altogether and simply quantize along the θ dimension due to the
theorem of irrelevance [191, Theorem 8.4.2].

Although there is some debate in the social cognition literature [192], it is thought
that race and gender categorization is essentially automatic, particularly when a hu-
man actor lacks the motivation, time, or cognitive capacity to think deeply. Therefore
social cognition constraints prevent the decision maker from ignoring non-θ dimen-
sions. Automaticity of racial categorization results in two quantizers designed sep-
arately for the two populations. The total quota on representation points, Kt, is
split into some number of points for whites and some number for blacks, denoted
Kt = Kw +Kb. The separate quantizers may then be denoted vKw(·) and vKb

(·). It
is assumed that the white population ({pW (w)}Θ∈T , pΘ(θ)) and the black population
({pB(b)}Ψ∈T , pΨ(ψ)) are identical.4

The definition of mean Bayes risk error for two populations, from the perspective
of the decision maker, extends as:

D(2) = w0

w0+b0
{E[J(Θ, vKw(Θ))]− E[J(Θ)]}+ b0

w0+b0
{E[J(Ψ, vKb

(Ψ))]− E[J(Ψ)]}
= w0

w0+b0
E[J(Θ, vKw(Θ))] + b0

w0+b0
E[J(Θ, vKb

(Θ))]− E[J(Θ)],

where w0 and b0 are the number of whites and blacks relevant to the decision maker.5

Under Radner’s notion of costly rationality [185], the goal is to minimize this extended
Bayes risk error by finding the optimal quantizers vKw(·) and vKb

(·) and the optimal
allocation of representation points Kw and Kb.

Since the two populations are identical, vKw(·) and vKb
(·) should be the quantizers

that were to be designed in Section 4.2. Thus the problem reduces to minimizing
expected Bayes risk error over all Kt−1 possible allocations of Kw and Kb. Although
there are sophisticated algorithms for optimal allocation of levels [199], just measuring
the performance of all allocations and choosing the best one suffices.

Fryer and Jackson have previously suggested that it is better to allocate more
representation points to a majority population than to a minority population [197].

4There might eventually be an adverse selection effect, as happens in insurance markets [193] or
used car markets with ‘lemons’ [194], with pΘ(θ) or pΨ(ψ) subject to modification through behavior,
education, or investment. As noted in the previous information-based discrimination literature
[195–197], a downward spiral of underinvestment in positive behavior or human capital by minority
groups may occur when the minority groups are coarsely categorized. Thus two populations may
not be identical, but this possibility is ignored here.

5One might assume that w0 and b0 are simply the number of whites and blacks in the general
population, however these numbers are actually based on the social interaction pattern of the decision
maker. Due to segregation in social interaction, see e.g. [198] and references therein, there is greater
intra-population interaction than inter-population interaction. The decision maker has more training
data from intra-population interaction.
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Figure 4-15. Optimal allocation of quantizer sizes to the white population and black population
for Kt = 7 as a function of the proportion of whites. The gray line is Kw and the black line is Kb.
The distribution of the prior probability is Beta(5,2), the channel is additive white Gaussian noise
with unit signal to noise ratio, and the Bayes costs are c10 = c01 = 1.

Optimal allocation in this model yields the same result when the notion of majority
and minority are with respect to the decision maker’s interaction pattern. If w0 is
larger than b0, it is better to allocate more representation points to whites whereas if
b0 is larger than w0, it is better to allocate more representation points to blacks. An
example of optimal allocation is shown in Figure 4-15.

The model may easily be extended to consider increased numbers of racial groups
N . An exhaustive search over representation point allocations for various integer
partitions of Kt: Kt = K1+K2+ · · ·+KN may be used; this only involves the design
of a linear number of optimal quantizers and a very small optimization problem. One
may also consider the effects of a higher-dimensional socially-observable attribute
space; identity is not just race. In fact some social dimensions may be consciously
and explicitly correlated in order to further define identity [190]. The gains of vector
quantization over scalar quantization are enhanced when there is dependence among
dimensions [169].

� 4.5.2 Social Discrimination

Due to social segregation, there is greater intra-population interaction than inter-
population interaction. Whites interact more with whites whereas blacks interact
more with blacks. Moreover, social life and economic life are so inextricably inter-
twined that human decision makers are unable to completely discount social experi-
ence in determining how to deploy their limited decision making resources [197]; the
spillover may be due to the use of common brain regions for both kinds of interac-
tion [200].

In the mathematical model, one would therefore expect the w0/(w0 + b0) ratio of
a white decision maker to be greater than the w0/(w0 + b0) ratio of a black decision
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maker. This fact, together with optimal level allocation and Theorem 4.6, implies
that a white decision maker would perform worse than a black decision maker when
dealing with blacks and vice versa.

This prediction is born out experimentally. A large body of literature in face
recognition shows exactly the predicted own race bias effect, observed colloquially
as “they [other-race persons] all look alike.” In particular, both parts of the Bayes
risk, P I

e and P
II
e increase when trying to recognize members of the opposite population

[201]. Own race bias in face recognition has been verified with laboratory experiments.
Econometric studies also provide a source for comparison to the proposed decision

making model. The addition of police officers of a given race is associated with an
increase in the number of arrests of suspects of a different race but has little impact
on same-race arrests. The effect is more pronounced for minor offenses where the
prior probability presumably plays a bigger role than the measurement [202]. There
are similar own-race bias effects in the decision by police to search a vehicle during
a traffic stop [203] and in the decision of National Basketball Association (NBA)
referees to call a foul [204]. The rate of searching and the rate of foul calling are
greater when the decision maker is of a different race than the driver and player,
respectively.

A major difficulty in interpreting these studies, however, is that the ground truth
is not known. Higher rates of arrest or foul calls, for example, may be explained by
either a greater P I

e or smaller P II
e . It is possible that a greater probability of missed

fouls would actually decrease the number of fouls called. This motivates a closer look
at the Bayes risk by teasing it apart into its constituent parts and examining the
Bayes costs in detail.

Using basketball fouls as a running example, the measurable quantity is the prob-
ability that a foul is called. This rate of fouls is:

Pr[fK
D (Y ) = 1] = 1− θ + θP I

e(vK(θ))− (1− θ)P II
e (vK(θ)). (4.29)

Looking at the average performance of a referee over the populations of black and
white players, compare the expected foul rates on whites and blacks:

∆(c10, c01) = E
[
Pr[fKb

D (Y ) = 1]− Pr[fKw
D (Y ) = 1]

]
(4.30)

= E[ΘP I
e(v

∗
Kb
(Θ))− (1−Θ)P II

e (v
∗
Kb
(Θ))−ΘP I

e(v
∗
Kw

(Θ)) + (1−Θ)P II
e (v

∗
Kw

(Θ))].

If this discrimination quantity ∆ is greater than zero, then the referee is calling more
fouls on blacks. If ∆ is less than zero, then the referee is calling more fouls on whites.

The dependence of ∆ on c10 and c01 has been explicitly notated on the left side
of (4.30) and is implicit in the two types of error probabilities on the right side of
(4.30). The value of ∆ also depends on the unquantized prior distribution pΘ(θ),
the values of Kw and Kb, and the channel. Fixing these determines the regions in
the c10–c01 plane where a referee would call more fouls on blacks and where a referee
would call more fouls on whites. This is shown in Figure 4-16. For uniform pΘ(θ),
the two regions are divided by the line c01 = c10.

For any population and channel, there is one half-plane where a referee would call
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Figure 4-16. Dividing line between Bayes cost region in which referee will call more fouls on
blacks and region in which referee will call more fouls on whites. A referee with Kb < Kw will call
more fouls on blacks in the upper left region and more fouls on whites in the lower right region,
which correspond to precautionary and dauntless respectively. For the left panel, the distribution
of the prior probability is Beta(5,2), the channel is additive white Gaussian noise with unit signal
to noise ratio, and the level allocation is Kb = 3, Kw = 4. For the right panel, the prior probability
distribution is uniform.

more fouls on black players and the other half-plane where the referee would call more
fouls on white players. To reiterate, just because the Bayes risk for foul-calling on
black players is greater than that for white players, it does not automatically imply
that the foul call rate for blacks is higher. The high Bayes risk could well be the
result of a preponderance of missed foul calls.

This result may be interpreted in terms of precautionary [205] and dauntless [206]
decision making. The precautionary principle corresponds to a Bayes cost assignment
with c01 > c10, whereas the dauntless principle corresponds to a Bayes cost assignment
with c01 < c10. Thus, a referee with Kw > Kb that calls more fouls on black players is
precautionary and more fouls on white players is dauntless. A referee with Kw < Kb

that calls more fouls on black players is dauntless and more fouls on white players is
precautionary.

Econometric studies give differences of differences to show racial bias. The first
‘difference’ is the difference in foul call rate between black players and white players,
∆. The second ‘difference’ is the difference in ∆ between white referees and black
referees. Denoting the foul call rate difference of a white referee by ∆W and the foul
call rate difference of a black referee by ∆B, the difference of differences is ∆W −∆B.

Figure 4-17 plots the difference of differences as a function of the ratio c01/c10
for two different population distributions, the Beta(5,2) distribution and the uniform
distribution. The right side of the plot is the precautionary regime, where white
referees would call more fouls on black players than black referees. For the particular
examples, if c01/c10 = 10, then the white referee has a foul call rate 0.0132 greater than
the black referee on black players for the Beta(5,2) distribution and 0.0142 greater
for the uniform distribution.

The left side of the plot is the dauntless regime, where white referees would call
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Figure 4-17. Difference of differences in foul calling as a function of the Bayes cost ratio. The
white referee has Kw = 4, Kb = 3 and the black referee has Kw = 3, Kb = 4. For the dashed
line, the distribution of the prior probability is Beta(5,2) and the channel is additive white Gaussian
noise with unit signal to noise ratio. For the solid line, the prior probability distribution is uniform.

fewer fouls on black players than black referees. For the particular examples, if
c01/c10 = 0.1, then the white referee has a foul call rate 0.0013 less than the black
referee on black players for the Beta(5,2) distribution and 0.0142 less for the uniform
distribution. In these examples, the white referee has Kw = 4, Kb = 3, and the black
referee has Kw = 3, Kb = 4.6

� 4.5.3 The Price of Segregation

In the memory-constrained decision making setting with separate populations, deci-
sion makers of different races exhibited different biases because they had different Kw

and Kb allocations due to different w0/(w0 + b0) ratios. This ratio was not the actual
fraction of whites whose actions would be decoded by the decision maker, but was
determined in part by the decision maker’s segregated social life. If decision makers
of all races had a bias that matched the true white fraction, then the phenomenon
of racial bias would be rational. Since different decision making biases cannot si-
multaneously be optimal, divergent racial bias in decision making is an irrational
phenomenon.

Fixing limitations of human memory, automaticity of racial classification, and
intertwining of social and economic life, it follows that social segregation causes mis-
match between social and economic lives and is therefore the root cause of irrational
racial bias. To draw connections to econometric studies where ground truth is not
known, the previous section used differences of differences. In analogy with notions of

6Note that there is no requirement for the white referee to have Kw > Kb and the black referee
to have Kw < Kb. It is only required that the Kw of the white referee be greater than the Kw of
the black referee (assuming the same Kt). A qualitatively similar plot to Figure 4-17 is produced,
e.g. when the white referee has Kw = 5, Kb = 2, and the black referee has Kw = 4, Kb = 3.
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welfare loss in economic theory like deadweight loss, the social cost of monopoly [207,
Chapter 4], and the price of anarchy [208], a price of segregation is defined here as a
way to measure the deleterious effect of segregation. Note that segregation mismatch
is distinct from mismatched decoding arising from memory constraints.

Let πtrue be the probability that a member of the white population ({pW (w)}Θ, pΘ(θ))
is selected for decoding rather than a member of the black population ({pB(b)}Ψ, pΨ(ψ)).
A particular decision maker that leads a segregated life, on the other hand, will have
a white ratio πseg = w0/(w0 + b0). The mean Bayes risk error, from the perspective
of society, under the true white fraction is

D(2)(πtrue) = πtrueE[J(Θ, vKw(πtrue)(Θ))] + (1− πtrue)E[J(Θ, vKb(πtrue)(Θ))]− E[J(Θ)]

whereas the MBRE, from the perspective of society, under the segregated white frac-
tion is

D(2)(πseg) = πtrueE[J(Θ, vKw(πseg)(Θ))] + (1− πtrue)E[J(Θ, vKb(πseg)(Θ))]− E[J(Θ)].

The difference between these two is the price of segregation:

Π = D(2)(πtrue)−D(2)(πseg)

= πtrue
{
E[J(Θ, vKw(πtrue)(Θ))]− E[J(Θ, vKw(πseg)(Θ))]

}
+ (1− πtrue)

{
E[J(Θ, vKt−Kw(πtrue)(Θ))]− E[J(Θ, vKt−Kw(πseg)(Θ))]

}
The price of segregation Π depends strongly on the discontinuous, integer-valued
Kw(·) function, and is also discontinuous. The price of segregation is a non-decreasing
function of the level of segregation mismatch |πtrue − πseg|. An example of the price
of segregation for a particular system and several different values of πtrue is shown
in Figure 4-18. Notice that if the level of mismatch is small, there may be no price
of segregation. Figure 4-19 shows a similar plot but for a larger value of Kt. The
range of mismatch that leads to zero Π is smaller, but the incurred Π in this non-zero
regime may also be smaller.

The model predicts that greater homogeneity of social interaction among people
would mitigate the price of segregation by driving the πseg for all decision makers closer
to πtrue. This draws a connection to intergroup contact theory [209,210]. One branch
of contact theory suggests that mixing between members of different groups reduces
prejudice since it allows individuals the chance to see previously unnoticed similarities
and counter-stereotypic characteristics and behaviors in one another [210, 211], a
conclusion similar to the model predictions.

Perhaps unexpectedly, social interaction is not linear in the overall ratio of sub-
group populations [198], so a public policy to reduce segregation would be difficult to
formulate. Discrimination appears to be a permanent artifact of memory-constrained
decoding and automaticity of racial categorization.
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Figure 4-18. The price of segregation Π as a function of the level of segregation mismatch πtrue−πseg
for several values of πtrue. The distribution of the prior probability is Beta(5,2), the channel is
additive white Gaussian noise with unit signal to noise ratio, and the Bayes costs are c10 = c01 = 1,
and Kt = 7.
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Figure 4-19. The price of segregation Π as a function of the level of segregation mismatch πtrue−πseg
for several values of πtrue. The distribution of the prior probability is Beta(5,2), the channel is
additive white Gaussian noise with unit signal to noise ratio, and the Bayes costs are c10 = c01 = 1,
and Kt = 37.
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� 4.6 Discussion

By analyzing binary uncoded communication, this chapter demonstrated that mem-
ory constraints in decoding circuits might reduce the performance of communication
systems. Quantizing the space of decoding rules led to mismatched decoding and
resultant performance loss. It would be of interest to extend this work by deter-
mining optimal methods of quantizing decoding rules for coded communication using
properties of general mismatched decoding [42].

The setting of Bayesian hypothesis testing (uncoded transmission) with a popula-
tion of sources, but where the decoder may only use a quantized representation of the
true source in designing a decision rule was considered. Optimal quantizers for this
purpose were determined using a new fidelity criterion built on the Bayes risk function.
For larger message sets, M > 2, vector quantization rather than scalar quantization
would be required, but determining the Lloyd-Max conditions and high-rate theory is
no different conceptually due to the geometry of the Bayes risk function. Theories of
quantized prior hypothesis testing, when combined with theories of social cognition
and facts about social segregation, also led to a generative model of discriminative
behavior in human affairs.

As an extension, one might consider a restricted class of quantizers rather than
considering optimal quantization. Such restriction may model further cognitive con-
straints on human decision makers or information processing constraints in decoding
circuits. In particular, Fryer and Jackson had suggested a heuristic algorithm for
quantizer design based on splitting groups [197], which is a rediscovery of a tree-
structured vector quantizer (TSVQ) design algorithm [212, Figure 20].

Memory constraints limited the adaptability of the decoder here, but limited online
adaptability in information processing is a general problem that is only partially
solved by universal information theory [41, 154]. A quantization-theoretic approach
with novel, task-driven fidelity criteria may shed light on general trade-offs between
adaptation and universality.
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Chapter 5

Operation Reliability—Transient
Faults

In the lifetime of a communication system, construction is followed by operation. The
previous two chapters considered limitations in provisioning material for constructing
decoders. This chapter and the next consider unreliability in operating decoders.

Traditional communication theory assumes that decoding algorithms perform with-
out error, however noise is inherent in computation circuits just as in communication
channels. The goal of this chapter is to investigate limits of communication systems
with noisy decoders; there are dual motivations. The first is the eminently practical
motivation of determining how well channel codes work when decoders are faulty.
The second is the deeper motivation of determining fundamental limits for processing
unreliable signals with unreliable computational devices. The motivations are inter-
twined. As noted by Pierce [21], “The down-to-earth problem of making a computer
work, in fact, becomes tangled with this difficult philosophical problem: ‘What is pos-
sible and what is impossible when unreliable circuits are used to process unreliable
information?’”

A first step in understanding these issues is to analyze the average symbol error
P sym
e of a particular class of codes and decoding techniques: iterative message-passing

decoding algorithms for low-density parity-check (LDPC) codes. Focus is placed on
LDPC codes because they have emerged as a class of codes that have performance
at or near the Shannon limit [213, 214] and yet are sufficiently structured as to have
decoders with circuit implementations [215–217].1 Recall that these codes were de-
scribed in Section 2.3.

When the code is represented as a factor graph, decoding algorithm computations
occur at vertices and decoding algorithm communication is carried out over edges.
Correspondence between the factor graph and the algorithm is not only a tool for
exposition but also the way decoding circuits are implemented [215–217], with vertices
as circuit nodes and edges as circuit wires, similar to Figure 3-1. Here, there will be
transient local computation and message-passing errors, whether the decoder is analog
or digital.

To facilitate analysis, concentration of decoding performance around its average is

1One may also consider the effect of encoder complexity [218], however encoder noise need not
be explicitly considered, since it may be incorporated into channel noise, using the noise combining
argument suggested by Figure 5-2.
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shown to hold when noise is introduced into message-passing and local computation.
Density evolution equations for simple faulty iterative decoders are derived. In one
model, computing nonlinear estimation thresholds shows that performance degrades
smoothly as decoder noise increases, but arbitrarily small probability of error is not
achievable. Probability of error may be driven to zero, however, in another system
model; the decoding threshold again decreases smoothly with decoder noise. As an
application of the methods developed, an achievability result for reliable memory
systems constructed from unreliable components is provided.

The remainder of the chapter is organized as follows. Section 5.1 further reviews
motivations and related work. Section 5.2 formalizes notation and Section 5.3 gives
concentration results that allow the density evolution method of analysis, generalizing
results in [43]. A noisy version of the Gallager A decoder for processing the output
of a binary symmetric channel is analyzed in Section 5.4, where it is shown that
Shannon reliability is unattainable. In Section 5.5, a noisy decoder for additive white
Gaussian noise (AWGN) channels is analyzed. For this model, the probability of error
may be driven to zero and the decoding threshold degrades smoothly as a function
of decoder noise. As an application of the results of Section 5.4, Section 5.6 precisely
characterizes the information storage capacity of a memory built from unreliable
components. Section 5.7 provides further discussion.

� 5.1 Transient Circuit Faults: Causes and Consequences

Technological Trends

Although always present [11,219], recent technological trends in digital circuit design
bring practical motivations to the fore [35, 220, 221]. The 2008 update of the ITRS
points out that for complementary metal-oxide-silicon (CMOS) technology, increasing
power densities, decreasing supply voltages, and decreasing sizes have increased sen-
sitivity to cosmic radiation, electromagnetic interference, and thermal fluctuations.
The ITRS further says that an ongoing shift in the manufacturing paradigm will dra-
matically reduce costs but will lead to more transient failures of signals, logic values,
devices, and interconnects. Device technologies beyond CMOS, such as single-electron
tunnelling technology [222], carbon-based nanoelectronics [223], and chemically as-
sembled electronic nanocomputers [224], are also projected to enter production, but
they all display erratic, random device behavior [225,226].

Analog computations are always subject to noise [227, 228]. Similar issues arise
when performing real-valued computations on digital computers since quantization,
whether fixed-point or floating-point, is often well-modeled as bounded, additive
stochastic noise [229].

Fault-Tolerant Computing

Fault-tolerant computing theory [32, 33] has provided limits for processing reliable
signals (inputs) with unreliable circuits [14, 21, 28–31]. This work brings it together
with processing unreliable communication signals.
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A fault is a physical defect, imperfection, or flaw that occurs within some hard-
ware or software component. An error is the informational manifestation of a fault.
A permanent fault exists indefinitely until corrective action is taken, whereas a tran-
sient fault appears and disappears in a short period of time. Noisy circuits in which
interconnection patterns of components are trees are called formulas [230,231].

In an error model, the effects of faults are given directly in the informational
universe. For example, the basic Von Neumann model of noisy circuits [28] models
transient faults in logic gates and wires as message and node computation noise that
is both spatially and temporally independent. The Von Neumann model is used
here. Error models of permanent faults [232,233], of miswired circuit interconnection
[14, 234], or of mismatched decoding metrics [235] have been considered elsewhere.
Such permanent errors in decoding circuits may be interpreted as either changing the
factor graph used for decoding or as introducing new potentials into the factor graph;
the code used by the encoder and the code used by the decoder are different. An
altogether different permanent error model is considered in Chapter 6.

There are several design philosophies to combat faults. Fault avoidance seeks to
make physical components more reliable. Fault masking seeks to prevent faults from
introducing errors. Fault tolerance is the ability of a system to continue performing
its function in the presence of faults. This chapter is primarily concerned with fault
tolerance, but Section 5.6 considers fault masking.

Related Work

Empirical characterizations of message-passing decoders have demonstrated that prob-
ability of error performance does not change much when messages are quantized at
high resolution [67]. Even algorithms that are coarsely quantized versions of optimal
belief propagation show little degradation in performance [43, 236–241]. It should
be emphasized, however, that fault-free, quantized decoders differ significantly from
decoders that make random errors.2 The difference is similar to that between control
systems with finite-capacity noiseless channels and control systems with noisy chan-
nels of equal capacity [245]. Seemingly the only previous work on message-passing
algorithms with random errors is [246], which deals with problems in distributed
inference.3

Noisy LDPC decoders were previously analyzed in the context of designing reli-
able memories from unreliable components [247,248] (revisited in Section 5.6), using
Gallager’s original methods [67]. Several LPDC code analysis tools have since been
developed, including simulation [249], expander graph arguments [250, 251], EXIT
charts [252,253], and density evolution [43,254,255]. This work generalizes asymptotic
characterizations developed by Richardson and Urbanke for noiseless decoders [43],
showing that density evolution is applicable to faulty decoders. Expander graph

2Randomized algorithms [242] and stochastic computation [243] (used for decoding in [244]) make
use of randomness to increase functionality, but the randomness is deployed in a controlled manner.

3If the graphical model of the code and the graph of noisy communication links in a distributed
system coincide, then the distributed inference problem and the message-passing decoding problem
can be made to coincide.

101



Ψ
x
1

y
1p

y|x

u
v

Ψ
x
2

y
2p

y|x

u
v

Ψ
x
i

y
ip

y|x

u
v

Ψ
x
n

y
np

y|x

u
v

Φ

u
c

Φ

u
c

Φ

u
c

Figure 5-1. Schematic diagram of a factor graph-based implementation of a noisy decoder circuit.
Only one variable-to-check message and one check-to-variable message are highlighted. Other wires,
shown in gray, will also carry noisy messages.

arguments have also been extended to the case of noisy decoding in a paper [256]
that appeared concurrently with the first presentation of this work [257]. Note that
previous works have not even considered the possibility that Shannon reliability is
achievable with noisy decoding.

� 5.2 Message-Passing Decoders

This section establishes the basic notation of message-passing decoders for LDPC
codes, which were themselves described in Section 2.3. Many of the notational con-
ventions are depicted schematically in Figure 5-1 using a factor graph-based decoder
implementation. The decoder circuit is formed from the Forney-style factor graph of
the code by conversion to a Tanner-style factor graph with true variable node and
check node vertices [258], followed by a direct mapping of vertices to nodes and edges
to wires.

In a communication system, a codeword is selected by the encoder and is sent
through the noisy channel. Channel input and output letters are X ∈ X and Y ∈ Y .
Since this chapter is restricted to binary codes, X is taken as {±1}. The receiver
contains a noisy message-passing decoder, which is used to process the channel output
codeword to produce X̂. Throughout this chapter, average probability of symbol error
Pe , P sym

e is used as the performance criterion.

The message-passing decoder works in iterative stages and the iteration time is
indexed by ℓ = 0, 1, . . .. Within the decoder, at time ℓ = 0, each variable node has a
realization of Y , yi. A message-passing decoder exchanges messages between nodes
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along wires. First each variable node sends a message to a neighboring check node
over a noisy messaging wire. Generically, sent messages are denoted as νv→c, message
wire noise realizations as wv→c,

4 and received messages as µv→c: assume without
loss of generality that νv→c, wv→c, and µv→c are drawn from a common messaging
alphabet M.

Each check node processes received messages and sends back a message to each
neighboring variable node over a noisy message wire. The noisiness of the check node
processing is generically denoted by an input random variable Uc ∈ U . The check
node computation is denoted Φ(ℓ) : Mdc−1×U 7→ M. The notations νc→v, µc→v, and
wc→v are used for signaling from check node to variable node; again without loss of
generality assume that νc→v, wc→v, µc→v ∈ M.

Each variable node now processes its yi and the messages it receives to produce
new messages. The new messages are produced through possibly noisy processing,
where the noise input is generically denoted Uv ∈ U . The variable node computation
is denoted Ψ(ℓ) : Y × Mdv−1 × U 7→ M. Local computations and message-passing
continue iteratively.

Message passing leads to computation graphs that describe how signals flow
through a decoding system [49, Section 3.7.1]. Computation graphs have decoding
neighborhoods, which involve nodes/wires that have communicated with one another.
For a given node ṅ, its depth d neighborhood N d

ṅ is the induced subgraph consisting
of all nodes reached and wires traversed by paths of length at most d starting from
ṅ (including ṅ). The directed neighborhood of depth d of a wire v → c, denoted by
N d

v→c, is defined as the induced subgraph containing all wires and nodes on paths
starting from the same place as v → c but different from v → c. Equivalently for a
wire c → v, N d

c→v is the induced subgraph containing all wires and nodes on paths
starting from the same place as c → v but different from c → v. If the induced sub-
graph (corresponding to a neighborhood) is a tree then the neighborhood is tree-like,
otherwise it is not tree-like. The neighborhood is tree-like if and only if all involved
nodes are distinct. Messages are statistically independent in tree-like neighborhoods.

Note that only extrinsic information is used in node computations. Also note that
in the sequel, all decoder noises (Uc, Uv, Wv→c, and Wc→v) will be assumed to be
independent of each other, as in the Von Neumann error model of faulty computing.

� 5.3 Density Evolution Concentration Results

Considering the great successes achieved by analyzing the noiseless decoder perfor-
mance of ensembles of codes [43, 49, 254] rather than of particular codes [67], the
same approach is pursued for noisy decoders. The first mathematical contribution of
this chapter is to extend the method of analysis promulgated in [43] to the case of
decoders with random noise.

Several facts that simplify performance analysis are proven. First, under certain

4Note that this chapter is concerned purely with symbol decoding rather than message decoding.
Hence, the notation w for wire noise should not be confused with the notation w for messages in
other chapters.
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symmetry conditions with wide applicability, the probability of error does not depend
on which codeword is transmitted. Second, the individual performances of codes in
an ensemble are, with high probability, the same as the average performance of the
ensemble. Finally, this average behavior converges to the behavior of a code defined
on a cycle-free graph. Performance analysis then reduces to determining average
performance on an infinite tree: a noisy formula is analyzed in place of general noisy
circuits.

For brevity, only regular LDPC codes are considered in this section, however the
results can be generalized to irregular LDPC codes. In particular, replacing node
degrees by maximum node degrees, the proofs stand mutatis mutandis. Similarly,
only binary LDPC codes are considered; generalizations to non-binary alphabets also
follow, as in [259].

� 5.3.1 Restriction to All-One Codeword

If certain symmetry conditions are satisfied by the system, then the probability of
error conditioned on which codeword was chosen for transmission does not depend on
the codeword. It is assumed throughout this section that messages in the decoder are
in log-likelihood format, i.e. that the sign of the message indicates the bit estimate
and the magnitude may indicate the level of confidence. Note, however, that it is
not obvious that this is the best format for noisy message-passing [49, Appendix B.1]
or that the symmetry conditions can be restated for messages in other formats. The
several symmetry conditions are:

Definition 5.1 (Channel Symmetry). A memoryless channel is binary-input output-
symmetric if it satisfies

p(Yi = y|Xi = 1) = p(Yi = −y|Xi = −1)

for all channel usage times i = 1, . . . , n.

Definition 5.2 (Check Node Symmetry). A check node message map is symmetric
if it satisfies

Φ(ℓ)(b1µ1, . . . , bdc−1µdc−1, bdcu) = Φ(ℓ)(µ1, . . . , µdc−1, u)

(
dc∏
i=1

bi

)

for any ±1 sequence (b1, . . . , bdc). That is to say, the signs of the messages and the
noise factor out of the map.

Definition 5.3 (Variable Node Symmetry). A variable node message map is sym-
metric if it satisfies

Ψ(0)(−µ0,−u) = −Ψ(0)(µ0, u)

and
Ψ(ℓ)(−µ0,−µ1, . . . ,−µdv−1,−u) = −Ψ(ℓ)(µ0, µ1, . . . , µdv−1, u),
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for ℓ ≥ 1. That is to say, the initial message from the variable node only depends
on the received value and internal noise and there is sign inversion invariance for all
messages.

Definition 5.4 (Message Wire Symmetry). Consider any message wire to be a map-
ping Ξ : M×M → M. Then a message wire is symmetric if

µ = Ξ(ν, u) = −Ξ(−ν,−u),

where µ is any message received at a node when the message sent from the opposite
node is ν and u is message wire noise.

Theorem 5.1 (Conditional Independence of Error). For a given binary linear code

and a given noisy message-passing algorithm, let P
(ℓ)
e (x) denote the conditional prob-

ability of error after the ℓth decoding iteration, assuming that codeword x was sent. If
the channel and the decoder satisfy the symmetry conditions given in Definitions 5.1–
5.4, then P

(ℓ)
e (x) does not depend on x.

Proof. Minor modification of [43, Lemma 1] or [49, Lemma 4.92]. Appendix 5.A gives
details.

Suppose a system meets these symmetry conditions. Since probability of error
is independent of the transmitted codeword and since all LDPC codes have the all-
one codeword in the codebook, one may assume without loss of generality that this
codeword is sent. Doing so removes the randomness associated with transmitted
codeword selection.

� 5.3.2 Concentration around Ensemble Average

The next simplification follows by seeing that the average performance of the ensemble
of codes rather than the performance of a particular code may be studied, since all
codes in the ensemble perform similarly. The performances of almost all LDPC codes
closely match the average performance of the ensemble from which they are drawn.
The average is over the instance of the code, the realization of the channel noise, and
the realizations of the two forms of decoder noise. To simplify things, assume that
the number of decoder iterations is fixed at some finite ℓ = ℓ (with some reuse/abuse
of notation). Let Z be the number of incorrect values held among all dvn variable
node-incident edges at the end of the ℓth iteration (for a particular code, channel
noise realization, and decoder noise realization) and let E[Z] be the expected value
of Z. By constructing a martingale through sequentially revealing all of the random
elements and then using the Hoeffding-Azuma inequality, it can be shown that:

Theorem 5.2 (Concentration Around Expected Value). There exists a positive con-
stant β = β(dv, dc, ℓ) such that for any ϵ > 0,

Pr [|Z − E[Z]| > ndvϵ/2] ≤ 2e−βϵ2n.
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Proof. Follows the basic ideas of the proofs of [43, Theorem 2] or [49, Theorem 4.94].
Appendix 5.B gives details.

If the number of incorrect values Z concentrates, then so does Pe.

� 5.3.3 Convergence to the Cycle-Free Case

The previous theorem showed that the noisy decoding algorithm behaves essentially
deterministically for large n. As now shown, this ensemble average performance
converges to the performance of an associated tree ensemble, which will allow the
assumption of independent messages.

For a given edge whose directed neighborhood of depth 2ℓ is tree-like, let p be the
expected number of incorrect messages received along this edge (after message noise)
at the ℓth iteration, averaged over all graphs, inputs and decoder noise realizations
of both types.

Theorem 5.3 (Convergence to Cycle-Free Case). There exists a positive constant
γ = γ(dv, dc, ℓ) such that for any ϵ > 0 and n > 2γ/ϵ,

|E[Z]− ndvp| < ndvϵ/2.

The proof is identical to the proof of [43, Theorem 2]. The basic idea is that the
computation tree created by unwrapping the code graph to a particular depth [260]
almost surely has no repeated nodes.

The concentration and convergence results directly imply concentration around
the average performance of a tree ensemble:

Theorem 5.4 (Concentration Around Cycle-Free Case). There exist positive con-
stants β = β(dv, dc, ℓ) and γ = γ(dv, dc, ℓ) such that for any ϵ > 0 and n > 2γ/ϵ,

Pr [|Z − ndvp| > ndvϵ] ≤ 2e−βϵ2n.

Proof. Follows directly from Theorems 5.2 and 5.3.

� 5.3.4 Density Evolution

With the conditional independence and concentration results, all randomness is re-
moved from explicit consideration and all messages are independent. The problem
reduces to density evolution, the analysis of a discrete-time dynamical system [255].
The dynamical system state variable of most interest is the probability of symbol
error, Pe.

Denote the probability of symbol error of a code g ∈ Cn after ℓ iterations of
decoding by P

(ℓ)
e (g, ε, α), where ε is a channel noise parameter (such as noise power

or crossover probability) and α is a decoder noise parameter (such as logic gate error
probability). Then density evolution computes

lim
n→∞

E
[
P (ℓ)
e (g, ε, α)

]
,
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where the expectation is over the choice of the code and the various noise realizations.
The main interest is in the long-term behavior of the probability of error after per-
forming many iterations. The long-term behavior of a generic dynamical system may
be a limit cycle or a chaotic attractor, however density evolution usually converges
to a stable fixed point. It should also be noted, that although monotonicity (either
increasing or decreasing) of

lim
n→∞

E
[
P (ℓ)
e (g, ε, α)

]
with respect to iteration number ℓ need not hold, it often does.

If there is a stable fixed point, the limiting performance corresponds to

η∗ = lim
ℓ→∞

lim
n→∞

E
[
P (ℓ)
e (g, ε, α)

]
.

Certain sets of parameters (g, ε, α) lead to “good” performance, in the sense of small
η∗, whereas other sets of parameters lead to “bad” performance with large η∗. The
goal of density evolution analysis is to determine the boundary between these good
and bad sets.

Though it is natural to expect the performance of an algorithm to improve as the
quality of its input improves and as more resources are allocated to it, this may not
be so. For many decoders, however, there is a monotonicity property that limiting
behavior η∗ improves as channel noise ε decreases and as decoder noise α decreases.
Moreover, just as in other nonlinear estimation systems for dimensionality-expanding
signals [60,261,262], there is a threshold phenomenon such that the limiting probabil-
ity of error may change precipitously with the values of ε and α. The error probability
properties of random codes around channel capacity under noiseless maximum likeli-
hood decoding provide a prime example of the nonlinear estimation threshold.

In traditional coding theory, there is no parameter α, and the goal is often to
determine the range of ε for which η∗ is zero. The boundary is often called the
decoding threshold and may be denoted ε∗(0). A decoding threshold for optimal
codes under optimal decoding may be computed from the rate of the code g and the
capacity of the channel, given in Theorem 2.3. Since this Shannon limit threshold is
for optimal codes and decoders, it is clearly an upper bound to ε∗(0) for any given
code and decoder. If the target error probability η∗ is non-zero, then the Shannon
limit threshold is derived from the η-capacity, given in Theorem 2.2.

In the case of faulty decoders, the Shannon limits also provide upper bounds
on the ε-boundary for the set of (ε, α) that achieve good performance. One might
hope for a Shannon theoretic characterization of the entire (ε, α)-boundary, but such
results are not extant. Alternately, in the next sections, sets of (ε, α) that can achieve
η∗-reliability for particular LDPC codes g ∈ Cn are characterized using the density
evolution method developed in this section.

� 5.4 Noisy Gallager A Decoder

Section 5.3 showed that density evolution equations determine the performance of
almost all codes in the large block length regime. Here the density evolution equation
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Figure 5-2. Local computation noise may be incorporated into message-passing noise without
essential loss of generality.

for a simple noisy message-passing decoder, a noisy version of Gallager’s decoding
algorithm A [67, 263], is derived. The algorithm has message alphabet M = {±1},
with messages simply indicating the estimated sign of a bit.

At a check node, the outgoing message along edge e⃗ is the product of all incoming
messages excluding the one incoming on e⃗, i.e. the check node map Φ is the XOR
operation. At a variable node, the outgoing message is the original received code
symbol unless all incoming messages give the opposite conclusion. That is,

Ψ =

{
−y, if µ1 = · · · = µdv−1 = −y,
y, otherwise.

Although this simple decoding algorithm cannot match the performance of belief
propagation due to its restricted messaging alphabet M, it is of interest since it
is of extremely low complexity and can be analyzed analytically [263]. The density
evolution equation leads to an analytic characterization of the set of (ε, α) pairs, which
parameterize the noisiness of the communication system. There is no essential loss of
generality by combining computation noise and message-passing noise into a single
form of noise, as demonstrated schematically in Figure 5-2 and proven in [264, Lemma
3.1]. This noise combining is performed in the sequel to reduce the number of decoder
noise parameters and allow a clean examination of the central phenomenon.

� 5.4.1 Density Evolution Equation

Consider decoding the LDPC-coded output of a binary symmetric channel (BSC)
with crossover probability ε. Each message in the Gallager algorithm A is passed
through an independent and identical BSC with crossover probability α. The density
evolution equation is developed for general irregular LDPC ensembles.

The state variable of density evolution, sℓ, is taken to be the probability of symbol
error P

(ℓ)
e (ε, α) at the variable nodes.

The original received message is in error with probability ε, thus

P (0)
e (ε, α) = s0 = ε.
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The initial variable-to-check message is in error with probability (1−ε)α+ε(1−α),
since it is passed through a BSC(α). For further iterations, ℓ, the probability of error,

P
(ℓ)
e (ε, α), is found by induction. Assume P

(i)
e (ε, α) = si for 0 ≤ i ≤ ℓ. Now consider

the error probability of a check-to-variable message in the (ℓ + 1)th iteration. A
check-to-variable message emitted by a check node of degree dc along a particular
edge is the product of all the (dc − 1) incoming messages along all other edges. By
assumption, each such message is in error with probability sℓ and all messages are
independent. These messages are passed through BSC(α) before being received, so
the probability of being received in error is

sℓ(1− α) + (1− sℓ)α = α + sℓ − 2αsℓ.

Due to the XOR operation, the outgoing message will be in error if an odd number
of these received messages are in error. The probability of this event, averaged over
the degree distribution yields the probability

1− ρ [1− 2(α+ sℓ − 2αsℓ)]

2
.

Now consider P
(ℓ+1)
e (ε, α), the error probability at the variable node in the (ℓ+1)th

iteration. Consider an edge which is connected to a variable node of degree dv. The
outgoing variable-to-check message along this edge is in error in the (ℓ+1)th iteration
if the original received value is in error and not all incoming messages are received
correctly or if the originally received value is correct but all incoming messages are in
error. The first event has probability

ε

(
1−

[
1− (1− α)

(
1− ρ [1− 2(α + sℓ − 2αsℓ)]

2

)
−α
(
1 + ρ [1− 2(α + sℓ − 2αsℓ)]

2

)]dv−1
)
.

The second event has probability

(1− ε)

([
(1− α)

(
1− ρ [1− 2(α + sℓ − 2αsℓ)]

2

)
+α

(
1 + ρ [1− 2(α + sℓ − 2αsℓ)]

2

)]dv−1
)
.

Averaging over the degree distribution and adding the two terms together yields
the density evolution equation in recursive form:

sℓ+1 = ε− εq+α (sℓ) + (1− ε)q−α (sℓ). (5.1)
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The expressions

q+α (š) = λ

[
1 + ρ(ωα(š))− 2αρ(ωα(š))

2

]
,

q−α (š) = λ

[
1− ρ(ωα(š)) + 2αρ(ωα(š))

2

]
,

and ωα(š) = (2α− 1)(2š− 1) are used to define the density evolution recursion.

� 5.4.2 Performance Evaluation

With the density evolution equation established, the performance of the coding-
decoding system with particular values of quality parameters ε and α may be de-
termined. Taking the symbol error probability as the state variable, stable fixed
points of the deterministic, discrete-time, dynamical system are to be found. Usually
one would want the probability of error to converge to zero, but since this might
not be possible, a weaker performance criterion may be needed. To start, consider
partially noiseless cases.

Noisy Channel, Noiseless Decoder

For the noiseless decoder case, i.e. α = 0, it has been known that there are thresholds
on ε, below which the probability of error goes to zero as ℓ increases, and above which
the probability of error goes to some large value. These can be found analytically for
the Gallager A algorithm [263].

Noiseless Channel, Noisy Decoder

For the noisy Gallager A system under consideration, the probability of error does
not go to zero as ℓ goes to infinity for any α > 0. This can be seen by considering
the case of the perfect original channel, ε = 0, and any α > 0. The density evolution
equation reduces to

sℓ+1 = q−α (sℓ), (5.2)

with s0 = 0. The recursion does not have a fixed point at zero, and since error
probability is bounded below by zero, it must increase. The derivative is

∂

∂s
q−α (s) = λ′

[
1− ρ(ωα(s)) + 2αρ(ωα(s))

2

]
ρ′(ωα(s))(2α− 1)2,

which is greater than zero for 0 ≤ s ≤ 1
2
and 0 ≤ α ≤ 1

2
; thus the error evolution

forms a monotonically increasing sequence. Since the sequence is monotone increasing
starting from zero, and there is no fixed point at zero, it follows that this converges
to a real solution of s = q−α (s). In fact it converges to the smallest real solution of
s = q−α (s) since this smallest fixed point cannot be jumped, due to monotonicity.
In particular, consider a fixed point z such that sℓ(s0) ≤ z for some ℓ ≥ 0. Then
sℓ+1(s0) = q−α (sℓ(s0)) ≤ q−α (z) = z due to the monotonicity property of q−α . This
implies that the final value s∞ ≤ z.
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Noisy Channel, Noisy Decoder

The same phenomenon must also happen if the starting s0 is positive, however the
value to which the density evolution converges is a non-zero fixed point solution of the
original equation (5.1), not of (5.2), and is a function of both α and ε. Intuitively, for
somewhat large initial values of ε, the noisy decoder decreases the probability of error
in the first few iterations, just like the noiseless one, but when the error probability
becomes close to the internal decoder error, the probability of error settles at that
level. This is summarized in the following proposition.

Proposition 5.1. For any LDPC ensemble decoded using the noisy Gallager A system
defined in Section 5.4, final error probability η∗ > 0 when decoder noise level α > 0
for any channel noise level ε. �

The fact that probability of error cannot asymptotically be driven to zero with
the noisy Gallager decoder is expected yet is seemingly displeasing. In a practical
scenario, however, the ability to drive Pe to a very small number is also desirable.
As such, a performance objective of achieving Pe less than η is defined and the worst
channel (ordered by ε) for which a decoder with noise level α can achieve that objective
is determined. The channel parameter

ε∗(η, α) = sup{ε ∈ [0, 1
2
] | lim

ℓ→∞
P (ℓ)
e (g, ε, α) < η}

is called the threshold. For a large interval of η values, there is a single threshold
value below which η-reliable communication is possible and above which it is not.
Alternatively, one can determine the probability of error to which a system with
particular α and ε can be driven, η∗(α, ε) = limℓ→∞ P

(ℓ)
e , and see whether this value

is small.
In order to find the threshold in the case of α > 0 and ε > 0, the real fixed point

solutions of density evolution recursion (5.1) need to be found. The real solutions of
the polynomial equation in s,

ε− εq+α (s) + (1− ε)q−α (s)− s = 0

are denoted 0 < r1(α, ε) ≤ r2(α, ε) ≤ r3(α, ε) ≤ · · · .5 The final probability of error
η∗ is determined by the ri, since these are fixed points of the recursion (5.1).

The real solutions of the polynomial equation in s,

s− q−α (s)

1− q+α (s)− q−α (s)
− s = 0, (5.3)

are denoted 0 < τ1(α) ≤ τ2(α) ≤ · · · .5 The threshold ε∗ as well as the region in the α−
ε plane where the decoder improves performance over no decoding are determined by
the τi, since (5.3) is obtained by solving recursion (5.1) for ε and setting equal to zero.
For particular ensembles of LDPC codes, these values can be computed analytically.

5The number of real solutions can be determined through Descartes’ rule of signs or a similar
tool [265].
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For these particular ensembles, it can be determined whether the fixed points are
stable or unstable. Moreover, various monotonicity results can be established to
show that fixed points cannot be jumped.

Analytical expressions for the ri(α, ε) and τi(α) are determined for the (3,6) regular
LDPC code by solving the appropriate polynomial equations and numerical evalua-
tions of the ri expressions are shown as thin lines in Figure 5-3 as functions of ε for
fixed α. The point where r1(α, ε) = ε is τ1(α) and the point where r2(α, ε) = ε is
τ2(α). In Figure 5-3, these are points where the thin lines cross.

By analyzing the dynamical system equation (5.1) for the (3,6) code in detail, it
can be shown that r1(α, ε) and r3(α, ε) are stable fixed points of density evolution.
Contrarily, r2(α, ε) is an unstable fixed point, which determines the boundary between
the regions of attraction for the two stable fixed points. Since r1(α, ε) and r3(α, ε) are
stable fixed points, the final error probability η∗ will take on one of these two values,
depending on the starting point of the recursion, ε. The thick line in Figure 5-3
shows the final error probability η∗ as a function of initial error probability ε. One
may note that η∗ = r1 is the desirable small error probability, whereas η∗ = r3 is the
undesirable large error probability and that τ2 delimits these two regimes.

The τ(α) points determine when it is beneficial to use the decoder, in the sense
that η∗ < ε. By varying α (as if in a sequence of plots like Figure 5-3), an α − ε
region where the decoder is beneficial is demarcated; this is shown in Figure 5-4. The
function τ2(α) is the η-reliability decoding threshold for large ranges of η.

Notice that the previously known special case, the decoding threshold of the noise-
less decoder, can be recovered from these results. The decoding threshold for the
noiseless decoder is denoted ε∗BRU and is equal to the following expression [263].

ε∗BRU =
1−

√
σ

2
,

where

σ = −1

4
+

√
− 5

12
− b

2
+

√
−5

6
+ 11

4
√

−5/12−b

2

and

b =
8

3

(
2

83 + 3
√
993

)1
3

− 1

3

(
83 + 3

√
993

2

)1
3

.

This value is recovered from noisy decoder results by noting that η∗(α = 0, ε) = 0 for
ε ∈ [0, ε∗BRU ], which are the ordinate intercepts of the region in Figure 5-4.

To provide a better sense of the performance of the noisy Gallager A algorithm,
Table 5.1 lists some values of α, ε, and η∗ (numerical evaluations are listed and
an example of an analytical expression is given in Appendix 5.C). As can be seen
from these results, particularly from the τ2 curve in Figure 5-4, the error probability
performance of the system degrades gracefully as noise is added to the decoder.

Returning to threshold characterization, an analytical expression for the threshold
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noisy Gallager A algorithm, α = 0.005. This is determined by the fixed points of density evolution,
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Figure 5-4. Decoding a C∞(3, 6) code with the noisy Gallager A algorithm. Region where it is
beneficial to use decoder is below τ2 and above τ1.
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α ε∗(0.1, α) η∗(α, ε∗) η∗(α, 0.01)

0 0.0394636562 0 0

1× 10−10 0.0394636560 7.8228× 10−11 1.3333× 10−11

1× 10−8 0.0394636335 7.8228× 10−9 1.3333× 10−9

1× 10−6 0.0394613836 7.8234× 10−7 1.3338× 10−7

1× 10−4 0.0392359948 7.8866× 10−5 1.3812× 10−5

3× 10−4 0.0387781564 2.4050× 10−4 4.4357× 10−5

1× 10−3 0.0371477336 8.4989× 10−4 1.8392× 10−4

3× 10−3 0.0321984070 3.0536× 10−3 9.2572× 10−4

5× 10−3 0.0266099758 6.3032× 10−3 2.4230× 10−3

Table 5.1. Performance of Noisy Gallager A algorithm for (3,6) code

within the region to use decoder is:

ε∗(η, α) =
η − q−α (η)

1− q+α (η)− q−α (η)
,

which is the solution to the polynomial equation in ϵ̌,

ϵ̌− ϵ̌q+α (η) + (1− ϵ̌)q−α (η)− η = 0.

The threshold is drawn for several values of η in Figure 5-5. A threshold line de-
termines the equivalence of channel noise and decoder noise with respect to final
probability of error. If for example, the binary symmetric channels in the system
are a result of hard-detected AWGN channels, such a line may be used to derive the
equivalent channel noise power for decoder noise power or vice versa. Threshold lines
therefore provide guidelines for power allocation in communication systems.

� 5.4.3 Code Optimization

At this point, the symbol error performance of a system has simply been measured;
no attempt has been made to optimize a code for a particular decoder and set of
parameters. For fault-free decoding, it has been demonstrated that irregular code
ensembles can perform much better than regular code ensembles like the (3,6) LDPC
considered above [263, 266]. One might hope for similar improvements when LDPC
code design takes decoder noise into account. The space of system parameters to be
considered for noisy decoders is much larger than for noiseless decoders.

As a first step, consider the ensemble of rate 1/2 LDPC codes that were optimized
by Bazzi et al. for the fault-free Gallager A decoding algorithm [263]. The left degree
distribution is

λ(ζ) = aζ2 + (1− a)ζ3

114



0 1 2 3 4 5 6 7 8

x 10
−3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

DECODER NOISE α

C
H

A
N

N
E

L 
N

O
IS

E
 ε

 

 
η = 0.005
η = 0.002
η = 0.001
η = 0.0005
η = 0.0001
η = 0.00005
η = 0.00001

Figure 5-5. η-thresholds (gray lines) for decoding a C∞(3, 6) code with the noisy Gallager A
algorithm within the region to use decoder (delimited with red line).

and the right degree distribution is

ρ(ζ) =
7a

3
ζ6 +

3− 7a

3
ζ7,

where the optimal a is specified analytically. Numerically, aopt = 0.1115 . . .. Measur-
ing the performance of this code with the noisy Gallager A decoder yields the region
to use decoder shown in Figure 5-6; the region to use decoder for the (3,6) code is
shown for comparison. By essentially any criterion of performance, this optimized
code is better than the (3,6) code.

Are there other codes that can perform better on the faulty decoder than the
code optimized for the fault-free decoder? To see whether this is possible, arbitrarily
restrict to the family of ensembles that were found to contain the optimal degree
distribution for the fault-free decoder and take a = 1/10. Also let α = 1/500 be
fixed. The numerical value of the threshold ε∗1/10(1/10, α) = 0.048239, whereas the

numerical value of the threshold ε∗aopt(1/10, α) = 0.047857. In this sense, the a = 1/10
code is better than the a = aopt code. In fact, as seen in Figure 5-6, the region to use
decoder for this a = 1/10 code contains the region to use decoder for the aopt code.

On the other hand, the final error probability when operating at threshold for the
a = 1/10 code η∗1/10(α, ε

∗
1/10(1/10, α)) = 0.01869, whereas the final error probability

when operating at threshold for the a = aopt code is η
∗
aopt(α, ε

∗
aopt(1/10, α)) = 0.01766.

So in this sense, the a = aopt code is better than the a = 1/10 code.
This phenomenon arises due to the fact that highly optimized ensembles usually

lead to more simultaneous critical points including fixed points, see e.g. [49, Example
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Figure 5-6. Region to use decoder for Bazzi et al.’s optimized rate 1/2 LDPC code with noisy
Gallager A decoding (black) is contained within the region to use decoder for a rate 1/2 LDPC
code in Bazzi et al.’s optimal family of codes with a = 1/10 (green) and contains the region to use
decoder for the C∞(3, 6) code (gray).

3.64]. Since there are potentially more stable fixed points, they can capture the
decoding process at greater values of final error probability.

If both threshold and final symbol error probability are performance criteria, there
is no total order on codes and therefore there may be no notion of an optimal code.

� 5.5 Noisy Gaussian Decoder

One might want to analyze a noisy version of the belief propagation decoder ap-
plied to the output of a continuous-alphabet channel, but density evolution for belief
propagation is difficult to analyze even in the noiseless decoder case. This section
considers a decoder inspired by [267] that has one-dimensional state variables and
messages, rather than infinite-dimensional ones as for belief propagation. In refer-
ence to [267], the decoder is called a noisy Gaussian approximation decoder, but it
should be thought of as physically implemented rather than simply as an approxima-
tion to aid performance analysis. The specific node computations carried out by the
decoder, Φ and Ψ, as well as the noise model are defined below.

Section 5.4 had considered decoding the output of a BSC with a decoder that was
constructed with BSC components and Proposition 5.1 had shown that probability
of symbol error could never be driven to zero. Here, the probability of symbol error
does in fact go to zero.

Consider a binary input AWGN channel with variance ε2. The output is decoded
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using a noisy Gaussian approximation decoder. For simplicity, only regular LDPC
codes are considered. The messages that are passed in this decoder are real-valued,
M = R∪{±∞}, and are in log-likelihood format. A positive-valued message indicates
belief that a symbol is +1 whereas a negative-valued message indicates belief that a
symbol is −1. A message of magnitude 0 indicates complete uncertainty whereas a
message of infinite magnitude indicates complete confidence in a symbol value.

Letting ν(y) denote the log-likelihood ratios computed from the channel output
symbols, the variable-to-check messages in the zeroth iteration are

νv→c = ν(y) = log
p(y|x = 1)

p(y|x = −1)
.

The check node takes the received versions of these messages, µv→c, as input. The
node implements a mapping Φ whose output, νc→v, satisfies:

etanh(νc→v) =
dc−1∏
i=1

etanh(µv→ci),

where the product is taken over messages on all incoming edges except the one on
which the message will be outgoing, and

etanh(v̌) =
1√
4πv̌

∫
R
tanh

v

2
e−

(v−v̌)2

4v dv.

The check node mapping is motivated by Gaussian likelihood computations. For the
sequel, it is useful to define a slightly different function

ϕ(v̌) =

{
1− etanh(v̌), v̌ > 0

1, v̌ = 0

which can be approximated as
ϕ(v̌) ≈ eav̌

c+b,

with a = −0.4527, b = 0.0218, c = 0.86 [267].

For iterations ℓ ≥ 1, the variable node takes the received versions of the c → v

messages, µc→v, as inputs. The mapping Ψ yields output νv→c given by

νv→c = ν(y) +
dv−1∑
i=1

µc→vi ,

where the sum is taken over received messages from the neighboring check nodes
except the one to which this message is outgoing. Again, the operation of the variable
node is motivated by Gaussian likelihood computations.

As in Section 5.4, local computation noise is combined into message-passing noise
(Figure 5-2). To model quantization [229] or random phenomena, consider each mes-
sage passed in the decoder to be corrupted by signal-independent additive white noise
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which is bounded as −α/2 ≤ w ≤ α/2. This class of noise models includes uniform
noise and truncated Gaussian noise, among others. If the noise is symmetric, then
Theorem 5.1 applies. Following the Von Neumann error model, each noise realization
w is assumed to be independent.

� 5.5.1 Density Evolution Equation

The definition of the computation rules and the noise model may be used to derive the
density evolution equation. The one-dimensional state variable chosen to be tracked
is s, the approximate log-likelihood value at a variable node. If the all-one codeword
was transmitted, then the value s going to +∞ is equivalent to Pe going to 0.

To bound decoding performance under any noise model in the class of additive
bounded noise, consider (non-stochastic) worst-case noise. Assuming that the all-one
codeword was sent, all messages should be as positive as possible to move towards
the correct decoded codeword (log-likelihoods of +∞ indicate perfect confidence in
a symbol being 1). Consequently, the worst bounded noise that may be imposed is
to subtract α/2 from all messages that are passed; this requires knowledge of the
transmitted codeword being all-one. If another codeword is transmitted, then certain
messages would have α/2 added instead of subtracted.

Such a worst-case noise model does not meet the last condition (Definition 5.4) of
Theorem 5.1, but transmission of the all-one codeword is assumed nonetheless. An
adversary with knowledge of the transmitted codeword imposing worst-case noise on
the decoder would still yield a probability of symbol error conditioned on the transmit-
ted codeword that does not depend on the identity of the codeword if the symmetry
conditions specified in Definitions 5.1–5.3 hold. This follows since the worst-case
degradation causes the same loss in performance for any transmitted codeword.

Note that the adversary is restricted to selecting each noise realization indepen-
dently. More complicated and devious error patterns in space or in time are not
possible in the Von Neumann error model. Moreover, the performance criterion is
probability of symbol error rather than probability of message error, so complicated
error patterns would provide no great benefit.

Since the noise is conditionally deterministic given the transmitted codeword,
derivation of the density evolution equation is much simplified. An induction argu-
ment is used, and the base case is

s0 = ν(y) = 2
ε2
,

where ε2 is the channel noise power. The smaller the channel noise power, the closer
to +∞ the state variable starts. This follows from the log-likelihood computation for
an AWGN communication channel with input alphabet X = {±1}.

The inductive assumption in the induction argument is sℓ−1. This message is
communicated over message-passing noise to get

µ(ℓ)
v→c = sℓ−1 − α

2
.
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Next the check node computation is made:

ν(ℓ)c→v = ϕ−1
(
1− [1− ϕ(sℓ−1 − α

2
)]dc−1

)
.

By the inductive assumption, all messages will be equivalent; that is why the product
is a (dc − 1)-fold product of the same quantity. This value is communicated over
message-passing noise to get

µ(ℓ)
c→v = ϕ−1

(
1− [1− ϕ(sℓ−1 − α

2
)]dc−1

)
− α

2
.

Finally the variable-node computation yields

ν(y) + (dv − 1)
{
ϕ−1

(
1− [1− ϕ(sℓ−1 − α

2
)]dc−1

)
− α

2

}
.

Again, all messages will be equivalent so the sum is a (dv − 1)-fold sum of the same
quantity. Thus the density evolution equation is

sℓ =
2
ε2
− (dv−1)α

2
+ (dv − 1)

{
ϕ−1

(
1− [1− ϕ(sℓ−1 − α

2
)]dc−1

)}
. (5.4)

� 5.5.2 Performance Evaluation

One might wonder whether there are sets of noise parameters α > 0 and ε > 0 such
that sℓ → +∞. Indeed there are, and there is a threshold phenomenon, just like
Chung et al. showed for α = 0 [267].

Proposition 5.2. For LDPC ensembles decoded using the noisy Gaussian approxima-
tion system defined in Section 5.5, there exit positive decoding threshold values ε∗(α)
such that final symbol error probability η∗ = 0 for all binary-input AWGN channels
with noise levels ε < ε∗(α).

Proof. Substituting s = +∞ into (5.4) demonstrates that it is a stable fixed point. It
may further be verified that the dynamical system proceeds toward that fixed point
if ε < ε∗(α).

Unlike Section 5.4 where the ε∗(η, α) thresholds could be evaluated analytically,
only numerical evaluations of these ε∗(α) thresholds are possible. This is shown in
Figure 5-7 for the (3,6) regular LDPC ensemble. As can be observed, the threshold
decreases smoothly as the decoder noise level increases.

The basic reason for the disparity between Propositions 5.1 and 5.2 is that here,
the noise is bounded whereas the messages are unbounded. Thus once the messages
grow large, the noise has essentially no effect. To use a term from [268], once the
decoder reaches the breakout value, noise cannot stop the decoder from achieving
Shannon reliability.

Perhaps a peak amplitude constraint on messages would provide a more realistic
computation model, but the equivalent of Proposition 5.2 may not hold. Quantified
data processing inequalities may provide insight into what forms of noise and message
constraints are truly limiting [230,231].
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Figure 5-7. Thresholds for decoding a C∞(3, 6) code with the noisy Gaussian approximation
algorithm. Notice that the ordinate intercept is ε∗CRU = 0.8747, [267].

� 5.6 Constructing Reliable Memories from Unreliable Components

Complexity and reliability are primary limitations on practical decoding. By consid-
ering the design of fault masking techniques for memory systems, a communication
problem beyond Figure 1-2, both complexity and reliability may be explicitly con-
strained. Indeed, the problem of constructing reliable information storage devices
from unreliable components is central to fault-tolerant computing, and determining
the information storage capacity of such devices is a long-standing open problem [269].
This problem is related to problems in distributed information storage [270] and is
intimately tied to the performance of codes under faulty decoding. The analysis
techniques developed thus far may be used directly.

In particular, one may construct a memory architecture with noisy registers and
a noisy LDPC correcting network, as depicted in Figure 5-8. At each time step, the
correcting network decodes the register contents and restores them. The correcting
network prevents the codeword stored in the registers from wandering too far away.
Taylor and others have shown that there exist non-zero levels of component noisiness
such that the LDPC-based construction achieves non-zero storage capacity [247,248,
256]. Results as in Section 5.4 may be used to precisely characterize storage capacity.

Before proceeding with an achievability result, requisite definitions and the prob-
lem statement are given [247].

Definition 5.5. An elementary operation is any Boolean function of two binary
operands.

120



NOISY LDPC DECODING CIRCUIT

NOISY REGISTERSMEMORY INPUT/OUTPUT

Figure 5-8. Architecture of memory system with noisy registers and noisy LDPC correcting
network.

Definition 5.6. A system is considered to be constructed from components, which
are devices that either perform one elementary operation or store one bit.

Definition 5.7. The complexity χ of a system is the number of components within
the system.

Definition 5.8. A memory system that stores k information bits is said to have an
information storage capability of k.

Definition 5.9. Consider a sequence of memories {Mi}, ordered according to their
information storage capability i (bits). The sequence {Mi} is stable if it satisfies the
following:

1. For any k, Mk must have 2k allowed inputs denoted {Iki}, 1 ≤ i ≤ 2k.

2. A class of states, C(Iki), is associated with each input Iki of Mk. The classes
C(Iki) and C(Ikj) must be disjoint for all i ̸= j and all k.

3. The complexity of Mk, χ(Mk), must be bounded by θk, where redundancy θ is
fixed for all k.

4. At ℓ = 0, let one of the inputs from {Iki} be stored in each memory Mk in
the sequence of memories {Mi}, with no further inputs in times ℓ > 0. Let
Iki denote the particular input stored in memory Mk. Let λki(T ) denote the
probability that the state of Mk does not belong to C(Iki) at ℓ = T and further
let Pmax

k (T ) = maxi λki(T ). Then for any T > 0 and δ > 0, there must exist a
k such that Pmax

k (T ) < δ.

The demarcation of classes of states is equivalent to demarcating decoding regions.

Definition 5.10. The storage capacity, C, of memory is a number such that there
exist stable memory sequences for all memory redundancy values θ greater than 1/C.

Note that unlike channel capacity for the communication problem, there is no
informational definition of storage capacity that is known to go with the operational
definition.
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The basic problem then is to determine storage capacity, which is a measure of
the circuit complexity required to achieve arbitrarily reliable information storage.
Due to the definition of memory stability, the circuit complexity of a memory system
with positive storage capacity must be linear in block length. It is not obvious that
positive storage capacity is possible. Luckily systems with message-passing correcting
networks for LDPC codes do have linear complexity. Thus the remainder of the
chapter considers whether stable memories can be constructed using the architecture
depicted in Figure 5-8 and whether the storage capacity can be quantified.

Although Proposition 5.1 shows that Shannon reliability is not achievable for
any noisy Gallager A decoder, the definition of stable information storage does not
require this. By only requiring maintenance within a decoding region, the definition
implies that either the contents of the memory may be read-out in coded form or
equivalently that there is a noiseless output device that yields decoded information;
call this noiseless output device the silver decoder.

Taylor had previously proven that there exist stable memories with positive stor-
age capacity [247].

Theorem 5.5 ( [247]). There exists a stable sequence of memories with positive stor-
age capacity, where every component in every memory has a fixed non-zero probability
of error.

The goal here is to provide precise quantitative achievability results for storage ca-
pacity.

Consider the construction of a memory with noisy registers as storage elements
according to the architecture of Figure 5-8. There are memory registers connected
to the outside world through noisy input/output pins. These registers are also con-
nected to a noisy Gallager A LDPC decoder (as described in Section 5.4), which takes
the register values as inputs and stores its computational results back into the regis-
ters. To find the storage capacity of this construction, first compute the complexity
(presupposing that the construction will yield a stable sequence of memories).

The Gallager A check node operation is a (dc−1)-input XOR gate, which may be
constructed from dc−2 two-input XOR gates, Figure 5-9. A variable node determines
whether its dv − 1 inputs are all the same and then compares to the original received
value. Let Ddv denote the complexity of this logic. The output of the comparison
to the original received value is the value of the consensus view. One construction
to implement the consensus logic, as depicted in Figure 5-9, is to OR together the
outputs of a (dv − 1)-input AND gate and a (dv − 1)-input AND gate with inverted
inputs. This is then XORed with the stored value. Such a circuit can be implemented
with 2(dv − 2) + 2 components, so Ddv = 2dv − 2. The storage is carried out in n
registers. The total complexity of the memory Mk, χ(Mk)Cn(dv,dc), is

χ(Mk)Cn(dv,dc) = n(1 + 2dv − 2 + dv(dc − 2)) = n(dvdc − 1).

The information storage capability is n times the rate of the code, R. The com-
plexity of an irredundant memory with the same storage capability is χirrn = Rn.
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Figure 5-9. Gate-level implementation of nodes for a regular LDPC Gallager A correcting network.
(a) check node. (b) variable node.

Hence, the redundancy is

χ(Mk)Cn(dv,dc)

χirrn
=
n(dvdc − 1)

Rn
≤ (dvdc − 1)

1− dv/dc

which is a constant. By [49, Lemma 3.22], the inequality almost holds with equality
with high probability for large n. For the (3, 6) regular LDPC code, the redundancy
value is 34, so C = 1/34, if the construction does in fact yield stable memories.

The conditions under which the memory is stable depends on the silver decoder.
Since silver decoder complexity does not enter, the silver decoder should be thought
of as a maximum likelihood decoder. The Gallager lower bound to the ML decoding
threshold for the (3, 6) regular LDPC code is ε∗GLB = 0.0914755 [271, Table II]. Recall
from Figure 5-4 that the decoding threshold for Gallager A decoding is ε∗BRU =
0.0394636562.

If the probability of symbol error for the correcting network in the memory stays
within the decoding threshold of the silver decoder, then stability follows. Thus the
question reduces to determining the sets of component noisiness levels (α, ε) for which
the decoding circuit achieves (η = ε∗ML)-reliability.

Consider a memory system where bits are stored in registers with probability αr

of flipping at each time step. An LDPC codeword is stored in these registers; the
probability of incorrect storage at the first time step is ε. At each iteration, the
variable node value from the correcting network is placed in the register. This stored
value is used in the subsequent Gallager A variable node computation rather than a
received value from the input pins. Suppose that the component noise values in the
correcting network may be parameterized as in Section 5.4. Then a slight modification

123



0 0.002 0.004 0.006 0.008
0

0.01

0.02

0.03

0.04

COMPONENT NOISE α

IN
P

U
T

/O
U

T
P

U
T

 N
O

IS
E

 ε

Figure 5-10. For a memory system constructed with noisy registers and a (3, 6) LDPC Gallager
A correcting network, the region R is delimited by the black line, a region comprising the “region
to use decoder” (thin gray line) and its hypograph.

of the analysis in Section 5.4 yields a density evolution equation

sℓ+1 = ε2 − ε2q
+
α (sℓ) + (1− ε2)q

−
α (sℓ),

where ε2 = sℓ(1 − αr) + αr(1 − sℓ). There is a “region to use decoder” for this
system, just as in Section 5.4. If αr = α, this region is shown in Figure 5-10, and is
slightly smaller than the region in Figure 5-4. Denote this region and its hypograph
as R. It follows that (η = ε∗BRU)-reliability is achieved for R. Since ε∗BRU -reliability
is achievable, ε∗GLB-reliability is achievable by monotonicity. Thus the construction
yields stable memories.

Theorem 5.6. Let R be a set of memory component noise parameters (α, ε) within
the region to use decoder of Figure 5-10 or its hypograph. Then a sequence of noisy
memories constructed from R-components into a Gallager A correcting network for
a (3, 6) LDPC code have a storage capacity lower bounded as C ≥ 1/34.

By specifying a particular construction and using density evolution as the method
of analysis, Theorem 5.6 gave a precise quantitative achievability result for storage ca-
pacity, expanding beyond the existence result in Theorem 5.5. Concentration around
the cycle-free case, Theorem 5.4, which was used implicitly in this section also con-
siderably reduced the circuit complexity that had previously been thought necessary
for constructing reliable memories from unreliable components [247], by not requiring
several copies of the correcting network.
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Theorem 5.6 can directly be extended to use code ensembles better than the (3, 6)
regular code, but the question of an optimal architecture for memory systems remains
open due to the lack of converse arguments. This theorem and the style of analysis
used to prove it, however, give precise achievability results that lower bound the
storage capacity.

� 5.7 Discussion

Loeliger et al. [215] had observed that decoders are robust to nonidealities and noise
in physical implementations, however they had noted that “the quantitative analysis
of these effects is a challenging theoretical problem.” This chapter has taken steps to
address this challenge by characterizing robustness to decoder noise.

The extension of the density evolution method to the case of faulty decoders al-
lows a simplified means of asymptotic performance characterization. Results from
this method show that in certain cases Shannon reliability is not achievable (Propo-
sition 5.1), whereas in other cases it is achievable (Proposition 5.2). In either case,
however, the degradation of a suitably defined decoding threshold is smooth with
increasing decoder noise, whether in circuit nodes or circuit wires.

One may further consider a concatenated coding scheme where the inner code is
an LDPC code with a noisy inner decoder, but the outer code has a silver decoder.
Shannon reliable communication would be possible in many settings, even where
results like Proposition 5.1 hold.

No attempt was made to apply fault masking methods to develop decoding al-
gorithms with improved performance in the presence of noise. One approach might
be to use coding within the decoder so as to reduce the decoder noise level α. Of
course, the within-decoder code would need to be decoded. There are also more direct
circuit-oriented techniques that may be applied [272, 273]. Following the concept of
concatenated codes, concatenated decoders may also be promising. The basic idea of
using a first (noiseless) decoder to correct many errors and then a second (noiseless)
decoder to clean things up was already present in [254], but it may be extended to
faulty decoders.

Reducing power consumption in decoder circuits has been an active area of re-
search [19,274–280], however power reduction often has the effect of increasing noise
in the decoder. The trade-off developed between the quality of the communication
channel and the quality of the decoder may provide guidelines for allocating resources
in communication system design.

Analysis of other decoding algorithms with other error models may yield results
similar to those obtained here. For greater generality, one might move beyond sim-
ple LDPC codes and consider arbitrary codes decoded with very general iterative
decoding circuits [19] with suitable error models. An even more general model of
computation such as a Turing machine or beyond [281] does not seem to have an
obvious, appropriate error model.

Even just a bit of imagination provides numerous models of channel noise and
transient circuit faults that may be investigated to provide further insights into the
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fundamental limits of noisy communication and computing.

� 5.A Proof of Theorem 5.1

Let x ∈ Cn be a codeword and letY denote the corresponding channel outputY = xZ
(where the notation means pointwise multiplication on length n vectors). Note that
Z is equal to the channel output observation when x is all-one. The goal is to show
that messages sent during the decoding process for cases when the received codeword
is either xZ or x correspond.

Let ṅi be an arbitrary variable node and let ṅj be one of its neighboring check

nodes. Let ν
(ℓ)
ij (y) and µ

(ℓ)
ij (y) denote the variable-to-check message from ṅi to ṅj

at the respective terminals in iteration ℓ, assuming received value y. Similarly, let
ν
(ℓ)
ji (y) and µ

(ℓ)
ji (y) be the check-to-variable message from ṅj to ṅi at the respective

terminal in iteration ℓ assuming received value y.

By Definition 5.1, the channel is memoryless binary-input output-symmetric and
it may be modeled multiplicatively as

Yt = xtZt, (5.5)

where {Zt} is a sequence of i.i.d. random variables and t is the channel usage time.
The validity of the multiplicative model is shown in [43, p. 605] and [49, p. 184].

By the multiplicative model (5.5), ν
(0)
ij (y) = ν

(0)
ij (xz). Recalling that xi ∈ {±1},

by the variable node symmetry condition (Definition 5.3) which includes computation

noise u
(0)
ṅi
, it follows that ν

(0)
ij (y) = ν

(0)
ij (xz) = xiν

(0)
ij (z).

Now consider the wire noise w
(0)
ij on the message from ṅi to ṅj. It is symmetric

(Definition 5.4) and so ν
(0)
ij (y) = xiν

(0)
ij (z) implies µ

(0)
ij (y) = xiµ

(0)
ij (z).

Assume that µ
(0)
ij (y) = xiµ

(0)
ij (z) for all (i, j) pairs and some ℓ ≥ 0. Let Nṅj

be the set of all variable nodes that are connected to check node ṅj. Since x is a
codeword, it satisfies the parity checks, and so

∏
k∈Nṅj

= 1. Then from the check node

symmetry condition (Definition 5.2), ν
(ℓ+1)
ji (y) = xiν

(ℓ+1)
ji (z). Further, by the wire

noise symmetry condition (Definition 5.4), µ
(ℓ+1)
ji (y) = xiµ

(ℓ+1)
ji (z). By invoking the

variable node symmetry condition (Definition 5.3) again, it follows that ν
(ℓ+1)
ij (y) =

xiν
(ℓ+1)
ij (z) for all (i, j) pairs. Thus by induction, all messages to and from variable

node ṅi when y is received are equal to the product of xi and the corresponding
message when z is received.

Both decoders proceed in one-to-one correspondence and commit exactly the same
number of errors.

� 5.B Proof of Theorem 5.2

Prior to giving the proof of Theorem 5.2, a review of some definitions from probability
theory [282] and the Hoeffding-Azuma inequality are provided.
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Consider a measurable space (Ω,F) consisting of a sample space Ω and a σ-algebra
F of subsets of Ω that contains the whole space and is closed under complementation
and countable unions. A random variable is an F -measurable function on Ω. If there
is a collection (Zγ|γ ∈ C) of random variables Zγ : Ω → R, then

Z = σ(Zγ|γ ∈ C)

is defined to be the smallest σ-algebra Z on Ω such that each map (Zγ|γ ∈ C) is
Z-measurable.

Definition 5.11 (Filtration). Let {Fi} be a sequence of σ-algebras with respect to
the same sample space Ω. These Fi are said to form a filtration if F0 ⊆ F1 ⊆ · · · are
ordered by refinement in the sense that each subset of Ω in Fi is also in Fj for i ≤ j.
Also F0 = {∅,Ω}.

Usually, {Fi} is the natural filtration Fi = σ(Z0, Z1, . . . , Zi) of some sequence
of random variables (Z0, Z1, . . .), and then the knowledge about ω known at step i
consists of the values Z0(ω), Z1(ω), . . . , Zi(ω).

For a probability triple (Ω,F ,P), a version of the conditional expectation of a
random variable Z given a σ-algebra F is a random variable denoted E[Z|F ]. Two
versions of conditional expectation agree almost surely, but measure zero departures
are not considered subsequently; one version is fixed as canonical. Conditional expec-
tation given a measurable event E is denoted E [Z|σ(E)] and conditional expectation
given a random variable W is denoted E[Z|σ(W )].

Definition 5.12 (Martingale). Let F0 ⊆ F1 ⊆ · · · be a filtration on Ω and let
Z0, Z1, . . . be a sequence of random variables on Ω such that Zi is Fi-measurable. Then
Z0, Z1, . . . is a martingale with respect to the filtration F0 ⊆ F1 ⊆ · · · if E[Zi|Fi−1] =
Zi−1.

A generic way to construct a martingale is Doob’s construction.

Definition 5.13 (Doob Martingale). Let F0 ⊆ F1 ⊆ · · · be a filtration on Ω and let
Z be a random variable on Ω. Then the sequence of random variables Z0, Z1, . . . such
that Zi = E[Z|Fi] is a Doob martingale.

Lemma 5.1 (Hoeffding-Azuma Inequality [43,283,284]). Let Z0, Z1, . . . be a martin-
gale with respect to the filtration F0 ⊆ F1 ⊆ · · · such that for each i > 0, the following
bounded difference condition is satisfied

|Zi − Zi−1| ≤ αi, αi ∈ [0,∞).

Then for all n > 0 and any ξ > 0,

Pr [|Zn − Z0| ≥ ξ] ≤ 2 exp

(
− ξ2

2
∑n

k=1 α
2
k

)
.
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Now to the proof of Theorem 5.2; as noted before, it is an extension of [43, Theorem
2] or [49, Theorem 4.94]. The basic idea is to construct a Doob martingale about the
object of interest by revealing various randomly determined aspects in a filtration-
refining manner. The first set of steps is used to reveal which code was chosen from the
ensemble of codes; the ndv edges in the bipartite graph are ordered in some arbitrary
manner and exposed one by one. Then the n channel noise realizations are revealed.
At this point the exact graph and the exact channel noise realizations encountered
have been revealed. Now the decoder noise realizations must be revealed. There are
n variable nodes, so the computation noise in each of them is revealed one by one.
There are ndv edges over which variable-to-check communication noise is manifested.
Then there are ndv/dc check nodes with computation noise, and finally there are
ndv check-to-variable communication noises for one iteration of the algorithm. The
decoder noise realizations are revealed for each iteration. At the beginning of the
revelation process, the average (over choice of code, channel noise realization, and
decoder noise realization) is known; after the m = (dv + 2ℓdv + 1 + ℓ + ℓdv/dc)n
revelation steps, the exact system used is known.

Recall that Z denotes the number of incorrect values held at the end of the ℓth iter-
ation for a particular (g, y, w, u) ∈ Ω. Since g is a graph in the set of labeled bipartite
factor graphs with variable node degree dv and check node degree dc, Gn(dv, dc); y is a
particular input to the decoder, y ∈ Yn; w is a particular realization of the message-
passing noise, w ∈ M2ℓdvn; and u is a particular realization of the local computation
noise, u ∈ U (ℓ+ℓdv/dc)n, the sample space is Ω = Gn(dv, dc)×Yn×M2ℓdvn×U (ℓ+ℓdv/dc)n.

In order to define random variables, first define the following exposure procedure.
Suppose realizations of random quantities are exposed sequentially. First expose the
dvn edges of the graph one at a time by exposing which check node is connected to
which variable node. A connection point on a node is called a socket. At step i ≤ dvn
expose the particular check node socket which is connected to the ith variable node
socket. Next, in the following n steps, expose the received values yi one at a time.
Finally in the remaining (2dv + 1 + dv/dc)ℓn steps, expose the decoder noise values
ui and wi that were encountered in all iterations up to iteration ℓ.

Let ≡i, 0 ≤ i ≤ m, be a sequence of equivalence relations on the sample space Ω
ordered by refinement. Refinement means that (g′, y′, w′, u′) ≡i (g

′′, y′′, w′′, u′′) implies
(g′, y′, w′, u′) ≡i−1 (g

′′, y′′, w′′, u′′). The equivalence relations define equivalence classes
such that (g′, y′, w′, u′) ≡i (g′′, y′′, w′′, u′′) if and only if the realizations of random
quantities revealed in the first i steps for both pairs is the same.

Now, define a sequence of random variables Z0, Z1, . . . , Zm. Let the random vari-
able Z0 be Z0 = E[Z], where the expectation is over the code choice, channel noise,
and decoder noise. The remaining random variables Zi are constructed as conditional
expectations given the measurable equivalence events (g′, y′, w′, u′) ≡i (g, y, w, u):

Zi(g, y, w, u) = E [Z(g′, y′, w′, u′)|σ((g′, y′, w′, u′) ≡i (g, y, w, u))] .

Note that Zm = Z and that by construction Z0, Z1, . . . , Zm is a Doob martingale.
The filtration is understood to be the natural filtration of the random variables
Z0, Z1, . . . , Zm.
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To use the Hoeffding-Azuma inequality to give bounds on

Pr [|Z − E[Z]| > ndvϵ/2] = Pr [|Zm − Z0| > ndvϵ/2] ,

bounded difference conditions

|Zi+1(g, y, w, u)− Zi(g, y, w, u)| ≤ αi, i = 0, . . . ,m− 1

need to be proved for suitable constants αi that may depend on dv, dc, and ℓ.

For the steps where bipartite graph edges are exposed, it was shown in [43, p. 614]
that

|Zi+1(g, y, w, u)− Zi(g, y, w, u)| ≤ 8(dvdc)
ℓ, 0 ≤ i < ndv.

It was further shown in [43, p. 615] that for the steps when the channel outputs are
revealed that

|Zi+1(g, y, w, u)− Zi(g, y, w, u)| ≤ 2(dvdc)
ℓ, ndv ≤ i < n(1 + dv). (5.6)

It remains to show that the inequality is also fulfilled for steps when decoder noise
realizations are revealed. The bounding procedure is nearly identical to that which
yields (5.6). When a node noise realization u is revealed, clearly only something whose
directed neighborhood includes the node at which the noise u causes perturbations
can be affected. Similarly, when an edge noise realization w is revealed, only some-
thing whose directed neighborhood includes the edge on which the noise w causes
perturbations can be affected. In [43, p. 603], it is shown that the size of the directed
neighborhood of depth 2ℓ of the node ṅ(u) associated with noise u is bounded as
|N 2ℓ

ṅ(u)| ≤ 2(dvdc)
ℓ and similarly the size of the directed neighborhood of length 2ℓ of

the edge e⃗(w) associated with noise w is bounded as |N 2ℓ
e⃗(w)| ≤ 2(dvdc)

ℓ. Since the
maximum depth that can be affected by a noise perturbation is 2ℓ, a weak uniform
bound for the remaining exposure steps is

|Zi+1(g, y, w, u)− Zi(g, y, w, u)| ≤ 2(dvdc)
ℓ, n(1 + dv)dv ≤ i < m.

Since bounded difference constants αi have been provided for all i, the theorem follows
from application of the Hoeffding-Azuma inequality to the martingale.

One may compute a particular value of β to use as follows. The bounded difference
sum is

m∑
k=1

α2
k = 64ndv(dvdc)

2ℓ + 4n(dvdc)
2ℓ + 4[2ℓdvn+ nℓ+ nℓdv/dc](dvdc)

2ℓ

= n
{
64dv + 4 + 8dvℓ+ ℓ+ dvℓ

dc

}
dv

2ℓdc
2ℓ.
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Setting constants in the theorem and in the Hoeffding-Azuma inequality equal yields

1
β
= 512dv

2ℓ−1dc
2ℓ + 32dv

2ℓ−2dc
2ℓ + 64ℓdv

2ℓ−1dc
2ℓ + 8ℓdv

2ℓ−1dc
2ℓ−1 + 8ℓdv

2ℓ−2dc
2ℓ

≤ (544 + 80ℓ)dv
2ℓ−1dc

2ℓ.

Thus 1
β
can be taken as (544 + 80ℓ)dv

2ℓ−1dc
2ℓ.

� 5.C An Analytical Expression

An analytical expression for ε∗(η = 1/10, α = 5× 10−3) is

1
2
− 1

2

√
1 + 4c7,

where c7 is the second root of the polynomial in ε̌

c1 + c2ε̌+ c3ε̌
2 + c4ε̌

3 + c5ε̌
4 + c6ε̌

5,

and constants (c1, . . . , c6) are defined as follows.

c1 = 36α2 − 360α3 + 1860α4 − 6240α5 + 14752α6 − 25344α7 + 31680α8

− 28160α9 + 16896α10 − 6144α11 + 1024α12

=
3424572914129280658801

4000000000000000000000000

c2 = 1− 72α + 1080α2 − 8160α3 + 38640α4 − 125952α5 + 295424α6

− 506880α7 + 633600α8 − 563200α9 + 337920α10 − 122880α11 + 20480α12

=
133200752195329280658801

200000000000000000000000

c3 = 32− 864α + 10080α2 − 69120α3 + 314880α4 − 1012224α5 + 2364928α6

− 4055040α7 + 5068800α8 − 4505600α9 + 2703360α10 − 983040α11 + 163840α12

=
698088841835929280658801

25000000000000000000000

c4 = 160− 3840α + 42240α2 − 281600α3 + 1267200α4 − 4055040α5 + 9461760α6

− 16220160α7 + 20275200α8 − 18022400α9 + 10813440α10 − 3932160α11

+ 655360α12

=
886384871716129280658801

6250000000000000000000
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c5 = 320− 7680α + 84480α2 − 563200α3 + 2534400α4 − 8110080α5 + 18923520α6

− 32440320α7 + 40550400α8 − 36044800α9 + 21626880α10 − 7864320α11

+ 1310720α12

=
886384871716129280658801

3125000000000000000000

c6 = 256− 6144α + 67584α2 − 450560α3 + 2027520α4 − 6488064α5 + 15138816α6

− 25952256α7 + 32440320α8 − 28835840α9 + 17301504α10 − 6291456α11

+ 1048576α12

=
886384871716129280658801

3906250000000000000000

As given in Table 5.1, the numerical value of ε∗(η = 1/10, α = 5 × 10−3) is
0.0266099758.

Similarly complicated analytical expressions are available for the other entries of
Table 5.1 and the values used to create Figures 5-3, 5-4, and 5-5.
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Chapter 6

Operation Reliability—Permanent
Faults

Physical systems such as decoding circuits have a tendency to fail at random times
[12], due to device failure, energy exhaustion, or adversarial attacks. Such a perma-
nent circuit fault is qualitatively different from the kind of transient faults studied in
Chapter 5 because there is no possibility of future recovery. To explore the impact
of permanent decoder failures on communication systems, this chapter defines and
determines information-theoretic limits on the maximum number of bits that can be
communicated to meet a fixed maximax message error requirement.

In designing resource-limited communication systems, there is often a trade-off
between decoder survivability and channel reliability before failure, similar to the
trade-off between channel and decoder resources in Figure 5-5. Results in this chap-
ter formalize a resource allocation equivalence relationship between survivability and
reliability.

Since catastrophic decoder failure causes the entire communication system to fail,
the failure can be modeled elsewhere in the system without much change to the math-
ematical formulation. This chapter therefore models system failure as communication
channel failure: channels that die. As noted by Jacobs [13], “a communication chan-
nel. . . might be inoperative because of an amplifier failure, a broken or cut telephone
wire, . . . .” The notion of outage in wireless communication [285, 286] is similar to
channel death, except that outage is not a permanent condition. Likewise for lost
letters in postal channels [287]. Therefore the block length asymptotics that are use-
ful to study those channel models are not useful for channels that die. Recent work
that has similar motivations as this chapter provides the outage capacity of a wireless
channel [288].

Given that block length asymptotics are not useful, limits on channel coding with
finite block length [289], which have seen renewed interest [290–294], are central to
the development.1 Indeed, channels that die bring the notion of finite block length
to the fore and provide a concrete reason to step back from infinity.2

1Recall from Chapter 2 that tree codes are beyond the scope of this thesis. A reformulation of
communicating over channels that die using tree codes [52, Chapter 10] with early termination [295]
would, however, be interesting. In fact, communicating over channels that die using convolutional
codes with sequential decoding would be very natural, but would require performance criteria dif-
ferent from the ones developed here.

2The phrase “back from infinity” is borrowed from J. Ziv’s 1997 Shannon Lecture.
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As it turns out, the central trade-off in communicating over channels that die is in
the lengths of codeword blocks. Longer blocks improve communication performance
as classically known, whereas shorter blocks have a smaller probability of being pre-
maturely terminated due to channel death. Dynamic programming can be used to
find an optimal ordered integer partition for the sequence of block lengths. Solving
the dynamic program demonstrates that channel state feedback does not improve
performance.

Optimization of codeword block lengths is reminiscent of frame size control in
wireless networks [296–299], however such techniques are used in conjunction with
automatic repeat request protocols and are motivated by amortizing protocol infor-
mation. Moreover, those results demonstrate the benefit of adapting to either channel
state or decision feedback; in contrast, adaptation provides no benefit for channels
that die.

The remainder of the chapter is organized as follows. Section 6.1 defines dis-
crete channels that die and shows that these channels have zero capacity. Section 6.2
states the communication system model and also fixes novel performance criteria. Sec-
tion 6.3 shows that Shannon reliability in communication is not achievable, strength-
ening the result of zero capacity, as well as provides the optimal communication
scheme and determines its performance. Section 6.4 optimizes performance for sev-
eral death distributions and provides some design examples. Section 6.5 provides
further discussion.

� 6.1 Channel Model of Permanent Circuit Faults

Consider a channel with finite input alphabet X and finite output alphabet Y . It
has an alive state s = a when it acts like a discrete memoryless channel (DMC)3

and a dead state s = d when it erases the input, producing the special symbol ‘?’.
The dead state of the channel is meant as a model of catastrophic decoder failure.
Assume throughout the chapter that the DMC from the alive state has zero-error
capacity [301] equal to zero.4

If the channel acts like a binary symmetric channel (BSC) with crossover prob-
ability 0 < ε < 1 in the alive state, with X = {0, 1}, and Y = {0, 1, ?}, then the
transmission matrix in the alive state is

pY |X(y|x, s = a) = pa(y|x) =
[
1− ε ε 0
ε 1− ε 0

]
, (6.1)

and the transmission matrix in the dead state is

pY |X(y|x, s = d) = pd(y|x) =
[
0 0 1
0 0 1

]
. (6.2)

3Results can be extended to cases where the channel acts like other channels [76,300] in the alive
state.

4If the channel is noiseless in the alive state, the problem is similar to settings where fountain
codes [302] are used in the point-to-point case and growth codes [303] are used in the network case.
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The channel starts in state s = a and then transitions to s = d at some random
time T , where it remains for all time thereafter. That is, the channel is in state a for
times n = 1, 2, . . . , T and in state d for times n = T + 1, T + 2, . . .. The death time
distribution is denoted pT (t). It is assumed throughout the chapter that there exists
a finite t† such that pT (t

†) > 0.

� 6.1.1 Finite-State Semi-Markov Channel

Channels that die can be classified as finite-state channels (FSCs) [51, Section 4.6].

Proposition 6.1. A channel that dies (X , pa(y|x), pd(y|x), pT (t),Y) is a finite-state
channel.

Proof. Follows by definition, since the channel has two states.

Channels that die have semi-Markovian [304, Section 4.8], [305, Section 5.7] prop-
erties.

Definition 6.1. A semi-Markov process changes state according to a Markov chain
but takes a random amount of time between changes. More specifically, it is a stochas-
tic process with states from a discrete alphabet S, such that whenever it enters state
s, s ∈ S:

• The next state it will enter is state r with probability that depends only on
s, r ∈ S.

• Given that the next state to be entered is state r, the time until the transition
from s to r occurs has distribution that depends only on s, r ∈ S.

Definition 6.2. The Markovian sequence of states of a semi-Markov process is called
the embedded Markov chain of the semi-Markov process.

Definition 6.3. A semi-Markov process is irreducible if its embedded Markov chain
is irreducible.

Proposition 6.2. A channel that dies (X , pa(y|x), pd(y|x), pT (t),Y) has a channel
state sequence that is a non-irreducible semi-Markov process.

Proof. When in state a, the next state is d with probability 1 and given that the next
state is to be d, the time until the transition from a to d has distribution pT (t). When
in state d, the next state is d with probability 1. Thus, the channel state sequence is
a semi-Markov process.

The semi-Markov state process is not irreducible because the a state of the em-
bedded Markov chain is transient.

Note that when T is a geometric random variable, the channel state process forms a
Markov chain, with transient state a and recurrent, absorbing state d.

There are further special classes of FSCs.
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Definition 6.4. An FSC is a finite-state semi-Markov channel (FSSMC) if its state
sequence forms a semi-Markov process.

Definition 6.5. An FSC is a finite-state Markov channel (FSMC) if its state sequence
forms a Markov chain.

Proposition 6.3. A channel that dies (X , pa(y|x), pd(y|x), pT (t),Y) is an FSSMC
and is an FSMC when T is geometric.

Proof. Follows from Propositions 6.1 and 6.2.

FSMCs have been widely studied in the literature [51, 306, 307], particularly the
child’s toy/panic button channel of Gallager [306, p. 26], [51, p. 103] and the Gilbert–
Elliott channel and its extensions [308, 309]. Contrarily, FSSMCs seem to not have
been specifically studied in information theory. There are a few works [310–312] that
give semi-Markov channel models for wireless communications systems but do not
provide information-theoretic characterizations.

� 6.1.2 Capacity is Zero

A channel that dies has capacity (see Theorem 2.3) equal to zero. To show this, first
notice that if the initial state of a channel that dies were not fixed, then it would
be an indecomposable FSC [51, Section 4.6], where the effect of the initial state dies
away.

Proposition 6.4. If the initial state of a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y)
is not fixed, then it is an indecomposable FSC.

Proof. The embedded Markov chain for a channel that dies has a unique absorbing
state d.

Indecomposable FSCs have the property that the upper capacity, defined in [51,
(4.6.6)], and lower capacity, defined in [51, (4.6.3)], are identical [51, Theorem 4.6.4].
This can be used to show that the capacity of a channel that dies is zero.

Proposition 6.5. The capacity of a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y)
is zero.

Proof. Although the initial state s1 = a here, temporarily suppose that s1 may be
either a or d. Then the channel is indecomposable by Proposition 6.4.

The lower capacity C equals the upper capacity C, for indecomposable channels
by [51, Theorem 4.6.4]. The information rate of a memoryless pd(y|x) ‘dead’ channel
is clearly zero for any input distribution, so the lower capacity C = 0. Thus the
capacity for a channel that dies with initial alive state is C = C = 0.
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� 6.2 Communication System Operation

To information theoretically characterize a channel that dies, a communication system
that contains the channel is described.

There is an information stream (like i.i.d. equiprobable bits), which can be grouped
into a sequence of k messages, (W1,W2, . . . ,Wk). Each message Wi is drawn from
a message set Wi = {1, 2, . . . ,Mi}. Each message Wi is encoded into a channel
input codeword Xni

1 (Wi) and these codewords (Xn1
1 (W1), X

n2
1 (W2), . . . , X

nk
1 (Wk)) are

transmitted in sequence over the channel. A noisy version of this codeword sequence
is received, Y n1+n2+···+nk

1 (W1,W2, . . . ,Wk). The receiver then guesses the sequence
of messages using an appropriate decoding rule fD, to produce (Ŵ1, Ŵ2, . . . , Ŵk) =
fD(Y

n1+n2+···+nk
1 ). The Ŵis are drawn from alphabets W⊖

i = Wi ∪ ⊖, where the ⊖
message indicates the decoder declaring an erasure. The decoder makes an error on
message i if Ŵi ̸= Wi and Ŵi ̸= ⊖.

These system definitions may be formalized, following Chapter 2.

Definition 6.6. For a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y), an (Mi, ni)
individual message code consists of:

• An individual message set {1, 2, . . . ,Mi}, and

• An individual message encoding function f
(i)
E : {1, 2, . . . ,Mi} 7→ X ni.

The individual message index set {1, 2, . . . ,Mi} is denoted Wi, and the set of individ-

ual message codewords {f (i)
E (1), f

(i)
E (2), . . . , f

(i)
E (Mi)} is called the individual message

codebook.

Definition 6.7. An (Mi, ni)
k
i=1 code for a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y)

is a sequence of k individual message codes, (Mi, ni)
k
i=1, in the sense of comprising:

• A sequence of individual message index sets W1, . . . ,Wk,

• A sequence of individual message encoding functions fE = (f
(1)
E , . . . , f

(k)
E ), and

• A decoding function fD : Y
∑k

i=1 ni 7→ W⊖
1 × · · · ×W⊖

k .

There is no essential loss of generality by assuming that the decoding function
fD is decomposed into a sequence of individual message decoding functions fD =
(f

(1)
D , f

(2)
D , . . . , f

(k)
D ) where f

(i)
D : Yni 7→ W⊖

i when individual messages are chosen
independently, due to this independence and the conditional memorylessness of the
channel. To define performance measures, assume that the decoder operates on an
individual message basis. That is, when applying the communication system, let
Ŵ1 = f

(1)
D (Y n1

1 ), Ŵ2 = f
(2)
D (Y n1+n2

n1+1 ), and so on.
For the sequel, make a further assumption on the operation of the decoder.

Assumption 6.1. If all ni channel output symbols used by individual message decoder
f
(i)
D are not ?, then the range of f

(i)
D is Wi. If any of the ni channel output symbols

used by individual message decoder f
(i)
D are ?, then f

(i)
D maps to ⊖.
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This assumption corresponds to the physical properties of a communication system
where the decoder fails catastrophically. Once the decoder fails, it cannot perform
any decoding operations, and so the ? symbols in the channel model of system failure
must be ignored.

� 6.2.1 Performance Measures

Slightly modifying definitions of message error probabilities from Chapter 2 so as not
to penalize declared erasures ⊖ leads to the following.

Definition 6.8. For all 1 ≤ w ≤Mi, let

λw(i) = Pr[Ŵi ̸= w|Wi = w, Ŵi ̸= ⊖]

be the conditional message probability of error given that the ith individual message
is w.

Definition 6.9. The maximal probability of error for an (Mi, ni) individual message
code is

Pmax
e (i) = max

w∈Wi

λw(i).

Definition 6.10. The maximal probability of error for an (Mi, ni)
k
i=1 code is

Pmaximax
e = max

i∈{1,...,k}
Pmax
e (i).

Performance criteria weaker than traditional in information theory are defined,
since the capacity of a channel that dies is zero (Proposition 6.5). In particular,
define formal notions of how much information is transmitted using a code and how
long it takes.

Definition 6.11. The transmission time of an (Mi, ni)
k
i=1 code is N =

∑k
i=1 ni.

Definition 6.12. The expected transmission volume of an (Mi, ni)
k
i=1 code is

V = ET

 ∑
i∈{1,...,k|Ŵi ̸=⊖}

logMi

 .

Notice that although declared erasures do not lead to errors, they do not contribute
transmission volume either.

The several performance criteria for a code may be combined together.

Definition 6.13. Given 0 ≤ η < 1, a pair of numbers (N0, V0) (where N0 is a positive
integer and V0 is non-negative) is said to be an achievable transmission time-volume
at η-reliability if there exists, for some k, an (Mi, ni)

k
i=1 code for the channel that dies

(X , pa(y|x), pd(y|x), pT (t),Y) such that

Pmaximax
e ≤ η,
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N ≤ N0,

and
V ≥ V0.

Moreover, (N0, V0) is said to be an achievable transmission time-volume at Shan-
non reliability if it is an achievable transmission time-volume at η-reliability for all
0 < η < 1.

� 6.3 Limits on Communication

Having defined the notion of achievable transmission time-volume at various levels of
reliability, the goal of this section is to demarcate what is achievable.

� 6.3.1 Shannon Reliability is Not Achievable

Not only is the capacity of a channel that dies zero, but there is no V > 0 such
that (N, V ) is an achievable transmission time-volume at Shannon reliability. A
coding scheme that always declares erasures would achieve zero error probability (and
therefore Shannon reliability) but would not provide positive transmission volume;
this is also not allowed under Assumption 6.1.

Lemmata are stated and proved after the proof of the main proposition. For
brevity, the proof is limited to the alive-BSC case, but can be extended to general
alive-DMCs by choosing the two most distant letters in Y for constructing the repe-
tition code, among other things.

Proposition 6.6. For a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y), there is no
V > 0 such that (N, V ) is an achievable transmission time-volume at Shannon relia-
bility.

Proof. From the error probability point of view, transmitting longer codes is not
harder than transmitting shorter codes (Lemma 6.1) and transmitting smaller codes
is not harder than transmitting larger codes (Lemma 6.2). Hence, the desired re-
sult follows from showing that even the longest and smallest code that has positive
expected transmission volume cannot achieve Shannon reliability.

Clearly the longest and smallest code uses a single individual message code of
length n1 → ∞ and size M1 = 2. Among such codes, transmitting the binary
repetition code is not harder than transmitting any other code (Lemma 6.3). Hence
showing that the binary repetition code cannot achieve Shannon reliability yields the
desired result.

Consider transmitting a single (M1 = 2, n1) individual message code that is simply
a binary repetition code over a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y).

Let W1 = {00000 . . . , 11111 . . .}, where the two codewords are of length n1. As-
sume that the all-zeros codeword and the all-ones codeword are each transmitted
with probability 1/2 and measure average probability of error, since average error
probability lower bounds Pmax

e (1) [51, Problem 5.32]. The transmission time N = n1

and let N → ∞. The expected transmission volume is log 2 > 0.
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Under equiprobable signaling over a BSC, the minimum error probability decoder
is the maximum likelihood decoder, which in turn is the minimum distance decoder
[53, Problem 2.13].

The scenario corresponds to binary hypothesis testing over a BSC(ε) with T obser-
vations (since after the channel dies, the output symbols do not help with hypothesis
testing). Let ε = min(ε, 1 − ε) and ε = max(ε, 1 − ε). Given the realization T = t,
the error probability under minimum distance decoding is

Pmaximax
e (t) =

t∑
i=⌈t/2⌉

(
t

i

)
εiεt−i > K(t) > 0, (6.3)

where K(t) is a fixed constant. Since Pmaximax
e (t) > K(t) > 0 for any finite t, it

follows that there is a fixed constant

K = min
t: t<∞ and pT (t)>0

K(t)

such that Pmaximax
e (t) > K > 0 for any pT (t) that satisfies the property that there is

a finite t† such that pT (t
†) > 0.

Thus Shannon reliability is not achievable.

Lemma 6.1. When transmitting over the alive state’s memoryless channel pa(y|x),
let the maximal probability of error Pmax

e (i) for an optimal (Mi, ni) individual message

code and minimum probability of error individual decoder f
(i)
D be Pmax

e (i;ni). Then
Pmax
e (i;ni + 1) ≤ Pmax

e (i;ni).

Proof. Consider the optimal block-length-ni individual message code/decoder, which
achieves Pmax

e (i;ni). Use it to construct an ni + 1 individual message code that
appends a dummy symbol to each codeword and an associated decoder that op-
erates by ignoring this last symbol. The error performance of this (suboptimal)
code/decoder is clearly Pmax

e (i;ni), and so the optimal performance can only be bet-
ter: Pmax

e (i;ni + 1) ≤ Pmax
e (i;ni).

Lemma 6.2. When transmitting over the alive state’s memoryless channel pa(y|x),
let the maximal probability of error Pmax

e (i) for an optimal (Mi, ni) individual message

code and minimum probability of error individual decoder f
(i)
D be Pmax

e (i;Mi). Then
Pmax
e (i;Mi) ≤ Pmax

e (i;Mi + 1).

Proof. Follows from sphere-packing principles.

Lemma 6.3. When transmitting over the alive state’s memoryless channel pa(y|x),
the optimal (Mi = 2, ni) individual message code can be taken as a binary repetition
code.

Proof. Under minimum distance decoding (which yields the minimum error proba-
bility [53, Problem 2.13]) for a code transmitted over a BSC, increasing the distance
between codewords can only reduce error probability. The repetition code has maxi-
mum Hamming distance between codewords.

Notice that Proposition 6.6 also directly implies Proposition 6.5.
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� 6.3.2 Finite Block Length Channel Coding

Before developing an optimal scheme for η-reliable communication over a channel
that dies, finite block length channel coding is reviewed.

Under the definitions above, traditional channel coding results [289–294] pro-
vide information about individual message codes, determining the achievable trios
(ni,Mi, P

max
e (i)). In particular, the largest possible logMi for a given ni and P

max
e (i)

is denoted logM∗(ni, P
max
e (i)).

The purpose of this work is not to improve upper and lower bounds on finite
block length channel coding, but to use existing results to study channels that die. In
fact, for the sequel, simply assume that the function logM∗(ni, P

max
e (i)) is known, as

are codes/decoders that achieve this value. In principle, optimal individual message
codes may be found through exhaustive search [290,313]. Although algebraic notions
of code quality do not directly imply error probability quality [314], perfect codes
such as the Hamming or Golay codes may also be optimal in certain limited cases.

Omitting the O(log n) term in Theorem 2.1 yields an approximation to the func-
tion logM∗(ni, P

max
e (i)), which is called Strassen’s normal approximation [77]. Re-

cent results comparing upper and lower bounds around Strassen’s approximation have
demonstrated that the approximation is quite good [292].

In the sequel, assume that optimal logM∗(ni, η)-achieving individual message
codes are known. Exact upper and lower bounds to logM∗(ni, η) can be substituted
to make results precise. For numerical demonstrations, further assume that optimal
codes have performance given by Strassen’s approximation.

For the BSC(ε), Strassen’s approximation is:

logM∗ ≈ ni(1− h2(ε))−
√
niε(1− ε)Q−1(η) log2

ε
1−ε

. (6.4)

This BSC expression first appeared in [315].

To provide intuition, the approximate logM∗(ni, η) function for a BSC(ε) is plot-
ted in Figure 6-1. Notice that logM∗ is zero for small ni since no code can achieve
the target error probability η. Also notice that logM∗ is a monotonically increasing
function of ni. Moreover, notice in Figure 6-2 that even when normalized, the ap-
proximate (logM∗)/ni is a monotonically increasing function of ni. Therefore under
Strassen’s approximation, longer blocks provide more ‘bang for the buck.’ The curve
in Figure 6-2 asymptotically approaches capacity.

� 6.3.3 η-reliable Communication

A coding scheme that achieves positive expected transmission volume at η-reliability
is now described. Survival probability of the channel plays a key role in measuring
performance.

Definition 6.14. For a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y), the survival
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Figure 6-1. Maximal codebook size for given block length, the expression (6.4), for ε = 0.01 and
η = 0.001.
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Figure 6-2. Normalized maximal codebook size for given block length, (logM∗(ni, η))/ni, for
ε = 0.01 and η = 0.001. The capacity of a BSC(ε) is 1− h2(ε) = 0.92.
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function is Pr[T > t], is denoted RT (t), and satisfies

RT (t) = Pr[T > t] = 1−
t∑

τ=1

pT (τ) = 1− FT (t),

where FT is the cumulative distribution function.

RT (t) is a non-increasing function.

Proposition 6.7. The transmission time-volume(
N =

k∑
i=1

ni, V =
k∑

i=1

RT (ei) logM
∗(ni, η)

)

is achievable at η-reliability for any sequence (ni)
k
i=1 of individual message codeword

lengths, and e0 = 0, e1 = n1, e2 = n1 + n2, . . . , ek =
∑k

i=1 ni.

Proof.
Code Design: A target error probability η and a sequence (ni)

k
i=1 of individual

message codeword lengths are fixed. Construct a length-k sequence of (Mi, ni) indi-

vidual message codes and individual decoding functions (Wi, f
(i)
E , f

(i)
D ) that achieve

optimal performance. The size of Wi is |Wi| = logM∗(ni, η). Note that individual

decoding functions f
(i)
D have range Wi rather than W⊖

i .
Encoding: A codeword W1 = w1 is selected uniformly at random from the code-

book W1. The mapping of this codeword into n1 channel input letters, Xe1
e0+1 =

f1(w1), is transmitted in channel usage times n = e0 + 1, e0 + 2, . . . , e1.
Then a codeword W2 = w2 is selected uniformly at random from the codebook

W2. The mapping of this codeword into n2 channel input letters, Xe2
e1+1 = f2(w2), is

transmitted in channel usage times n = e1 + 1, e1 + 2, . . . , e2.
This procedure continues until the last individual message code in the code is

transmitted. That is, a codeword Wk = wk is selected uniformly at random from
the codebook Wk. The mapping of this codeword into nk channel input letters,
Xek

ek−1+1 = fk(wk), is transmitted in channel usage times n = ek−1+1, ek−1+2, . . . , ek.
Refer to channel usage times n ∈ {ei−1+1, ei−1+2, . . . , ei} as the ith transmission

epoch.
Decoding: For decoding, the channel output symbols for each epoch are processed

separately. If any of the channel output symbols in an epoch are erasure symbols ?,
then a decoding erasure ⊖ is declared for the message in that epoch, i.e. Ŵi = ⊖.
Otherwise, the individual message decoding function f

(i)
D : Yni → Wi is applied to

obtain Ŵi = f
(i)
D (Y ei

ei−1+1).
Performance Analysis: Having defined the communication scheme, the error prob-

ability, transmission time, and expected transmission volume are measured.
The decoder will either produce an erasure ⊖ or use an individual message decoder

f
(i)
D . When f

(i)
D is used, the maximal error probability of individual message code error

is bounded as Pmax
e (i) < η by construction. Since declared erasures ⊖ do not lead to
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error, and since all Pmax
e (i) < η, it follows that

Pmaximax
e < η.

The transmission time is simply N =
∑
ni.

Recall the definition of expected transmission volume:

E

 ∑
i∈{1,...,k|Ŵi ̸=⊖}

logMi

 =
∑

i∈{1,...,k|Ŵi ̸=⊖}

E {logMi}

and the fact that the channel produces the erasure symbol ? for all channel usage
times after death, n > T , but not before. Combining this with the length of an
optimal code, logM∗(ni, η), leads to the expression

k∑
i=1

Pr[T > ei] logM
∗(ni, η) =

k∑
i=1

RT (ei) logM
∗(ni, η),

since all individual message codewords that are received in their entirety before the
channel dies are decoded using f

(i)
D whereas any individual message codewords that

are even partially cut off are declared ⊖.

Proposition 6.7 is valid for any choice of (ni)
k
i=1. Since (logM∗)/ni is approx-

imately monotonically increasing, it is better to use individual message codes that
are as long as possible. With longer individual message codes, however, there is
a greater chance of many channel usages being wasted if the channel dies in the
middle of transmission. The basic trade-off is captured in picking the set of val-
ues {n1, n2, . . . , nk}. For fixed and finite N , this involves picking an ordered integer
partition n1 + n2 + · · ·+ nk = N . This choice is optimized in Section 6.4.

� 6.3.4 Converse Arguments

Since there are simply operational expressions and no informational expressions in
the development, and since optimal individual message codes and individual message
decoders are assumed to be used, it may seem as though converse arguments are
not required. This would indeed follow, if the following two things were true, which
follow from Assumption 6.1. First, that there is no benefit in trying to decode the last
partially erased message block. Second, that there is no benefit to errors-and-erasures
decoding [64] by the f

(i)
D for codewords that are received before channel death. Under

Assumption 6.1, Proposition 6.7 gives the best performance possible.

One might wonder whether Assumption 6.1 is needed. That there would be no
benefit in trying to decode the last partially erased block follows from the conjecture
that an optimal individual message code would have no latent redundancy that could
be exploited to achieve a Pmax

e (i = last) < η, but this is a property of the actual
optimal code.
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On the other hand the effect of errors-and-erasures decoding by the individual
message decoders it unclear. As given in a Neyman-Pearson style result by Forney
[64], decoding regions determined by likelihood ratio tests should be used to optimally
trade (average) error probability for erasure probability by varying the threshold. It
is unclear how the choice of threshold would affect the expected transmission volume

k∑
i=1

(1− ξi)RT (ei) logM
∗(ni, ξi, η),

where ξi would be the specified erasure probability for individual message i, and
M∗(ni, ξi, η) would be the maximum individual message codebook size under erasure
probability ξi and maximum error probability η. Error bounds for errors-and-erasures
decoding [64, Theorem 2] can certainly be converted into bounds on logM∗(ni, ξi, η).
It is unknown, however, whether there is a good Strassen-style approximation to this
quantity.

� 6.4 Optimizing the Communication Scheme

Section 6.3.3 had not optimized the lengths of the individual message codes, as done
here. For fixed η and N , maximize the expected transmission volume V over the
choice of the ordered integer partition n1 + n2 + · · ·+ nk = N :

max
(ni)ki=1:

∑
ni=N

k∑
i=1

RT (ei) logM
∗(ni, η). (6.5)

For finite N , this optimization can be carried out by an exhaustive search over
all 2N−1 ordered integer partitions. If the death distribution pT (t) has finite support,
there is no loss of generality in considering only finite N . Since exhaustive search
has exponential complexity, however, there is value in trying to use a simplified algo-
rithm. A dynamic programming formulation for the finite horizon case is developed
in Section 6.4.3. The next subsection develops a greedy algorithm which is applicable
to both the finite and infinite horizon cases and yields the optimal solution for certain
problems.

� 6.4.1 A Greedy Algorithm

To try to solve the optimization problem (6.5), consider a greedy algorithm that
optimizes block lengths ni one by one.

Algorithm 6.1.

1. Maximize RT (n1) logM
∗(n1, η) through the choice of n1 independently of any

other ni.

2. Maximize RT (e2) logM
∗(n2, η) after fixing n1, but independently of later ni.
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3. Maximize RT (e3) logM
∗(n3, η) after fixing e2, but independently of later ni.

4. Continue in the same manner for all subsequent ni.

Sometimes the algorithm produces the correct solution.

Proposition 6.8. The solution produced by the greedy algorithm, (ni), is locally op-
timal if

RT (ei) logM
∗(ni, η)−RT (ei − 1) logM∗(ni − 1, η)

RT (ei+1) [logM∗(ni+1 + 1, η)− logM∗(ni+1, η)]
≥ 1 (6.6)

for each i.

Proof. The solution of the greedy algorithm partitions time using a set of epoch
boundaries (ei). The proof proceeds by testing whether local perturbation of an
arbitrary epoch boundary can improve performance. There are two possible pertur-
bations: a shift to the left or a shift to the right.

First consider shifting an arbitrary epoch boundary ei to the right by one. This
makes the left epoch longer and the right epoch shorter. Lengthening the left epoch
does not improve performance due to the greedy optimization of the algorithm. Short-
ening the right epoch does not improve performance since RT (ei) remains unchanged
whereas logM∗(ni, η) does not increase since logM∗ is a non-decreasing function of
ni.

Now consider shifting an arbitrary epoch boundary ei to the left by one. This
makes the left epoch shorter and the right epoch longer. Reducing the left epoch
will not improve performance due to greediness, but enlarging the right epoch might
improve performance, so the gain and loss must be balanced.

The loss in performance (a positive quantity) for the left epoch is

∆l = RT (ei) logM
∗(ni, η)−RT (ei − 1) logM∗(ni − 1, η)

whereas the gain in performance (a positive quantity) for the right epoch is

∆r = RT (ei+1) [logM
∗(ni+1 + 1, η)− logM∗(ni+1, η)] .

If ∆l ≥ ∆r, then perturbation will not improve performance. The condition may be
rearranged as

RT (ei) logM
∗(ni, η)−RT (ei − 1) logM∗(ni − 1, η)

RT (ei+1) [logM∗(ni+1 + 1, η)− logM∗(ni+1, η)]
≥ 1

This is the condition (6.6), so the left-perturbation does not improve performance.
Hence, the solution produced by the greedy algorithm is locally optimal.

Proposition 6.9. The solution produced by the greedy algorithm, (ni), is globally
optimal if

RT (ei) logM
∗(ni, η)−RT (ei −Ki) logM

∗(ni −Ki, η)

RT (ei+1) [logM∗(ni+1 +Ki, η)− logM∗(ni+1, η)]
≥ 1 (6.7)
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for each i, and any non-negative integers Ki ≤ ni.

Proof. The result follows by repeating the argument for local optimality in Proposi-
tion 6.8 for shifts of any admissible size Ki.

There is an easily checked special case of global optimality condition (6.7) under
the Strassen approximation.

Lemma 6.4. The function logM∗
S(z, η)− logM∗

S(z−K, η) is a non-decreasing func-
tion of z for any K, where

logM∗
S(z, η) = zC −√

zρQ−1(η) (6.8)

is Strassen’s approximation.

Proof. Essentially follows from the fact that
√
z is a concave ∩ function in z. More

specifically
√
z satisfies

−
√
z +

√
z −K ≤ −

√
z + 1 +

√
z + 1−K

for K ≤ z <∞. This implies:

−
√
z
√
ρQ−1(η) +

√
z −K

√
ρQ−1(η) ≤ −

√
z + 1

√
ρQ−1(η) +

√
z + 1−K

√
ρQ−1(η).

Adding the positive constant KC to both sides, in the form zC − zC +KC on the
left and in the form (z + 1)C − (z + 1)C +KC on the right yields

zC −√
zρQ−1(η)− (z −K)C +

√
z −K

√
ρQ−1(η)

≤ (z + 1)C −
√
z + 1

√
ρQ−1(η)− (z + 1−K)C +

√
z + 1−K

√
ρQ−1(η)

and so

[logM∗
S(z, η)− logM∗

S(z −K, η)] ≤ [logM∗
S(z + 1, η)− logM∗

S(z + 1−K, η)] .

Proposition 6.10. If the solution produced by the greedy algorithm using Strassen’s
approximation (6.8) satisfies n1 ≥ n2 ≥ · · · ≥ nk, then condition (6.7) for global
optimality is satisfied.

Proof. Since RT (·) is a non-increasing survival function,

RT (ei −K) ≥ RT (ei+1), (6.9)

for the non-negative integer K. Since the function [logM∗
S(z, η)− logM∗

S(z −K, η)]
is a non-decreasing function of z by Lemma 6.4, and since the ni are in non-increasing
order,

logM∗
S(ni, η)− logM∗

S(ni −K, η) ≥ logM∗
S(ni+1 +K, η)− logM∗

S(ni+1, η). (6.10)

147



Taking products of (6.9) and (6.10), and rearranging yields the condition:

RT (ei −K) [logM∗
S(ni, η)− logM∗

S(ni −K, η)]

RT (ei+1) [logM∗
S(ni+1 +K, η)− logM∗

S(ni+1, η)]
≥ 1.

Since RT (·) is a non-increasing survival function,

RT (ei −K) ≥ RT (ei) ≥ RT (ei+1).

Therefore the global optimality condition (6.7) is also satisfied, by substituting RT (ei)
for RT (ei −K) in one place.

� 6.4.2 Geometric Death Distribution

A common failure mode for systems that do not age is a geometric death time T [12]:

pT (t) = α(1− α)(t−1),

and
RT (t) = (1− α)t,

where α is the death time parameter.

Proposition 6.11. When T is geometric, then the solution to (6.5) under Strassen’s
approximation yields equal epoch sizes. This optimal size is given by

argmax
ν

RT (ν) logM
∗(ν, η).

Proof. Begin by showing that Algorithm 6.1 will produce a solution with equal epoch
sizes. Recall that the survival function of a geometric random variable with parameter
0 < α ≤ 1 is RT (t) = (1 − α)t. Therefore the first step of the algorithm will choose
n1 as

n1 = argmax
ν

(1− α)ν logM∗(ν, η).

The second step of the algorithm will choose

n2 = argmax
ν

(1− α)n1(1− α)ν logM∗(ν, η)

= argmax
ν

(1− α)ν logM∗(ν, η),

which is the same as n1. In general,

ni = argmax
ν

(1− α)ei−1(1− α)ν logM∗(ν, η)

= argmax
ν

(1− α)ν logM∗(ν, η),

so n1 = n2 = · · · .
Such a solution satisfies n1 ≥ n2 ≥ · · · and so it is optimal by Proposition 6.10.
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Notice that the geometric death time distribution forms a boundary case for
Proposition 6.10.

The optimal epoch size for geometric death under Strassen’s approximation can
be found analytically. This is done for when the alive state corresponds to a BSC(ε).
Let C = 1 − h2(ε), K =

√
ε(1− ε)Q−1(η) log2

ε
1−ε

, ᾱ = 1 − α and ℓ = log ᾱ. The
goal is then to solve

argmax
ν

ᾱν
[
νC −

√
νK
]
.

Applying the differentiation operator d
dν

to the expression yields:

d

dν
ᾱν
[
νC −

√
νK
]
= ᾱνC + ᾱννCℓ− ᾱνK

2
√
ν
− ᾱν

√
νKℓ.

Finding the appropriate root yields:

ν∗real =
−2C2+K2ℓ

3C2ℓ

− (−16C4ℓ2+16C2K2ℓ3−16K4ℓ4)(
24C2ℓ2(8C6ℓ3+15C4K2ℓ4−12C2K4ℓ5+8K6ℓ6+3

√
3
√

16C10K2ℓ7−13C8K4ℓ8+8C6K6ℓ9)
1/3

)

+ 1
6C2ℓ2

(8C6ℓ3+15C4K2ℓ4−12C2K4ℓ5+8K6ℓ6+3
√
3
√
16C10K2ℓ7−13C8K4ℓ8+8C6K6ℓ9)

1/3

The solution ν∗ is then given by choosing the best between ⌈ν∗real⌉ and ⌊ν∗real⌋ so as to
meet the integer constraint. For fixed crossover ε and target error probability η, the
solution is plotted as a function of α in Figure 6-3. The less likely the channel is to
die early, the longer the optimal epoch length.

As an alternative computation, rather than fixing η, one might fix the number
of bits to be communicated and find the best level of reliability that is possible.
Figure 6-4 shows the best Pmaximax

e = η that is possible when communicating 5 bits
over a BSC(ε)-geometric(α) channel that dies.

� 6.4.3 Dynamic Programming

The greedy algorithm of Section 6.4.1 solves (6.5) under certain conditions. For finite
N , a dynamic program (DP) may be used to solve (6.5) under any conditions. To
develop the DP formulation [316], assume that channel state feedback (whether the
channel output is ? or whether it is either 0 or 1) is available to the transmitter,
however solving the DP will show that channel state feedback is not required.

System Dynamics: [
ζn
ωn

]
=

[
(ζn−1 + 1)ŝn−1

ωn−1κn−1

]
, (6.11)

for n = 1, 2, . . . , N + 1. The following state variables, disturbances, and controls are
used:

• ζn ∈ Z∗ is a state variable that counts the location in the current transmission
epoch,
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Figure 6-3. Optimal epoch lengths under Strassen’s approximation for an (ε, α) BSC-geometric
channel that dies for ε = 0.01 and η = 0.001.
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Figure 6-4. Achievable η-reliability in sending 5 bits over (ε, α) BSC-geometric channel that dies.
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• ωn ∈ {0, 1} is a state variable that indicates whether the channel is alive (1) or
dead (0),

• κn ∈ {0, 1} ∼ Bern (RT (n)) is a disturbance that kills (0) or preserves (1) the
channel in the next time step, and

• ŝn ∈ {0, 1} is a control input that starts (0) or continues (1) a transmission
epoch in the next time step.

Initial State: Since the channel starts alive (note that RT (1) = 1) and since the
first transmission epoch starts at the beginning of time,[

ζ1
ω1

]
=

[
0
1

]
. (6.12)

Additive Cost: Transmission volume logM∗(ζn +1, η) is credited if the channel is
alive (i.e. ωn = 1) and the transmission epoch is to be restarted in the next time step
(i.e. 1− ŝn = 1). This implies a cost function

cn(ζn, ωn, ŝn) = −(1− ŝn)ωn logM
∗(ζn + 1, η). (6.13)

This is negative so that smaller is better.
Terminal Cost: There is no terminal cost, cN+1 = 0.
Cost-to-go: From time n to time N + 1 is:

Eκ⃗

{
N∑
i=n

ci(ζi, ωi, ŝi)

}
= −Eκ⃗

{
N∑
i=n

(1− ŝi)ωi logM
∗(ζi + 1, η)

}
.

Notice that the state variable ζn which counts epoch time is known to the trans-
mitter and is determinable by the receiver through transmitter simulation. The state
variable ωn indicates the channel state and is known to the receiver by observing the
channel output. It may be communicated to the transmitter through channel state
feedback. It follows directly that:

Proposition 6.12. A communication scheme that follows the dynamics (6.11) and
additive cost (6.13) achieves the transmission time-volume(

N, V = −E

[
N∑

n=1

cn

])

at η-reliability.

DP may be used to find the optimal control policy (ŝn).

Proposition 6.13. The optimal −V for the initial state (6.12), dynamics (6.11),
additive cost (6.13), and no terminal cost is equal to the cost of the solution produced
by the dynamic programming algorithm.
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Proof. The system described by initial state (6.12), dynamics (6.11), and additive
cost (6.13) is in the form of the basic problem [316, Sec. 1.2]. Thus the result follows
from [316, Prop. 1.3.1]

The DP optimization computations are now carried out; standard J notation5 is
used for cost [316]. The base case at time N + 1 is

JN+1(ζN+1, ωN+1) = cN+1 = 0.

In proceeding backwards from time N to time 1:

Jn(ζn, ωn) = min
ŝn∈{0,1}

Eκn {cn(ζn, ωn, ŝn) + Jn+1 (fn(ζn, ωn, ŝn, κn))} ,

for n = 1, 2, . . . , N , where

fn(ζn, ωn, ŝn, κn) =

[
ζn+1

ωn+1

]
=

[
(ζn + 1)ŝn
ωnκn

]
.

Substituting the additive cost function yields:

Jn(ζn, ωn) = min
ŝn∈{0,1}

−Eκn {(1− ŝn)ωn logM
∗(ζn + 1, η)}+ Eκn{Jn+1} (6.14)

= min
ŝn∈{0,1}

−(1− ŝn)RT (n) logM
∗(ζn + 1, η) + Eκn{Jn+1}.

Notice that the state variable ωn dropped out of the first term when the expectation
operation was taken with respect to the disturbance κn. This is true for each stage
in the DP.

Proposition 6.14. For a channel that dies (X , pa(y|x), pd(y|x), pT (t),Y), channel
state feedback does not improve performance.

Proof. By repeating the expectation calculation in (6.14) for each stage n in the
stage-by-stage DP algorithm, it is verified that state variable ω does not enter into
the stage optimization problem. Hence the transmitter does not require channel state
feedback to determine the optimal signaling strategy.

� 6.4.4 A Dynamic Programming Example

A short example of applying dynamic programming optimization is provided to de-
velop some intuition on the choice of epoch lengths. Consider the channel that dies
with BSC(ε = 0.01) alive state and pT (t) that is uniform over a finite horizon of
length 40 (disallowing death in the first time step):

pT (t) =

{
1/39, t = 2, . . . , 40,

0 otherwise.

5Not to be confused with Bayes risk.
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The goal is to communicate with η-reliability, η = 0.001.
Since the death distribution has finite support, there is no benefit to transmitting

after death is guaranteed. Suppose some sequence of nis is arbitrarily chosen: (n1 =
13, n2 = 13, n3 = 13, n4 = 1). This has expected transmission volume (under the
Strassen approximation)

V =
4∑

i=1

RT (ei) logM
∗(ni, η)

(a)
= logM∗(13, 0.001)

3∑
i=1

RT (ei)

= logM∗(13, 0.001)[RT (13) +RT (26) +RT (39)]

= 4.600[9/13 + 14/39 + 1/39] = 4.954 bits.

where (a) removes the fourth epoch since uncoded transmission cannot achieve η-
reliability.

The result from optimizing the ordered integer partition (under the Strassen ap-
proximation) using the DP algorithm is (n1 = 20, n2 = 12, n3 = 6, n4 = 2).6 Notice
that since the solution is in order, the greedy algorithm would also have succeeded.
The expected transmission volume for this strategy (under the Strassen approxima-
tion) is

V = RT (20) logM
∗(20, 0.001) +RT (32) logM

∗(12, 0.001) +RT (38) logM
∗(6, 0.001)

= (20/39) · 9.2683 + (8/39) · 3.9694 + (2/39) · 0.5223
= 5.594 bits.

Optimization improves performance.

� 6.4.5 A Precise Solution

It has been assumed that optimal finite block length codes are known and used.
Moreover, the Strassen approximation has been used for certain computations. It
is, however, also of interest to determine precisely which code should be used over a
channel that dies. This subsection gives an example where a sequence of length-23
binary Golay codes [68] are optimal. Similar examples may be developed for other
perfect codes (described in Chapter 2).

Before presenting the example, the sphere-packing upper bound on logM∗(ni, η)
for a BSC(ε) is derived. Recall the notion of decoding radius from Chapter 2 and let
ρ(ε, η) be the largest integer such that

ρ∑
s=0

(
ni

s

)
εs(1− ε)ni−s ≤ 1− η.

6Equivalently (n1 = 20, n2 = 12, n3 = 6, n4 = 1, n5 = 1), since the last two channel usages are
wasted (see Figure 6-1) to hedge against channel death.
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The sphere-packing bound follows from counting how many decoding regions of radius
ρ could conceivably fit in the Hamming space 2ni disjointly. Let Ds,m be the number
of channel output sequences that are decoded into message wm and have distance s
from the mth codeword. By the nature of Hamming space,

Ds,m ≤
(
ni

s

)
and due to the volume constraint,

M∑
m=1

ρ∑
s=0

Ds,m ≤ 2ni .

Hence, the maximal codebook size M∗(ni, η) is upper-bounded as

M∗(ni, η) ≤
2ni∑ρ

s=0Ds,m

≤ 2ni∑ρ(ε,η)
s=0

(
ni

s

) .
Thus the sphere-packing upper bound on logM∗(ni, η) is

logM∗(ni, η) ≤ ni − log

ρ(ε,η)∑
s=0

(
ni

s

) , logMsp(ni, η).

As implied in Chapter 2, perfect codes such as the binary Golay code of length 23
can sometimes achieve the sphere-packing bound with equality.

Consider an (ε, α) BSC-geometric channel that dies, with ε = 0.01 and α = 0.05.
The target error probability is fixed at η = 2.9 × 10−6. For these values of ε and η,
the decoding radius ρ(ε, η) = 1 for 2 ≤ ni ≤ 3. It is ρ(ε, η) = 2 for 4 ≤ ni ≤ 10;
ρ(ε, η) = 3 for 11 ≤ ni ≤ 23; ρ(ε, η) = 4 for 24 ≤ ni ≤ 40; and so on.

Moreover, one can note that the (n = 23,M = 4096) binary Golay code has a
decoding radius of 3; thus it meets the BSC sphere-packing bound

Msp(23, 2.9× 10−6) =
223

1 + 23 + 253 + 1771
= 4096

with equality.

Now to bring channel death into the picture. If one proceeds greedily, following
Algorithm 6.1, but using the sphere-packing bound logMsp(ni, η) rather than the
optimal logM∗(ni, η),

n1(ε = 0.01, α = 0.05, η = 2.9× 10−6) = argmax
ν

ᾱν log2
2ν∑ρ(ε,η)
s=0

= 23.
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By the memorylessness argument of Proposition 6.11, it follows that running Algo-
rithm 6.1 with the sphere-packing bound will yield 23 = n1 = n2 = · · · .

It remains to show that Algorithm 6.1 actually gives the true solution. Had
Strassen’s approximation been used rather than the sphere-packing bound, the result
would follow directly from Proposition 6.11. Instead, the global optimality condition
(6.7) can be verified exhaustively for all 23 possible shift sizes K for the first epoch:

ᾱ23 logMsp(23, η)− ᾱ23−K logMsp(23−K, η)

ᾱ46 logMsp(23 +K)− ᾱ46 logMsp(23, η)
≥ 1.

Then the same exhaustive verification is performed for all 23 possible shifts for the
second epoch:

ᾱ46 logMsp(23, η)− ᾱ46−K logMsp(23−K, η)

ᾱ69 logMsp(23 +K)− ᾱ69 logMsp(23, η)
≥ 1

ᾱ23
[
ᾱ23 logMsp(23, η)− ᾱ23−K logMsp(23−K, η)

]
ᾱ23 [ᾱ46 logMsp(23 +K)− ᾱ46 logMsp(23, η)]

≥ 1

ᾱ23 logMsp(23, η)− ᾱ23−K logMsp(23−K, η)

ᾱ46 logMsp(23 +K)− ᾱ46 logMsp(23, η)
≥ 1.

The exhaustive verification can be carried out indefinitely to show that using the
length-23 binary Golay code for every epoch is optimal.

� 6.5 Discussion

Channels that die arise in communication systems embedded in networks that may
run out of energy [317], synthetic systems embedded in biological cells that may
die [318], systems embedded in spacecraft that may enter black holes [319], or systems
embedded in oceans with undersea cables that may be cut [320]. One might even
consider communication systems where users may permanently lose attention [321].

Information-theoretic limits of communicating over channels that die, in the sense
of maximizing expected transmission volume at a given level of error probability,
were determined. The results presented in this chapter therefore provide insight
into the fundamental limits of communication systems that might randomly undergo
catastrophic failure.

Implementable optimization algorithms were also given, so as to find approxi-
mately or precisely optimal coding methods. These methods work with arbitrary
death distributions, even empirically measured ones. Further, rather than consider-
ing the logM∗(ni, η) function for optimal finite block length codes, the code opti-
mization procedures would work just as well if a set of finite block length codes was
provided. Such a limited set of codes might be selected for decoding complexity or
other practical reasons.
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Chapter 7

Operation Costs—Energy

Operating communication systems is costly, in part, because they consume energy.
Energy constraints therefore limit the performance of extant decoding technologies
[18,19]. Moreover unreliability in decoding operation as discussed in Chapters 5 and
6 may be due to low-power operation [322] or energy exhaustion [317]. Mitigating
decoding restrictions due to energy limits is therefore of paramount importance.

There are several approaches to countering energy limitations in decoding circuits.
The most obvious is to make circuits more energy efficient. In fact, there is no fun-
damental thermodynamic reason for energy to be dissipated in the decoding process,
since energy is not required to perform mathematical work [323, Chapter 5]. De-
coders that are reversible computational devices would lie in this extreme regime and
would not dissipate any energy [16,324]. Physical mechanisms proposed for reversible
computing such as ballistic computers, externally clocked Brownian machines, and
fully Brownian machines [325, 326], however require that the system have no faults
(contrary to the model in Chapter 5), have infinite storage capability (contrary to
the model in Chapter 4), and operate arbitrarily slowly (contrary to the goals in
Chapter 3).

If energy resources are asymmetric within the communication system, such that
the transmitter is relatively unconstrained whereas the receiver is severely constrained
[327,328], an alternate approach to countering energy limitations presents itself. One
might embed energy for decoding in the transmitted signal itself, allowing the receiver
to harvest both energy and information simultaneously [329].

The earliest telegraph, telephone, and crystal radio receivers had no external power
sources [44], providing historical examples of systems where energy for future infor-
mation processing is included in the communication signal itself. Modern exam-
ples include retinal prostheses that receive power and data from light entering the
eye [330], implanted brain-machine interfaces that receive configuration signals and
energy through inductive coupling [331], RFID systems where the energy provided
through the forward channel is used to transmit over the backward channel [332],
and mudpulse telemetry systems in the oil industry where energy and information
are provisioned to remote instruments over a single line [333].

With this method of mitigating decoding energy constraints in mind, it is of
interest to determine the fundamental trade-off between the rates at which energy
and reliable information can be transmitted over a single noisy line. A capacity-
power function is defined here and an appropriate coding theorem is proven to endow
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it with operational significance. In particular, it characterizes communication systems
that simultaneously meet two goals:

1. large received energy per unit time (large received power), and

2. large information per unit time.

Notice that unlike traditional transmitter power constraints, where small transmitted
power is desired, here large received power is desired. One previous study has looked
at maximum received power constraints [334].

The remainder of the chapter is organized as follows. Section 7.1 reviews the
energy that might be required for decoding, first considering reversible computing
and then considering practical computing. Section 7.2 considers transmitting energy
and information simultaneously, finding the capacity-power function. Properties of
the capacity-power function are given in Section 7.3 and examples are computed in
Section 7.4. Finally Section 7.5 further discusses the results of the chapter.

� 7.1 Energy Requirements for Decoding

This section reviews how much energy might be required to decode an error-control
codeword observed through a noisy communication channel. Some might call it an
examination of the energy complexity [8] of decoding.

� 7.1.1 Reversible Decoders

As described in Chapter 2, a message decoder computes an estimate of the trans-
mitted message using the channel output sequence according to the probabilistic
kernel pŴk

1 |Y n
1
(·|·). If the decoder is deterministic, it implements a decoding function

fD : Yn 7→ Ŵk. A signal decoder computes an estimate of the transmitted signal
according to pX̂n

1 |Y n
1
(·|·) which reduces to fD : Yn 7→ X n if deterministic.

The decoders are designed to dissipate the irrelevant uncertainty associated with
channel noise, but in doing so, they erase the information that was in the noise
signal. Since they are not informationally lossless (logically reversible), by Landauer’s
principle [16,335], they must dissipate energy irrespective of physical implementation.
It can however be shown that any deterministic computation can be reprogrammed
as a sequence of informationally lossless computation steps, if the computation is
allowed to save a copy of its input [324,326]. Thus, deterministic decoders fD(·) can
be made logically reversible.

When a logically irreversible operation is implemented using logically reversible
gates like the Fredkin gate, extra inputs that are fixed constants might need to be
supplied to the circuit, and the circuit might produce undesired garbage outputs
which cannot be erased [326]. Indeed, storing garbage may require large amounts of
extra memory.

It is generally accepted that any logically reversible informational transformation
can, in principle, be performed by a physical mechanism that operates in a thermo-
dynamically reversible manner. The physical mechanisms proposed for carrying out
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reversible computing are rather strange and include such devices as ballistic com-
puters, externally clocked Brownian machines, and fully Brownian machines. These
physical mechanisms are thermodynamically reversible but require that there are no
hardware errors [20,324]. Electronic circuits that are almost reversible have also been
proposed [17].

In addition to requiring no computing errors, the Brownian models require opera-
tion in the limit of zero speed, so as to eliminate friction. Ballistic computers, on the
other hand, can operate at non-zero speed and remain thermodynamically reversible
but are much more sensitive to noise than Brownian computers [325].

Thus deterministic decoding can, in principle, be carried out without loss of energy
if the decoder is not limited by memory constraints or unreliability.

� 7.1.2 Traditional Decoders

Unlike reversible decoders, energy is consumed by any practically realizable decoder.
A typical power budget analysis for wireless communications systems is given in [336],
and similarly for neural systems in [337, 338]. The specific energy consumption of
decoding is investigated in [339].

Sahai and Grover have developed lower bounds to energy complexity of iterative
message-passing decoders [19], which abstract and generalize the kind of decoder
studied in Chapter 5. Their energy model assumes that each computational node
consumes a fixed amount of energy per iteration; passing messages over wires does
not require energy. Combining lower bounds on circuit complexity, similar to the
upper bounds developed in Section 5.6, and lower bounds on error probability as a
function of number of iterations for any code yields a lower bound on error probability
as a function of decoding energy. It is shown that systems with iterative message-
passing decoders may require an infinite number of iterations to achieve Shannon
reliability and therefore infinite energy. Even more negative results are given for
other decoding architectures.

One might perform the same kind of analysis relating error probability and decoder
power consumption for still other kinds of decoding architectures. As an example,
consider the consensus decoders of Chapter 3. For a given circuit topology, the
error probability can be related to the number of iterations in a straightforward
manner [340, Corollary 6]. If energy is consumed due to attenuation over lengthy
wires, it can be characterized using the wiring length analysis of Chapter 3. Since
the operations of the computational nodes are very simple, the energy consumed by
them is also easily determined.

The fact that decoders do consume energy advocates the alternative strategy
mentioned at the beginning of the chapter: sending energy along with information.

� 7.2 Transmitting Energy and Information Simultaneously

Recall that when sending energy along with information, a characterization of com-
munication systems that simultaneously meet two goals:

1. large received power, and

159



2. large information rate

is to be found.

In order to achieve the first goal, one would want the most energetic symbol
received all the time, whereas to achieve the second goal, one would want to use the
unconstrained capacity-achieving input distribution. This intuition is formalized for
discrete memoryless channels, as follows.

Recall from Chapter 2 that a DMC is characterized by the input alphabet X , the
output alphabet Y , and the transition probability assignment pY |X(y|x). Further-
more, each output letter y ∈ Y has an energy b(y), a nonnegative real number. The
n-fold extension of the energy function b(·) is also defined on Yn for all n. Throughout
the chapter, it is assumed that

b(yn1 ) =
n∑

i=1

b(yi).

The average received energy is

E [b(Y n
1 )] =

∑
yn1 ∈Yn

b(yn1 )pY n
1
(yn1 ) (7.1)

=
∑

yn1 ∈Yn

b(yn1 )
∑

xn
1∈Xn

pXn
1
(xn1 )pY n

1 |Xn
1
(yn1 |xn1 ).

When normalized by block length n, this is the average received power. When using
a deterministic encoder fE : W 7→ X n, the average received energy for a specific
message w with codeword xn1 (w) is

E [b(Y n
1 (x

n
1 (w)))] =

∑
yn1 ∈Yn

b(yn1 )pY n
1 |Xn

1
(yn1 |xn1 (w)).

If all messages w ∈ W yield the same average received energy E [b(Y n
1 (x

n
1 (w)))], the

overall average received energy E [b(Y n
1 )] is also the same under any input distribution.

As in Chapter 2, the information rate of an (n,M) block code is 1
n
logM . Here

it must be chosen to achieve arbitrarily small maximum message error probability
Pmax
e .

The goal is to find a reliable code that maximizes information rate under a mini-
mum received power constraint; a formal definition is as follows.

Definition 7.1. Given 0 < ϵ ≤ 1, a non-negative number R is an ϵ-achievable rate
for the channel pY |X with constraint (b, B) if for every δ > 0 and every sufficiently
large n there exists an (n,M)-block code with maximum error probability Pmax

e < ϵ
of rate exceeding R − δ for which E[b(Y n

1 (x
n
1 (w)))] < B for each message w ∈ W.

R is an achievable rate if it is ϵ-achievable for all 0 < ϵ < 1. The supremum of
achievable rates is called the capacity of the channel under constraint (b, B) and is
denoted CO(B).
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� 7.2.1 Time-sharing Approaches

One simple approach to transmitting energy and information simultaneously is to
interleave the energy signal and the information-bearing signal. The encoder and
decoder simultaneously commutate between the information source–information des-
tination line and the energy source–energy destination line, both depicted in the
extensive schematic diagram of a communication system (Figure 1-2). When in in-
formation mode, the energy in the signal is not exploited and when in energy mode,
the information in the signal is ignored. This suboptimal time-sharing might arise
due to limitations on receiver circuits [Y. Ramadass, personal communication].

If the system is in information mode for τ fraction of the time, it follows directly
from Theorem 2.3 that the best a communication scheme could do is to achieve
information rate of τC and received power (1− τ)Bmax, where Bmax is the maximum
element of the vector bTpY |X computed from the vector-matrix product of the column
vector of the b(y) denoted b and the channel transition matrix pY |X .

In the setting where the interleaving schedule cannot be coordinated between the
encoder and decoder, the decoder might randomly switch between the information
destination and the energy destination. This would cause random puncturing of the
code.1 Randomly puncturing a capacity-achieving random code just yields a shorter
capacity-achieving random code. Thus, under these conditions, an information rate
of τC and received power of (1− τ)Bp∗Y

is achievable, where

Bp∗Y
=
∑
y∈Y

b(y)
∑
x∈X

p∗X(x)pY |X(y|x)

is the power under the capacity-achieving input distribution p∗X .
Rather than random puncturing, one might also use controlled puncturing [341,

Chapter 2]. This would involve exploiting the information in the transmitted signal
from the beginning of time until the codeword is decoded to the desired error proba-
bility, and then switching to harvesting energy afterward. Analysis of such sequential
decoding procedures [342] is beyond the scope of this thesis.

� 7.2.2 Optimizing Energy and Information Transmission

A receiver circuit that simultaneously exploits all of the energy and information in the
signal may perform better than one that is restricted to time-sharing. An optimization
problem that precisely captures the trade-off between energy and information for a
general receiver is developed as follows. The goal is set to maximize information rate
under a minimum received power constraint.

For each n, the nth capacity-power function Cn(B) of the channel is defined as

Cn(B) = max
Xn

1 :E[b(Y n
1 )]≥nB

I(Xn
1 ;Y

n
1 ).

An input random vector Xn
1 is a test source; one that satisfies E [b(Y n

1 )] ≥ nB is

1Recall that the notion of puncturing a code was described in Chapter 2.
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B-admissible. The maximization is over all n-dimensional B-admissible test sources.
The set of probability distributions pXn

1
(xn1 ) corresponding to the set of B-admissible

test sources is a closed subset of R|X |n and is bounded since
∑
p(xn1 ) = 1. Since

the set is closed and bounded, it is compact. Mutual information is a continuous
function of the input distribution and since continuous, real-valued functions defined
on compact subsets of metric spaces achieve their supremums (see Theorem 7.13),
defining the optimization as a maximum is not problematic. The nth capacity-power
functions are only defined for 0 ≤ B ≤ Bmax.

The capacity-power function of the channel is defined as

C(B) = sup
n

1

n
Cn(B). (7.2)

A coding theorem can be proven that endows this informational definition with op-
erational significance.

Theorem 7.1. CO(B) = C(B).

Proof. Follows by reversing the output constraint inequality in the solution to [343,
P20 on p. 117], which uses a maximal code argument. See also [334], which suggests
a random coding argument for the proof.

Note that Theorem 7.1 can be generalized to settings where the input and output
alphabets X and Y are continuous, using the quantization-based techniques of [51,
Section 7.3].

� 7.3 Properties of the Capacity-Power Function

The coding theorem provided operational significance to the capacity-power function.
Some properties of this function may also be developed.

It is immediate that Cn(B) is non-increasing, since the feasible set in the opti-
mization becomes smaller as B increases. The function also has convexity properties.

Theorem 7.2. Cn(B) is a concave function of B for 0 ≤ B ≤ Bmax.

Proof. Let α1, α2 ≥ 0 with α1 + α2 = 1. The inequality to be proven is that for
0 ≤ B1, B2 ≤ Bmax,

Cn(α1B1 + α2B2) ≥ α1Cn(B1) + α2Cn(B2).

Let X(1) and X(2) be n-dimensional test sources distributed according to p(1)(xn1 )
and p(2)(xn1 ) that achieve Cn(B1) and Cn(B2) respectively. Denote the corresponding
channel outputs as Y (1) and Y (2). By definition, E[b(Y (i))] ≥ nBi and I(X

(i);Y (i)) =
Cn(Bi) for i = 1, 2. Define another source X distributed according to p(xn1 ) =
α1p

(1)(xn1 ) + α2p
(2)(xn1 ) with corresponding output Y . The various input distribu-

tions p(1), p(2), and p are written as column vectors, as is the vector of energies b.
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Recall that the channel transition assignment is written as the matrix pY |X . Then

E[b(Y )] = bTpY |Xp = bTpY |X [α1p
(1) + α2p

(2)] (7.3)

= α1b
TpY |Xp

(1) + α2b
TpY |Xp

(2)

= α1E[b(Y
(1))] + α2E[b(Y

(2))]

≥ n(α1B1 + α2B2),

where b and pY |X have been suitably extended. Thus, X is (α1B1+α2B2)-admissible.
Now, by definition of Cn(·), I(X;Y ) ≤ Cn(α1B1 + α2B2). However, since I(X;Y ) is
a concave function of the input probability,

I(X;Y ) ≥ α1I(X
(1);Y (1)) + α2I(X

(2);Y (2))

= α1Cn(B1) + α2Cn(B2).

Linking the two inequalities yields the desired result:

Cn(α1B1 + α2B2) ≥ I(X;Y ) ≥ α1Cn(B1) + α2Cn(B2).

The concavity property of the capacity-power functions demonstrates that time-
sharing approaches are never better than full exploitation of both energy and infor-
mation.

A single-letterization property also holds.

Theorem 7.3. For any DMC, Cn(B) = nC1(B) for all n = 1, 2, . . . and 0 ≤ nB ≤
nBmax.

Proof. Let Xn
1 be a B-admissible test source with corresponding output Y n

1 that
achieves Cn(B), so E[b(Y )] ≥ nB and I(Xn

1 ;Y
n
1 ) = Cn(B). Since the channel

is memoryless, I(Xn
1 ;Y

n
1 ) ≤

∑n
i=1 I(Xi;Yi). Let Bi = E[b(Yi)], then

∑n
i=1Bi =∑n

i=1E[b(Yi)] = E[b(Y )] ≥ nB. By the definition of C1(Bi), I(Xi;Yi) ≤ C1(Bi).
Now since C1(B) is a concave function of B, by Jensen’s inequality,

1

n

n∑
i=1

C1(Bi) ≤ C1

(
1

n

n∑
i=1

Bi

)
= C1

(
1

n
E[b(Y )]

)
.

But since 1
n
E[b(Y )] ≥ B and C1(B) is a non-increasing function of B,

1

n

n∑
i=1

C1(Bi) ≤ C1

(
1

n
E[b(Y )]

)
≤ C1(B),

that is,
n∑

i=1

C1(Bi) ≤ nC1(B).
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Combining yields Cn(B) ≤ nC1(B).
For the reverse, let X be a scalar test source with corresponding output Y

that achieves C1(B). That is, E[b(Y )] ≥ B and I(X;Y ) = C1(B). Now let
X1, X2, . . . , Xn be i.i.d. random variables drawn according to pX with correspond-
ing outputs Y1, . . . , Yn. Then

E[b(Y n
1 )] =

n∑
i=1

E[b(Yi)] ≥ nB.

Moreover by memorylessness,

I(Xn
1 ;Y

n
1 ) =

n∑
i=1

I(Xi;Yi) = nC1(B).

Thus, Cn(B) ≥ nC1(B). Since Cn(B) ≥ nC1(B) and Cn(B) ≤ nC1(B), Cn(B) =
nC1(B).

The theorem implies that single-letterization, C(B) = C1(B), is valid to establish
the fundamental trade-off between energy and information.

� 7.4 Some Optimal Trade-offs

It is instructive to compute the capacity-power function for several channels, thereby
establishing the optimal trade-offs in transmitting energy and information over them.
Closed form expressions of capacity-power for some binary channels are given first,
followed by properties and expressions for Gaussian channels.

� 7.4.1 Binary Channels

Here, three binary channels with output alphabet energy function b(0) = 0 and
b(1) = 1 are considered. Such an energy function corresponds to discrete particles
and packets, among other commodities.

Consider a noiseless binary channel. The optimization problem is solved by the
maximum entropy method, hence the capacity-achieving input distribution is in the
exponential family of distributions. It is easy to show that the capacity-power function
is

C(B) =

{
log(2), 0 ≤ B ≤ 1

2

h2(B), 1
2
≤ B ≤ 1.

The capacity-power functions for other discrete noiseless channels are similarly easy
to work out using maximum entropy methods.

Consider a binary symmetric channel with crossover probability ε ≤ 1/2. It can
be shown that the capacity-power function is

C(B) =

{
log(2)− h2(ε), 0 ≤ B ≤ 1

2

h2(B)− h2(ε),
1
2
≤ B ≤ 1− ε,
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Figure 7-1. Capacity-power function for a binary symmetric channel with crossover probability
1/4 and b(0) = 0, b(1) = 1. Performances of time-sharing schemes are shown for comparison.

as shown in Figure 7-1, where several properties of general capacity-power functions
are evident. Recall that for the unconstrained problem, equiprobable inputs are
capacity-achieving, which yield output power 1

2
. For B > 1

2
, the distribution must be

perturbed so that the symbol 1 is transmitted more frequently. The maximum power
receivable through this channel is 1−ε, when 1 is always transmitted. The information
rates and received power levels achievable through coordinated and uncoordinated
time-sharing approaches are shown for comparison.

A third worked example is the Z-channel. It has a transmission matrix

pY |X =

[
1 0
ε 1− ε

]
with 1 to 0 crossover probability ε. Its unconstrained capacity expression and asso-
ciated capacity-achieving input distribution are as follows [344].

C(0) = log

(
1− ε

1
1−ε + ε

ε
1−ε

)
,

achieved using input distribution with probability of the 1 symbol

π∗ =
ε

ε
1−ε

1 + (1− ε)ε
ε

1−ε

.

Using this result and the need to switch over to using more the more energetic symbol
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for more stringent power constraints, it can be shown that the capacity-power function
is

C(B) =

log

(
1− ε

1
1−ε + ε

ε
1−ε

)
, 0 ≤ B ≤ (1− ε)π∗

h2(B)− B
1−ε

h2(ε), (1− ε)π∗ ≤ B ≤ 1− ε.

A Z-channel models quantal synaptic failure [345] and other “stochastic leaky pipes”
where the commodity may be lost en route.

� 7.4.2 A Gaussian Channel

Now consider a memoryless, discrete-time AWGN channel. Continuous additive noise
systems have the interesting property that for the goal of received power, noise power
is actually helpful, whereas for the goal of information, noise power is hurtful. In
discrete-alphabet channels, such an interpretation is not obvious.

Rather than working with the output power constraint directly, it is convenient
to think of the output energy function b(y) as inducing costs on the input alphabet
X :

ρ(x) =

∫
pY |X(y|x)b(y)dy.

By construction, this cost function preserves the constraint:

E[ρ(X)] =

∫
ρ(x)dFX(x) =

∫
dFX(x)

∫
pY |X(y|x)b(y)dy

=

∫ ∫
pY |X(y|x)b(y)dFX(x)dy

= E[b(Y )],

where FX(x) is the input cumulative distribution function. Basically, ρ(x) is the
expected output energy provided by input letter x. For the AWGN channel N (0, σ2

N)
with b(y) = y2,

ρ(x) =

∫ ∞

−∞

y2

σN
√
2π

exp
{
− (y−x)2

2σ2
N

}
dy = x2 + σ2

N .

That is, the output power is just the sum of the input power and the noise power.
Since the coding theorem, Theorem 7.1, and the single-letterization theorem, The-

orem 7.3, extend directly to memoryless, continuous alphabet channels,

C(B) = sup
X:E[ρ(X)]≥B

I(X;Y ). (7.4)

When working with real-valued alphabets, some sort of transmitter constraint
must be imposed so as to disallow arbitrarily powerful signals. Hard amplitude con-
straints that model both rail limitations in power circuits and regulatory restric-
tions [346, Chapter 4] are suitable.

In particular, consider the AWGN channel, N (0, σ2
N), with input alphabet X =

166



[−A,A] ⊂ R, and energy function b(y) = y2. Denote the capacity-power function as
C(B;A).

The channel input cumulative distribution function is denoted FX(x), the channel
transition probability density is denoted pY |X(y|x), and the channel output density
under input F (which always exists) is denoted

pY (y;F ) =

∫
pY |X(y|x)dF (x).

Two informational functionals that arise are

i(x;F ) =

∫
pY |X(y|x) log

pY |X(y|x)
pY (y;F )

dy,

which is variously known as the marginal information density [347], the Bayesian
surprise [348], or without name [349, Eq. 1]; and

h(x;F ) = −
∫
pY |X(y|x) log pY (y;F )dy,

which is known as the marginal entropy density.
Following lockstep with Smith [347, 350], it is shown that the capacity-power

achieving input distribution consists of a finite number of mass points.
Let FA be the set of input probability distribution functions FX(x) having all

points of increase on the finite interval [−A,A]. This space has the following proper-
ties:

Lemma 7.1. FA is convex and compact in the Lévy metric.

Proof. Let F1(x) and F2(x) be arbitrary elements of FA and θ ∈ [0, 1]. Define Fθ(x) =
(1 − θ)F1(x) + θF2(x). Both F1 and F2 are non-decreasing, right-continuous real
functions that are zero for all x < −A and one for all x > A. Clearly all of these
properties are preserved in Fθ(x) and so FA is convex.

The Lévy distance is a metric on the set of cumulative distribution functions [351,
3(b) on p. 215].

Helly’s weak compactness theorem [351, p. 179] guarantees that every sequence
of distribution functions has a weakly convergent subsequence and so FA is weakly
compact. It can further be shown that weak convergence is equivalent to complete
convergence when restricting to distribution functions supported on a finite inter-
val [351, Section 11.2] and so FA is also completely compact. Moreover, complete
convergence is equivalent to convergence in the Lévy distance [351, 3(c) on p. 215]
and so FA is also compact in the Lévy distance.

Since the channel is fixed, the mutual information I(X;Y ) = I(FX , pY |X) can be
written as a function of only the input distribution, I(FX). Although not always
true [352, XVII], the mutual information functional has the following properties for
an AWGN channel.
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Lemma 7.2. Mutual information I : FA → R is a strictly concave, continuous,
weakly differentiable functional with weak derivative

I ′F1
(F2) =

∫ A

−A

i(x;F1)dF2(x)− I(F1).

Proof. Concavity of mutual information is shown in [350, Lemma on p. 25] by gener-
alizing the convexity property of entropy. Strict concavity is shown by excluding the
possibility of equality. The equality condition would only arise if the output densities
p(y;F1) and p(y; θF1 + (1− θ)F2) were equal pointwise for some distinct F1 and F2,
but due to the smoothness of the Gaussian noise, p(y;F1) = p(y; θF1 + (1 − θ)F2)
pointwise implies that the Lévy distance between F1 and θF1 + (1− θ)F2 is zero.

Continuity of mutual information is shown in [350, Lemma on p. 27] and follows
essentially from the Helly-Bray theorem [351, p. 182].

Weak differentiability of mutual information is shown in [350, Lemma on p. 29].

The average squared value of the channel input under the input distribution FX

is denoted as

σ2
F ,

∫ A

−A

x2dFX(x) = E[x2].

Recall the received power constraint

B ≤ E[ρ(X)] = E[σ2
N + x2] = σ2

N + σ2
F ,

which is equivalent to B − σ2
N − σ2

F ≤ 0. Now define the functional J : FA → R as

J(FX) , B − σ2
N −

∫ A

−A

x2dFX(x).

Lemma 7.3. J is a concave, continuous, weakly differentiable functional with weak
derivative

J ′
F1
(F2) = J(F2)− J(F1).

Proof. Clearly J is linear in FX (see (7.3) for basic argument). Moreover, J is bounded
as B−σ2

N−A2 ≤ J ≤ B−σ2
N . Since J is linear and bounded, it is concave, continuous,

and weakly differentiable. The weak derivative for a linear functional is simply the
difference between the functional values of the endpoints.

Now return to the information-theoretic optimization problem to be solved. Two
optimization theorems establishing properties of Lagrangian optimization and convex
optimization, given in Appendix 7.A, will be used.

Theorem 7.4. There exists a Lagrange multiplier λ ≥ 0 such that

C(B;A) = sup
FX∈FA

[I(FX)− λJ(FX)].
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Proof. The result follows from Theorem 7.11 in the appendix, since I is a concave
functional (Lemma 7.2), since J is a concave functional (Lemma 7.3), since capacity
is finite whenever A <∞ and σ2

N > 0, and since there is obviously an FX ∈ FA such
that J(FX) < 0.

Theorem 7.5. There exists a unique capacity-energy achieving input X0 with distri-
bution function F0 such that

C(B;A) = max
FX∈FA

[I(FX)− λJ(FX)] = I(F0)− λJ(F0),

with constant λ ≥ 0. Moreover, a necessary and sufficient condition for F0 to achieve
capacity-power is

I ′F0
(FX)− λJ ′

F0
(FX) ≤ 0 for all FX ∈ FA. (7.5)

Proof. Since I and J are both continuous and weakly differentiable (Lemmas 7.2,
7.3), so is I − λJ . Since I is strictly concave (Lemma 7.2) and J is concave (7.3),
I − λJ is strictly concave. Furthermore FA is a convex, compact space (Lemma 7.1).
Therefore Theorem 7.13 in the appendix applies and yields the desired result.

For this function I − λJ , the optimality condition (7.5) may be rewritten as∫ A

−A

[i(x;F0) + λx2]dFX(x) ≤ I(F0) + λ

∫
x2dF0(x)

for all FX ∈ FA, using the known weak derivative expressions. If
∫
x2dF0(x) > B−σ2

N ,
then the moment constraint is trivial and the constant λ is zero, thus the optimality
condition can be written as∫ A

−A

[i(x;F0) + λx2]dFX(x) ≤ I(F0) + λ[B − σ2
N ]. (7.6)

The optimality condition (7.6) may be rejiggered to a condition on the input
alphabet.

Theorem 7.6. Let F0 be an arbitrary distribution function in FA satisfying the re-
ceived power constraint. Let E0 denote the points of increase of F0 on [−A,A]. Then
F0 is optimal if and only if, for some λ ≥ 0,

i(x;F0) ≤ I(F0) + λ[B − σ2
N − x2] for all x ∈ [−A,A], (7.7)

i(x;F0) = I(F0) + λ[B − σ2
N − x2] for all x ∈ E0.

Proof. If both conditions (7.7) hold for some λ ≥ 0, F0 must be optimal and λ is the
one from Theorem 7.5. This is because integrating both sides of the conditions (7.7)
by an arbitrary F yields satisfaction of condition (7.5).

For the converse, assume that F0 is optimal but that the inequality condition is
not satisfied. Then there is some x1 ∈ [−A,A] and some λ ≥ 0 such that i(x1;F0) >
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I(F0) + λ[B − σ2
N − x21]. Let F1(x) be the unit step 1(x− x1) ∈ FA; but then∫ A

−A

[i(x;F0) + λx2]dF1(x) = i(x1;F0) + λx21 > I(F0) + λ[B − σ2
N ].

This violates (7.6), thus the inequality condition must be valid with λ from Theo-
rem 7.5.

Now assume that F0 is optimal but that the equality condition is not satisfied, i.e.
there is set E† ⊂ E0 such that the following is true:∫

E†

dF0(x) = δ > 0 and

∫
E0−E†

dF0(x) = 1− δ,

i(x;F0) + λx2 < I(F0) + λ[B − σ2
N ] for all x ∈ E†,

and
i(x;F0) + λx2 = I(F0) + λ[B − σ2

N ] for all x ∈ E0 − E†.

Then,

0 =

∫
E0

[i(x;F0) + λx2]dF0(x)− I(F0)− λ[B − σ2
N ]

=

∫
E†

[i(x;F0) + λx2]dF0(x) +

∫
E0−E†

[i(x;F0) + λx2]dF0(x)− I(F0)− λ[B − σ2
N ]

< δ[I(F0) + λ(B − σ2
N)] + (1− δ)[I(F0) + λ(B − σ2

N)]− I(F0)− λ[B − σ2
N ] = 0,

a contradiction. Thus the equality condition must be valid.

At a point like this in the development with the appropriate Karush-Kuhn-Tucker
(KKT) conditions evident, one might try to develop measure-matching conditions like
Gastpar et al. [349] for undetermined b(·), but this path is not pursued here.

To show that the input distribution is supported on a finite number of mass
points requires Smith’s reductio ab absurdum argument. The proof uses optimality
conditions from Theorem 7.6 to derive a contradiction using the analytic extension
property of the marginal entropy density h(x;F ).

Two facts from analysis will be needed:

Theorem 7.7 (Bolzano-Weierstrass Theorem [353, 8.13 on p. 76]). Every bounded
infinite subset of Rn has a limit point.

Theorem 7.8 (Identity Theorem for Analytic Functions [354, p. 87]). If two functions
are analytic in a region R and if they coincide in a neighborhood of a point z0 ∈ R,
or coincide along a path segment terminating in z0, or coincide for an infinite number
of distinct points with the limit point z0, then the two functions are equal everywhere
in R.
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Moreover, the characteristic function of Gaussian noise also takes Gaussian form
and is therefore non-zero on (−∞,∞). This implies that

h(x;F0) = −
∫
pY |X(y|x) log pY (y;F0)dy

has an extension to the complex plane h(z;F0) that is well-defined and analytic.
Now establish the two following lemmas, which are useful for contradiction.

Lemma 7.4. If E0 is not finite, then h(x;F0) = I(F0) +D + λ[B − σ2
N − x2] for all

x ∈ R, where D = −
∫
pY |X(z) log pY |X(z)dz is the differential entropy of the channel

noise.

Proof. Since E0 is assumed to be an infinite set of points on [−A,A], it has a limit
point by the Bolzano-Weierstrass Theorem. The function h(z;F0) and the constant
I(F0)+D+λ[B−σ2

N −z2] are analytic on the complex plane and agree on an infinite
set of points E0 in the region [−A,A]. Since E0 has a limit point in the region, it
follows from the Identity Theorem that h(z;F0) = I(F0)+D+λ[B−σ2

N − z2] on the
complex plane, and in particular

h(x;F0) = I(F0) +D + λ[B − σ2
N − x2] for all x ∈ R.

Lemma 7.5. If h(x;F0) = I(F0)+D+λ[B−σ2
N −x2] for all x ∈ R, then the channel

output distribution pY (y;F0) is distributed according to a Gaussian distribution with
variance greater than σ2

N .

Proof. The proof is a computational exercise and is omitted. Parallel computations
are provided in [350, pp. 63–64].

Now the statement and proof of the discreteness result.

Theorem 7.9. E0 is a finite set of points.

Proof. By Theorem 7.6, i(x;F0) = I(F0) + λ[B − σ2
N − x2] for all x ∈ E0, which is

equivalent to

h(x;F0) = I(F0) +D + λ[B − σ2
N − x2] for all x ∈ E0.

Now suppose that E0 is not a finite set of points. Lemmas 7.4 and 7.5 then imply
that the output distribution pY (y;F0) is a Gaussian distribution. Since no input
distribution supported on [−A,A] can yield an output distribution that is Gaussian
with variance greater than σ2

N , there is a contradiction.
Hence, E0 is a finite set of points.

Since the capacity-power achieving input distribution is supported on a finite set
of mass points, a finite numerical optimization algorithm may be used to determine
the capacity-power function [347, 355, 356]. Furthermore, since the optimal signaling
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alphabet is discrete, practical signaling constellations may be used without shaping
loss.

Considering the AWGN channel N (0, 1), the capacity-power point C(B = 0;A =
1.5) is found. The unconstrained capacity achieving input density is p(x) = 1

2
δ(x +

1.5) + 1
2
δ(x− 1.5). The rate achieved for such a binary-input AWGN channel is [49,

Example 4.39]:

C(0; 1.5) =

∫ +1

−1

2/3√
2π(1−y2)

e−
(1−(4/9) tanh−1(y))2

8/9 log(1 + y)dy.

The output power achieved is E[Y 2] = 3.25. In fact, this is the maximum output
power possible over this channel, since E[Y 2] = E[X2] + σ2

N , and E[X2] cannot be
improved over operating at the edges {−A,A}. Thus,

C(B; 1.5) = C(0; 1.5), 0 ≤ B ≤ Bmax = 3.25.

For these particular channel parameters, there actually is no trade-off between in-
formation and power: antipodal signaling should be used all the time. This is not
a general phenomenon, however. This is not true for the same noise, but for say
A ≥ 1.7 rather than A = 1.5 [350].

As an example, a particle-based numerical optimization procedure [356] is used to
determine the capacity-power function for A = 5, C(B; 5). This is shown in Figure 7-
2. The unconstrained capacity-achieving input distribution is supported on 5 mass
points, whereas the maximum power delivery is achieved with antipodal signaling at
the edges.

� 7.5 Discussion

Some have argued that the greatest inventions of civilization either transform, store,
and transmit energy or they transform, store, and transmit information [357]. Al-
though quite reasonable, many engineering systems actually deal with both energy
and information: signals must be embodied in energy or matter.

In particular, the problem of communication is usually cast as one of transmitting
a message generated at one point to another point. During the pre-history of infor-
mation theory, a primary accomplishment was the abstraction of the message to be
communicated from the communication medium. As noted, “electricity in the wires
became merely a carrier of messages, not a source of power, and hence opened the
door to new ways of thinking about communications” [44]. As Norbert Wiener said,
“Information is information, not matter or energy. No materialism which does not
admit this can survive at the present day” [358, p. 132].

Understanding signals independently from their physical manifestations led to
modern communication theory, but it also blocked other possible directions. Sepa-
rating messages from media arguably even led to the division of electrical engineering
into two distinct subfields, electric power engineering and communication engineering.
The separation of messages and media however is not always warranted.
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Figure 7-2. Capacity-power function for an AWGN channel with unit noise power, amplitude
constraint [−5, 5], and b(y) = y2. The capacity-power-achieving input distribution, supported on a
finite set of points, is also shown. Darker markers indicate greater probability mass.
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This chapter argued that, notwithstanding reversible decoding [16], there may be
benefits to transmitting power for information processing along with the information-
bearing signal so as to overcome energy limitations in the receiver. The idea of
broadcasting power has a long history [359].

The fundamental trade-off between the rate of transporting energy2 and the rate
of simultaneously transmitting information by modulating in energy has been defined,
established, and computed for several channels.

Additional engineering inspiration for studying the simultaneous transmission of
power and information is provided by powerline communication. Powerline com-
munication has received significant attention [346, 361, 362], but the literature has
focused on the informational aspect under the constraint that modulation schemes
not severely degrade power delivery. This need not be the case in future engineering
systems, where power and energy constraints are both limiting.

� 7.A Review of Optimization Theory

This appendix reviews some results from optimization theory and gives some alter-
native versions that apply more directly to this chapter.

The first theorem deals with Lagrange multipliers.

Theorem 7.10 (Theorem 1 in Section 8.3 of [363]). Let A be a linear vector space, Z
a normed space, Ω a convex subset of A, and P the positive cone in Z. Assume that
P contains an interior point. Let f be a real-valued convex functional on Ω and G
a convex mapping from Ω into Z. Assume the existence of a point a1 ∈ Ω for which
G(a1) < 0⃗. Let

D′ = inf
a∈Ω,G(a)≤0⃗

f(a) (7.8)

and assume D′ is finite.
Then there is a z∗0 ≥ 0⃗ in the normed dual of Z, Z∗, such that

D′ = inf
a∈Ω

[f(a) + ⟨G(a), z∗0⟩] . (7.9)

Moreover, if the infimum is achieved in (7.8) by an a0 ∈ Ω such that G(a0) ≤ 0⃗, it is
achieved by a0 in (7.9) and ⟨G(a0), z∗0⟩ = 0.

A simplification of this result (as well as a conversion from an infimization problem
to a supremization problem) is as follows.

Theorem 7.11. Let A be a linear vector space and Ω a convex subset of A. Let f
and g be real-valued concave functionals on Ω. Assume the existence of a point a1 ∈ Ω
for which g(a1) < 0. Let

D′ = sup
a∈Ω,g(a)≤0

f(a) (7.10)

2Although the chapter focuses on energy, the results apply equally well to other commodities like
water, railroad cars, or packets in communication networks (whose timing is modulated [360]).
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and assume D′ is finite.
Then there is a λ ≥ 0 in R, such that

D′ = sup
a∈Ω

[f(a)− λg(a)] . (7.11)

Moreover, if the supremum is achieved in (7.10) by an a0 ∈ Ω such that g(a0) ≤ 0, it
is achieved by a0 in (7.11) and λg(a0) = 0.

Proof. Take Z in Theorem 7.10 to be R with the usual norm. Then P = {x ∈ R :
x ≥ 0} which clearly has an interior point. Moreover, Z∗ = R.

The conversion from an infimization problem to a supremization problem is carried
out by negation and the requirement of concave functionals rather than convex.

The next result, a form of the Karush-Kuhn-Tucker (KKT) conditions for convex
optimization, requires notions of differentiability.

Definition 7.2. Let A be a vector space, and f a real-valued functional defined on
domain Ω ⊂ A. Fix an a0 ∈ Ω and let h be arbitrary in A. If there exists a map
δf : Ω 7→ R such that

δf(a0;h) = lim
α→0

f [a0 + αh]− f(a0)

α
,

then f is said to be Gateaux differentiable at a0 with increment h and δf(a0;h) is
the Gateaux derivative at a0 with increment h.

If f is Gateaux differentiable at a0 with increment h for all h ∈ A, then f is said
to be Gateaux differentiable at a0.

A slightly different definition of differentiability is useful for convex optimization,
where the direction of the derivative is required to come from within the convex
domain.

Definition 7.3. Let A be a vector space, and f a real-valued functional defined on
domain Ω ⊂ A, where Ω is a convex set. Fix an a0 ∈ Ω and let θ ∈ [0, 1]. If there
exists a map f ′

a0
: Ω 7→ R such that

f ′
a0
(a) = lim

θ↓0

f [(1− θ)a0 + θa]− f(a0)

θ

for all a ∈ Ω, then f is said to be weakly differentiable in Ω at a0 and f ′
a0

is the weak
derivative in Ω at a0.

If f is weakly differentiable in Ω at a0 for all a0 in Ω, then f is said to be weakly
differentiable.

Notice the relationship between the weak derivative and the Gateaux derivative:
f ′
a0
(a) = δf(a0; a− a0).
The following is a general result on differential methods for finding extrema.
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Theorem 7.12 (Theorem 2 in Section 7.4 of [363]). Let A be a vector space and Ω
a convex subset. Let f be a real-valued functional on A. Suppose that a0 minimizes
f on Ω and that f is Gateaux differentiable at a0.

Then δf(a0; a− a0) ≥ 0 for all a ∈ Ω.

This can be used to develop the KKT conditions for convex optimization problems,
for which the existence and uniqueness of solutions can also be proven.

Theorem 7.13. Let A be a normed vector space and Ω a compact and convex subset.
Let f be a continuous, weakly differentiable, strictly concave real-valued functional on
Ω. Let

D = sup
a∈Ω

f(a).

Then the two following properties hold:

1. D = max f(a) = f(a0) for some unique a0 ∈ Ω, and

2. A necessary and sufficient condition for f(a0) = D is for f ′
a0
(a) ≤ 0 for all

a ∈ Ω.

Proof. Since f is a continuous function and Ω is a compact set, the range of f is
a compact subset of R [353, Theorem 16.5]. Since the range is a compact set, it
follows from the extreme value theorem that the supremum is achieved and so there
is some maximizing a0 ∈ Ω. Uniqueness is a consequence of strict concavity, as
follows. Suppose the contrary, that there are two maximizers a1 and a2 that achieve
f(a1) = f(a2) = max f(a). By strict concavity,

f ((1− θ)a1 + θa2) > (1− θ)f(a1) + θf(a2) = f(a1) = max f(a),

which is a contradiction. This proves the first property.
The necessity part of the second property follows directly from Theorem 7.12 by

the relation f ′
a0
(a) = δf(a0; a− a0). The sufficiency part holds since there is a unique

maximum.
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Chapter 8

Conclusion

Designing a communication system is a messy and complicated problem. Finite re-
sources restrain how well communication systems can be constructed, operated, and
maintained. Moreover, communication systems are subjected to the vagaries of noise
in channels, encoders, and decoders. The general theme of this thesis has been to
understand the effect of limited resources and limited reliability on the performance
of single-user communication systems, concentrating on limitations in decoding.

By developing new mathematical models that bring key properties of physical
communication systems into focus, this thesis sought insights into the basic trade-offs
between the performance of a system and the resources/reliability allocated to con-
structing, operating, and maintaining it. In Chapter 5, the performance degradation
caused by imposing extra system constraints was precisely quantified and computed,
in accordance with Radner’s notion of truly bounded rationality where the system
designer is unaware of the degradation [185]. In other chapters, the optimal relation-
ship between performance and resource/reliability was established quantitatively and
computed, in accordance with Radner’s notion of costly rationality where the system
designer can optimize under knowledge of the constraint [185].

The central argument of the thesis has been that since communication systems
are physically manifest, an expansion of communication theory to cover constraints
imposed by their physical form leads to meaningful insights on the engineering science
question: what is a good communication system?

Specific results obtained from studying these new models of communication sys-
tems show that even under optimal placement of computational nodes, decreasing the
wire length of a consensus decoding circuit reduces decoding speed. Further, even
when optimally quantizing sources into categories, there is a loss in optimal Bayes risk
performance when performing one-shot decoding for a class of sources. The results of
the thesis also establish that forms of transient and permanent noise in decoders can
rule out the possibility of communicating over noisy channels with arbitrarily small
error probability, but surprisingly there are system parameters where arbitrarily small
error probability is possible. When arbitrarily small error probability is impossible
but the goal is to communicate with some non-zero error probability, the degrada-
tion in system performance is smooth. When optimally using a system that fails
catastrophically, some number of bits can be communicated at a fixed error probabil-
ity. One way to mitigate decoder unreliability is to provide extra energy. With this
method in mind it is shown that with a minimal received power requirement, there
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are regimes where information can be communicated at the unconstrained channel
capacity rate, but the rate must be reduced for more stringent power requirements
even under optimal transmission.

The main results of the thesis are further detailed in Section 8.1. These results
correspond to closing single switches in Figure 1-2, however one might wonder what
happens when more than one switch is closed at the same time. Some problems
that may be of interest for future study along the direction of simultaneously closing
several switches are described in Section 8.3. Although the attentive reader has surely
envisaged areas where the work presented in the individual chapters may be extended,
some of these areas of possible future work primarily inspired by the contents of a
single chapter are also explicitly mentioned in Section 8.2.

� 8.1 Recapitulation

There are several kinds of classifications of the chapters. As evident from the titles,
Chapters 3 and 4 are primarily concerned with construction costs; Chapters 5 and
6 are concerned with operational reliability; and Chapter 7 is concerned with oper-
ational costs. The systems in Chapters 3 and 4 use either uncoded transmission or
repetition codes; the systems in Chapter 5 use low-density parity-check codes; and
the systems in Chapters 6 and 7 use optimal codes. Chapter 5 is primarily con-
cerned with measuring performance, whereas the other chapters are concerned with
optimizing performance.

The primary contributions of Chapters 3–7 are now summarized.

Wiring Costs

The general question of how material limitations in building decoding circuits might
degrade their performance was investigated through a specific formulation of circuit
design where quadratic wiring costs limit the convergence speed of consensus decod-
ing.

It was shown that there is no loss of optimality in first designing the circuit
topology and then optimally placing it in Euclidean space using exact spectral graph
layout methods. The mathematical form of this topology design problem was shown
to be the optimization of algebraic connectivity or eigenratio under a constraint on
the sum of the smallest eigenvalues of the graph Laplacian. The decision version of
the optimal topology design problem was proven to be NP-complete and the nat-
ural relaxation of the optimal topology design problem was proven to be a reverse
convex minimization problem, thereby allowing the use of standardized optimization
algorithms for circuit design. Through enumerative methods, several exactly optimal
circuits were designed and exhibited. It was demonstrated that optimizing algebraic
connectivity under wiring cost constraints also optimizes the eigenratio either exactly
or approximately. Finally, circuits with random topologies and optimal placement
were demonstrated to have a good trade-off between convergence speed and wiring
cost.

178



Memory Costs

The general question of how limitations on the adaptability of decoding circuits might
degrade their performance was investigated through a specific formulation where
memory constraints limit the number of distinct rules that can be used to decode
the uncoded messages produced by a source drawn at random from a population of
sources. The sources must be categorized due to the limitation.

The best approach to decoder design was suggested as first categorizing the pop-
ulation of sources and then using a prototype source from each category to design its
optimal likelihood ratio test, the decoding rule to be used for the entire category. The
mathematical form of the population categorization problem was shown to be quan-
tization of the population under the mean Bayes risk error (MBRE) criterion, a novel
fidelity criterion. Unlike existing (but different) work on quantization for hypothesis
testing, it was shown that minimum MBRE quantizers can be designed, either using
dynamic programming for discrete populations or the Lloyd-Max algorithm for con-
tinuous populations. Several optimal quantizers were designed and exhibited. The
high-rate approximation to the trade-off between memory size and performance was
also established.

In the context of human decision making, the basic formulation was extended
to settings where there are multiple populations. A novel model of human decision
making that generates racial discrimination without a taste for discrimination was
formulated. It combines the memory constraint, the automaticity of racial catego-
rization, and facts about racial segregation. It was shown that the attitude of a
decision maker, in the sense of Bayes costs, has a large impact on whether in-race or
out-of-race members of the population have better outcomes. Results from economet-
ric studies imply that for consistency with the model, most human decision makers
are precautionary. Social welfare loss arising from the costly rationality of human
decision makers is primarily due to the mismatch between social life and economic
life arising from social segregation. This welfare loss was defined as the price of
segregation and was quantified.

Transient Faults

The general question of how transient faults in operating decoding circuits might
degrade their performance was investigated through a specific formulation of per-
formance analysis of iterative message-passing decoders for low-density parity-check
codes with noisy computational elements and noisy wires.

The validity of the density evolution method of performance analysis was extended
to the setting where the decoder is noisy by proving the conditional independence
of error probability relative to the choice of codeword, the concentration of error
probability around ensemble average performance, and convergence to the cycle-free
case.

Density evolution equations were derived and analyzed for a noisy version of the
Gallager A decoder. It was shown that arbitrarily small communication error prob-
ability is not possible. An exact analytic expression for the final error probability
as a function of channel noise and decoder noise levels was determined for this de-
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coder. The set of noise parameters for which it is beneficial to use the decoder was
demarcated. An equivalence between channel noise power and decoder noise power
was defined so as to facilitate resource allocation in communication system design
and provide guidelines for voltage scaling. It was shown that if decoding threshold
and final error probability are both important metrics for assessing system perfor-
mance of the noisy Gallager A decoder, then there is no total order on codes and
therefore no notion of an optimal code. Density evolution equations were also de-
rived and analyzed for a noisy Gaussian decoder. Arbitrarily small communication
error probability is possible since the noise eventually becomes negligible. A decoding
threshold that is a function of channel noise and decoder noise levels was determined
numerically for the noisy Gaussian decoder.

New achievability results for the problem of constructing reliable memories from
noisy logic gates and noisy wires were proven. The problem formulation was concerned
with both circuit complexity and circuit reliability.

Permanent Faults

The general question of how permanent faults in operating decoding circuits might
degrade their performance was investigated through a specific formulation of commu-
nication system design where the system fails catastrophically at a random time.

A channel model of catastrophic system failure, namely a channel that dies, was
developed. Channels that die were shown to be finite-state semi-Markov channels.
They were also shown to be indecomposable, to have zero capacity, and more strongly
to not even be able to communicate a single binary message with arbitrarily small
probability of error. A method of communication over channels that die using block
codes of specified lengths was developed and proven to be optimal. Greedy algo-
rithms and dynamic programming methods were developed to optimize the expected
transmission volume at a given level of final message error probability for any death
time distribution through the choice of the block code lengths. For a geometric death
time distribution and an alive state that is a binary symmetric channel, it was shown
that the same code should be used repeatedly. In particular, an example was given
where the binary Golay code should be used in sequence.

Energy Considerations

Many engineering systems need to receive both power and information from an exter-
nal source. The fundamental trade-off between transmitting power and information
over a single noisy line was investigated.

A capacity-power function that specifies the optimal trade-off between transmit-
ting power and transmitting information was defined and a coding theorem was proven
to endow it with operational significance. The capacity-power function was shown
to be non-decreasing and concave. The capacity-power function was computed for
several channels. A notable example is the additive white Gaussian noise channel
with hard amplitude constraints, which has an optimizing input distribution that is
supported on a finite number of mass points.
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� 8.2 Future Directions

Although understanding the trade-off between wiring cost and convergence speed of
consensus circuits may be useful for scientific understanding or engineering design,
it is just one instance of the general trade-off between infrastructure costs and per-
formance in information processing. It would be of interest to study other related
problems. As an example, one might consider the factor graph synthesis problem for
belief propagation decoders under wiring-cost minimizing placement. For the specific
problem solved in Chapter 3, it would be of interest to perform large-scale circuit
design using the reverse convex minimization relaxation.

Besides wiring costs, another limitation on decoding circuits may be the reliability
of the wiring connectivity pattern [364], due to process variation in circuit manufac-
turing [14, 15, 365]. It would be of interest to investigate the effects of miswiring on
the performance of information processing circuits.

Quantization of prior probabilities (source side information) due to memory con-
straints, as in Chapter 4, led to limited adaptability in settings with heterogenous
sources. A related scenario might require quantizing populations of channels rather
than sources, leading to mismatched channel decoding [42]. It would be of interest to
determine optimal quantizers for channels under a fidelity criterion derived from the
performance of mismatched decoding. Quantization of channel state information for
wireless systems with rate-constrained feedback [155] may have strong connections.
It would also be of interest to look at settings where there is no distribution on the
population of sources/channels, bringing ϵ-entropy to the fore.

In studying noisy message-passing decoders for LDPC codes in Chapter 5, the
primary approach was performance analysis rather than determination of optimality
bounds and so determining the performance of optimal systems would be of interest.
To do so would require developing converse arguments for communication with noisy
receivers. It might be possible to use notions of entropy generation and dissipation
from the thermodynamics of computation [7, 16, 326] to study noisy computational
devices, and then to tie together entropy and error probability [366]. Converse argu-
ments for the problem of constructing reliable memories from unreliable components
would require quantifying how much entropy a noisy gate can dissipate.

Chapter 5 exhibited two examples: one where arbitrarily small error probability
(Shannon reliability) is achievable and one where it is not. It would be of interest
to demarcate the boundaries of the two regimes. For example, one might wonder
whether the fact that in the Shannon reliable case the wire noise is bounded and
messages are possibly unbounded is the differentiating factor, or whether it is the
fact that the wires have positive zero-error capacity, or whether it is something else
altogether. Finite block length analysis of noisy decoding is also of interest.

For systems that fail catastrophically, rather than thinking of death time as inde-
pendent of the signaling scheme Xn

1 , taking inspiration from synthetic biology [318]
one might consider channels that die because they lose fitness as a consequence of
operation: T would be dependent on Xn

1 . This would be similar to Gallager’s panic
button/child’s toy channel, and would have intersymbol interference [51,306]. There
would also be strong connections to channels that heat up [367] and communication
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with a dynamic cost [368, Chapter 3].

Inspired by communication terminals that randomly lie within communication
range, one might also consider a channel that is born at a random time and then
dies at a random time. One would suspect that channel state feedback would be
beneficial. Bokodes [369] are a technology that imply a two-dimensional version of
this problem and that explicitly disallow feedback. Networks of birth-death channels
are also of interest and would have connections to percolation-style work [13].

For the problem of transmitting energy and information simultaneously, a closer
look at applications in prosthetics [330,331], RFID [332], and powerline communica-
tion [346] might suggest further system constraints. It is also of interest to determine
the performance of specific coding schemes for the energy/information problem and
finite block length bounds similar to Theorem 2.1 for comparison.

� 8.3 Building, Maintaining, and Operating a Communication System

As depicted in Figure 1-2, there are all kinds of things that affect a communication
system. The main results of the thesis consider these effects in isolation, but it is also
of interest to consider them together. A few problems that suggest themselves are
now described.

Chapter 4 was concerned with decoding a single observation under memory con-
straints whereas Chapter 3 was concerned with combining the results of several ob-
servations using consensus under wiring cost constraints. It might be of interest to
decode several observations using consensus, but where the source is drawn from a
population and each local computation node has finite memory. To use the termi-
nology of human decision making, this would be an n-referees problem under wiring
cost constraints.

One might consider communication systems where the decoder is subject to both
transient faults and catastrophic failure: channels that die with noisy decoders. As
was noted in Section 6.5, the code optimization procedures developed in Chapter 6
would work just as well if a set of finite block length codes was provided and their
performance determined. In fact, the code optimization procedures would also work
if logM(n, η) were determined for a set of codes with noisy decoders. Finite block
length analysis of noisy decoding, as suggested in Section 8.2, would provide the
required results.

Consensus algorithms have been studied in the setting where all wires have in-
dependent and identically distributed noise. Error probability first decreases as the
algorithm iterates, but then the error probability increases; an optimal number of
iterations can be determined [340]. It would be of interest to analyze these noisy de-
coders by relating the total cost, counting both wiring cost in construction and energy
cost in operation, to the error probability and convergence speed performance.

Finally, one might study the ultimate thermodynamic trade-offs between error
and energy dissipation in decoding circuits. Bennett had previously considered a
particular biochemical proofreading system that models DNA replication and had
analyzed the trade-off between the desired final error probability and the amount of
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energy that must be dissipated at each time step in the correcting system, for a given
level of noise within the decoder [370]. The speed of operation was also considered
together with final error probability and energy consumption [20]. It would be of
interest to study the kinds of decoders described in the thesis using these kinds of
thermodynamic tools.

Thermodynamic limitations on energy and error performance, combined with in-
formation/coding theoretic limitations on error performance may provide fundamen-
tal physical and informational limits on unreliable and resource-constrained systems.
As Shannon himself said [371, p. 52], “I think the connection between information
theory and thermodynamics will hold up in the long run, but it has not been fully
explored and understood. There is more there than we know at present.”
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