2,892 research outputs found

    Decreasing Diagrams for Confluence and Commutation

    Full text link
    Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract rewrite systems. It is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract rewrite systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. Secondly, we show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Thirdly, investigating the possibility of a confluence hierarchy, we determine the first-order (non-)definability of the notion of confluence and related properties, using techniques from finite model theory. We find that in particular Hanf's theorem is fruitful for elegant proofs of undefinability of properties of abstract rewrite systems

    An Algebraic Preservation Theorem for Aleph-Zero Categorical Quantified Constraint Satisfaction

    Full text link
    We prove an algebraic preservation theorem for positive Horn definability in aleph-zero categorical structures. In particular, we define and study a construction which we call the periodic power of a structure, and define a periomorphism of a structure to be a homomorphism from the periodic power of the structure to the structure itself. Our preservation theorem states that, over an aleph-zero categorical structure, a relation is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give applications of this theorem, including a new proof of the known complexity classification of quantified constraint satisfaction on equality templates
    corecore