7 research outputs found

    Social, Private, and Trusted Wearable Technology under Cloud-Aided Intermittent Wireless Connectivity

    Get PDF
    There has been an unprecedented increase in the use of smart devices globally, together with novel forms of communication, computing, and control technologies that have paved the way for a new category of devices, known as high-end wearables. While massive deployments of these objects may improve the lives of people, unauthorized access to the said private equipment and its connectivity is potentially dangerous. Hence, communication enablers together with highly-secure human authentication mechanisms have to be designed.In addition, it is important to understand how human beings, as the primary users, interact with wearable devices on a day-to-day basis; usage should be comfortable, seamless, user-friendly, and mindful of urban dynamics. Usually the connectivity between wearables and the cloud is executed through the userā€™s more power independent gateway: this will usually be a smartphone, which may have potentially unreliable infrastructure connectivity. In response to these unique challenges, this thesis advocates for the adoption of direct, secure, proximity-based communication enablers enhanced with multi-factor authentication (hereafter refereed to MFA) that can integrate/interact with wearable technology. Their intelligent combination together with the connection establishment automation relying on the device/user social relations would allow to reliably grant or deny access in cases of both stable and intermittent connectivity to the trusted authority running in the cloud.The introduction will list the main communication paradigms, applications, conventional network architectures, and any relevant wearable-speciļ¬c challenges. Next, the work examines the improved architecture and security enablers for clusterization between wearable gateways with a proximity-based communication as a baseline. Relying on this architecture, the author then elaborates on the social ties potentially overlaying the direct connectivity management in cases of both reliable and unreliable connection to the trusted cloud. The author discusses that social-aware cooperation and trust relations between users and/or the devices themselves are beneļ¬cial for the architecture under proposal. Next, the author introduces a protocol suite that enables temporary delegation of personal device use dependent on diļ¬€erent connectivity conditions to the cloud.After these discussions, the wearable technology is analyzed as a biometric and behavior data provider for enabling MFA. The conventional approaches of the authentication factor combination strategies are compared with the ā€˜intelligentā€™ method proposed further. The assessment ļ¬nds signiļ¬cant advantages to the developed solution over existing ones.On the practical side, the performance evaluation of existing cryptographic primitives, as part of the experimental work, shows the possibility of developing the experimental methods further on modern wearable devices.In summary, the set of enablers developed here for wearable technology connectivity is aimed at enriching peopleā€™s everyday lives in a secure and usable way, in cases when communication to the cloud is not consistently available

    Security of electronic personal health information in a public hospital in South Africa

    Get PDF
    The adoption of digital health technologies has dramatically changed the healthcare sector landscape and thus generates new opportunities to collect, capture, store, access and retrieve electronic personal health information (ePHI). With the introduction of digital health technologies and the digitisation of health data, an increasing number of hospitals and peripheral health facilities across the globe are transitioning from a paper-based environment to an electronic or paper-light environment. However, the growing use of digital health technologies within healthcare facilities has caused ePHI to be exposed to a variety of threats such as cyber security threats, human-related threats, technological threats and environmental threats. These threats have the potential to cause harm to hospital systems and severely compromise the integrity and confidentiality of ePHI. Because of the growing number of security threats, many hospitals, both private and public, are struggling to secure ePHI due to a lack of robust data security plans, systems and security control measures. The purpose of this study was to explore the security of electronic personal health information in a public hospital in South Africa. The study was underpinned by the interpretivism paradigm with qualitative data collected through semi-structured interviews with purposively selected IT technicians, network controllersā€™, administrative clerks and records management clerks, and triangulated with document and system analysis. Audio-recorded interviews were transcribed verbatim. Data was coded and analysed using ATLAS.ti, version 8 software, to generate themes and codes within the data, from which findings were derived. The key results revealed that the public hospital is witnessing a deluge of sophisticated cyber threats such as worm viruses, Trojan horses and shortcut viruses. This is compounded by technological threats such as power and system failure, network connection failure, obsolete computers and operating systems, and outdated hospital systems. However, defensive security measures such as data encryption, windows firewall, antivirus software and security audit log system exist in the public hospital for securing and protecting ePHI against threats and breaches. The study recommended the need to implement Intrusion Protection System (IPS), and constantly update the Windows firewall and antivirus program to protect hospital computers and networks against newly released viruses and other malicious codes. In addition to the use of password and username to control access to ePHI in the public hospital, the study recommends that the hospital should put in place authentication mechanisms such as biometric system and Radio Frequency Identification (RFID) system restrict access to ePHI, as well as to upgrade hospital computers and the Patient Administration and Billing (PAAB) System. In the absence of security policy, there is a need for the hospital to put in place a clear written security policy aimed at protecting ePHI. The study concluded that healthcare organisations should upgrade the security of their information systems to protect ePHI stored in databases against unauthorised access, malicious codes and other cyber-attacks.Information ScienceM. Inf. (Information Security

    RESPECTING THE ETHICAL TENSION BETWEEN SURVEILLANCE AND PRIVACY IN PROMOTING PUBLIC HEALTH AND DISEASE MANAGEMENT

    Get PDF
    The recognition of the need to undertake surveillance and to protect privacy is well established. However, the continually changing circumstances and fast-paced development of healthcare today requires a continuing need to respect this ethical tension between surveillance and privacy. Hence, this dissertation is to respect the ethical tension between surveillance and privacy in promoting public health and disease management. This dissertation investigates the ethics of conducting public health surveillance, including the challenges associated with obtaining consent and protecting data from unauthorized access. The dissertation will focus on the ethical consequences of big data, including issues associated with obtaining informed consent, data ownership, and privacy. As the dissertation concludes, it will provide an ethical justification of observing privacy in public health surveillance. The analysis is pursued in the dissertation in the following manner. After a brief introduction in Chapter 1, the analysis begins in Chapter 2 by explaining the importance of consent with regard to protecting privacy, including confidentiality in clinical ethics. Chapter 3 moves the discussion to the realm of public health ethics, discussing two examples of population health matters to illustrate the dissertationā€™s focus. Chapter 4 focuses on the complex issue of disease management for which the ethical tension between surveillance and privacy is pivotal. Chapter 5 then discusses the critical need for respecting this ethical tension in research protocols from a global perspective. Chapter 6 moves the discussion to the fast-developing debate of data analysis in healthcare for which respecting the ethical tension between surveillance and privacy will be pivotal for the continuing success in this new arena. Finally, Chapter 7 provides a brief conclusion to the dissertation

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine
    corecore