587 research outputs found

    Large-Scale Mapping of Human Activity using Geo-Tagged Videos

    Full text link
    This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to accurately map activities both spatially and temporally. We also demonstrate the advantages of using the visual content over the tags/titles.Comment: Accepted at ACM SIGSPATIAL 201

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd

    STAC: Leveraging Spatio-Temporal Data Associations For Efficient Cross-Camera Streaming and Analytics

    Full text link
    We propose an efficient cross-cameras surveillance system called,STAC, that leverages spatio-temporal associations between multiple cameras to provide real-time analytics and inference under constrained network environments. STAC is built using the proposed omni-scale feature learning people reidentification (reid) algorithm that allows accurate detection, tracking and re-identification of people across cameras using the spatio-temporal characteristics of video frames. We integrate STAC with frame filtering and state-of-the-art compression for streaming technique (that is, ffmpeg libx264 codec) to remove redundant information from cross-camera frames. This helps in optimizing the cost of video transmission as well as compute/processing, while maintaining high accuracy for real-time query inference. The introduction of AICity Challenge 2023 Data [1] by NVIDIA has allowed exploration of systems utilizing multi-camera people tracking algorithms. We evaluate the performance of STAC using this dataset to measure the accuracy metrics and inference rate for reid. Additionally, we quantify the reduction in video streams achieved through frame filtering and compression using FFmpeg compared to the raw camera streams. For completeness, we make available our repository to reproduce the results, available at https://github.com/VolodymyrVakhniuk/CS444_Final_Project

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Learning Visual Patterns: Imposing Order on Objects, Trajectories and Networks

    Get PDF
    Fundamental to many tasks in the field of computer vision, this work considers the understanding of observed visual patterns in static images and dynamic scenes . Within this broad domain, we focus on three particular subtasks, contributing novel solutions to: (a) the subordinate categorization of objects (avian species specifically), (b) the analysis of multi-agent interactions using the agent trajectories, and (c) the estimation of camera network topology. In contrast to object recognition, where the presence or absence of certain parts is generally indicative of basic-level category, the problem of subordinate categorization rests on the ability to establish salient distinctions amongst the characteristics of those parts which comprise the basic-level category. Focusing on an avian domain due to the fine-grained structure of the category taxonomy, we explore a pose-normalized appearance model based on a volumetric poselet scheme. The variation in shape and appearance properties of these parts across a taxonomy provides the cues needed for subordinate categorization. Our model associates the underlying image pattern parameters used for detection with corresponding volumetric part location, scale and orientation parameters. These parameters implicitly define a mapping from the image pixels into a pose-normalized appearance space, removing view and pose dependencies, facilitating fine-grained categorization with relatively few training examples. We next examine the problem of leveraging trajectories to understand interactions in dynamic multi-agent environments. We focus on perceptual tasks, those for which an agent's behavior is governed largely by the individuals and objects around them. We introduce kinetic accessibility, a model for evaluating the perceived, and thus anticipated, movements of other agents. This new model is then applied to the analysis of basketball footage. The kinetic accessibility measures are coupled with low-level visual cues and domain-specific knowledge for determining which player has possession of the ball and for recognizing events such as passes, shots and turnovers. Finally, we present two differing approaches for estimating camera network topology. The first technique seeks to partition a set of observations made in the camera network into individual object trajectories. As exhaustive consideration of the partition space is intractable, partitions are considered incrementally, adding observations while pruning unlikely partitions. Partition likelihood is determined by the evaluation of a probabilistic graphical model, balancing the consistency of appearances across a hypothesized trajectory with the latest predictions of camera adjacency. A primarily benefit of estimating object trajectories is that higher-order statistics, as opposed to just first-order adjacency, can be derived, yielding resilience to camera failure and the potential for improved tracking performance between cameras. Unlike the former centralized technique, the latter takes a decentralized approach, estimating the global network topology with local computations using sequential Bayesian estimation on a modified multinomial distribution. Key to this method is an information-theoretic appearance model for observation weighting. The inherently distributed nature of the approach allows the simultaneous utilization of all sensors as processing agents in collectively recovering the network topology

    Fusion of information from multiple Kinect sensors for 3D object reconstruction

    Get PDF
    In this paper, we estimate the accuracy of 3D object reconstruction using multiple Kinect sensors. First, we discuss the calibration of multiple Kinect sensors, and provide an analysis of the accuracy and resolution of the depth data. Next, the precision of coordinate mapping between sensors data for registration of depth and color images is evaluated. We test a proposed system for 3D object reconstruction with four Kinect V2 sensors and present reconstruction accuracy results. Experiments and computer simulation are carried out using Matlab and Kinect V2.The Russian Science Foundation (project #17-76-20045) financially supported the work

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)
    corecore